Table 3.
Antibacterial activities of vegetal extracts and their related bioactive compounds against pathogens associated with bovine mastitis.
| Plant-extract | Mechanisms of action | Associated compounds | Reference |
|---|---|---|---|
| Quercus robur, Calluna vulgaris, ethanolic and acetonic | Antimicrobial activity on S. aureus, E. coli, S. agalactiae, S. uberis, S. liquefaciens | Phenolic compounds | (Šukele et al., 2022) |
| Ocimum tenuiflorum, Ricinus communis | Bacteriostatic and bactericidal effects | – | (Kebede & Shibeshi, 2022; Srichok et al., 2022) |
| Hydrolysable tannin extract | Bacteriostatic and bactericidal effects | Tannins | (Prapaiwong et al., 2021) |
| Sorghum phenolic extract | Growth inhibitory effects | Phenolics | (Schnur et al., 2021) |
| Terminalia chebula, ethyl acetate | Growth inhibitory effects | – | (Kher et al., 2019) |
| Knema retusa wood extract | Inhibitory and bactericidal effects, biofilm inhibition on Staphylococcal isolates | endo-2‑hydroxy-9,9 (ethylenedioxy)−1-carbethoxy bicyclononane | (Chuprom et al., 2022) |
| Eucalyptus globulus, Juglans regia, hydroalcoholic extracts | Antibiofilm activity on S. aureus | – | (Gomes et al., 2019a) |
| Aquilegia fragrans underground parts, methanolic | Inhibitory effects on major pathogens of mastitis and on Staphylococcus xylosus, Staphylococcus equorum, Enterococcus faecalis and Pantoae | 2, 4-dihydroxyphenylacetic acid methyl ester, β-sitosterol, Aquilegiolide, Glochidionolactone-A and Magnoflorine | (Mushtaq et al., 2016b) |
| Rhodomyrtus tomentosa leaves extract | Inhibitory and bactericidal effects on multidrug-resistant S. aureus | – | (Mordmuang et al., 2015a; Mordmuang et al., 2019) |
| Clinacanthus nutans | Antibacterial and anti-apoptosis activities | – | (Panya et al., 2020) |
| salvinia auriculata, hexane | Antibacterial activity on S. aureus, biofilm inhibition formation | stigmast-22-ene-3,6‑dione, β-sitosterol and octadecanoic acid | (Purgato et al., 2021) |
| Larrea tridentata, ethyl acetate fraction | Bactericidal activity on pathogens associated with mastitis | nor 3´demethoxiisoguaiacin | (Morales-Ubaldo et al., 2022) |
| Salvia officinalis | Inhibitory effects on S. aureus, E. coli, S. epidermidis, S. agalactiae and S. dysgalactiae | Manool, ent‑kaurenoic acid, and ent‑copalic acid | (Fonseca et al., 2013) |
| Thalictrum minus | Growth inhibition of inhibited growth of S. aureus, K. pneumoniae, E. coli, and other less common agents | Alkaloids5′-Hydroxythalidasine, thalrugosaminine and O-Methylthalicberine | (Mushtaq et al., 2016b) |
| Angelica dahurica, Rheum officinale | In vivo antibacterial activity | emodin, rhein and polysaccharides | (Yang et al., 2019) |
| Tea tree | Inhibtion of biofilm formation, down-regulation of genes srtA, fbsC, neuA, and cpsE | Saponins | (Shang et al., 2020) |
| Rheedia brasiliensis | Antibacterial activity on S. agalactiae and S. uberis | 7-epiclusianone | (de Barros et al., 2017) |