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Stable diverse food webs become more common 
when interactions are more biologically constrained
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Ecologists have long sought to understand how diversity and structure mediate the sta-
bility of whole ecosystems. For high-diversity food webs, the interactions between spe-
cies are typically represented using matrices with randomly chosen interaction strengths. 
Unfortunately, this procedure tends to produce ecological systems with no underlying 
equilibrium solution, and so ecological inferences from this approach may be biased by 
nonbiological outcomes. Using recent computationally efficient methodological advances 
from metabolic networks, we employ for the first time an inverse approach to diversity–
stability research. We compare classical random interaction matrices of realistic food web 
topology (hereafter the classical model) to feasible, biologically constrained, webs produced 
using the inverse approach. We show that an energetically constrained feasible model 
yields a far higher proportion of stable high-diversity webs than the classical random 
matrix approach. When we examine the energetically constrained interaction strength 
distributions of these matrix models, we find that although these diverse webs have con-
sistent negative self-regulation, they do not require strong self-regulation to persist. These 
energetically constrained diverse webs instead show an increasing preponderance of weak 
interactions that are known to increase local stability. Further examination shows that 
some of these weak interactions naturally appear to arise in the model food webs from a 
constraint-generated realistic generalist–specialist trade-off, whereby generalist predators 
have weaker interactions than more specialized species. Additionally, the inverse technique 
we present here has enormous promise for understanding the role of the biological structure 
behind stable high-diversity webs and for linking empirical data to the theory.

food webs | stability | inverse problems | diversity | network reconstruction

Nature is replete with vast, complex networks of interactions that have proven remarkably 
persistent on ecological timescales (1) but are now threatened by global change (2). The 
reticulate yet persistent aspect of food webs has led to the search for underlying biological 
structures that lead to resilience. Arguably, now more than ever, the identification of fun-
damental biological structures that augment the maintenance of diversity is critical to 
uncover. Global change is leading to not only the loss of diversity but the wholesale rewiring 
of complex food webs (e.g., refs. 3–5).

Drawing from a similar methodology applied to complex economic systems (6, 7), 
Robert May famously introduced the community matrix as a technique to study theoret-
ically the role of diversity and complexity in ecosystem stability (8). The power of these 
approaches is that they facilitate analysis by employing an enormously simplified mathe-
matical technique that encodes all interactions from nature’s entangled web in a single 
matrix. This power comes at a cost, though, and the technique has long been criticized for 
its underlying simplifying assumptions (e.g., May’s statistical universe) that often omit the 
natural constraints that must exist in empirical webs (9–12). One of the most fundamental 
of these natural constraints that is omitted is that the randomly generated matrices, in their 
most general form, do not require feasibility [i.e., that the matrices represent communities 
of positive biomass; (13, 14)]. Further, frequently, these same matrices make no attempt 
at constraining interaction strengths to follow known energetic properties of real systems 
(e.g., where consumers have imperfect conversion of energy from their food sources).

Researchers have historically and recently looked into the role of feasibility and biological 
structure on the stability of diverse ecosystems (10, 15, 16). One approach has expanded 
simple dynamical model approaches to more complex bioenergetically realistic dynamical 
models (e.g., refs. 10 and 17). The dynamical model approach finds that energetic structures 
that come from the ubiquitous allometric properties of organisms play a key role in stabi-
lization, through the modification of interaction strength often skews them toward weaker 
interaction strength distributions with fewer strong interactions (e.g., refs. 17 and 18). A 
second approach has also arisen that implements feasibility into the complex matrix models 
that Robert May started (16). These approaches often make elegant simplifying assumptions 
on the matrices to enable analytical solutions (16). Here, researchers have found that feasible 
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webs are related to the number of interactions and the mean 
strength of interactions (16). Interested in the role of energetically 
constrained models, recent matrix models without feasibility con-
straints have also looked at the empirical asymmetry in interaction 
strengths (i.e., predator growth weaker than prey loss) finding that 
they tend to produce results entirely consistent with dynamic 
modular theory (19). Specifically, strong interactions are inher-
ently destabilizing unlike the symmetric predator–prey interaction 
strength assumption (19).

Nonetheless, the role these biological constraints play in com-
plex communities remain not fully understood. Most work con-
siders a single constraint at a time and the need for approaches 
that can clearly and easily add multiple biological constraints are 
needed. Additionally, the elegant simplifications of recent matrix 
approaches (16, 20) would benefit from less simplified approaches 
that explore the set of all possible answers. This latter aspect of 
theory remains computationally intensive as diverse simulated 
matrices of realistic topology with equilibrium structure are enor-
mously computationally taxing. For example, food web theory 
currently does not have algorithms to efficiently do highly repli-
cated high-diversity webs of known topologies. While inverse 
methods in ecology abound and are already found in food web 
theory to estimate energy flux through webs, they tend to employ 
many constraints to reduce the complexity of the model and make 
it computationally more tractable (21, 22). Applied work like 
EcoPath, for example, often adds empirically motivated con-
straints to the point that a single solution can be calculated, while 
more recent methods like the linear inverse method (LIM) have 
looked at less constrained assumptions to generate distributions 
of likely flows (22).

Our work here is more consistent with the LIM approach and 
proceeds by reducing all biological constraints to two core 
assumptions i) a realistic topology and; ii) feasibility of a known 
equilibrium solution. Here, we develop a feasibility diversity–
stability approach that can serially add in known realistic bio-
logical constraints one at a time (e.g., energetic asymmetry 
between predator and prey) to fully, and clearly, elucidate the 
role of any given constraint on the local stability of complex 
diverse food webs. Here, we do this for consumptive predator–
prey webs although it could be done more generally for all inter-
action types. In what follows, we proceed by adding in energetic 
constraints (asymmetric strengths in predator–prey pairs) to 
feasible, topologically realistic webs as energetic constraints have 
played a large role in understanding complex community dynam-
ics (10, 17).

Recently, bioinformaticians interested in the structure and 
functioning of genomic metabolic networks have come up against 
a high-dimensional problem with a similar mathematical struc-
ture (23, 24). Here, they start off with a given set of steady-state 
metabolite levels and use these relatively precise empirical esti-
mates to obtain the parameters of the system. Intriguingly, they 
employ a method that inverts the typical approach used to study 
community matrices. The theoretical approach starts by specify-
ing the state of the system, the steady-state metabolite levels, and 
then solving for the system that would produce these levels. This 
inverse-metabolic network method suggests a similar approach 
to the community matrix problem. That is, akin to the observa-
tions of steady-state metabolite levels, ecologists often have a 
better idea of the biomass densities (e.g., Eltonian biomass pyr-
amid) than the matrix parameters governing flux rates between 
nodes. Further, and intriguingly, genomics researchers are also 
interested in adding biological constraints (e.g., on fluxes) to 
hone the estimates of the network parameters. This immediately 
suggests that the same inverse numerical techniques, with the 

potential for added biological constraints, can be employed for 
the community matrix. Thus, in the same way, the late Robert 
May drew from another discipline to attack diversity stability 
relationships in ecology, below we employ the inverse method 
with the same computational machinery developed by genomics 
researchers.

In what follows, we first briefly outline the inverse methodology 
and its meaning for a community matrix. We then show that this 
technique in diversity–stability applications allows us to solve the 
feasibility problem more rapidly while easily adding further bio-
logically plausible constraints (e.g., energetic constraints on inter-
action; bottom-heavy versus top-heavy food webs [sensu (25)]. 
We then reexamine longstanding diversity–stability relationships 
starting with the purely random classical model with realistic top-
ological structure, before adding to this base model a feasibility 
constraint, and finally including feasibility plus energetic con-
straints (i.e., consumer gains less energy than it consumes). 
Importantly, the inverse method uses the biological constraints to 
filter out interaction strengths, leaving behind interaction strength 
structures that drive feasibility and stability. Our results show that 
including feasibility and energetic constraints significantly alter 
interaction strength structure and increase the likelihood of sta-
bility in diverse webs relative to more traditional matrix approaches. 
This stability can be shown to come from different combinations 
of interaction strength structures in the diagonal (self-regulation) 
and off-diagonal terms (species interaction strengths). Specifically, 
for the classical matrix and the feasibility matrix—consistent with 
other work (12, 26)—we find that strong self-regulation is a 
requirement for stable diverse webs. However, with the addition 
of biological realistic energetic constraints, stable webs arise even 
with weak self-regulation but appear to require the matrices to be 
dominated by weak species interactions. We then use the inverse 
approach to find where these weak interactions manifest. The 
biologically constrained matrices reveal a naturally arising gener-
alist–specialist trade-off whereby generalist predators have weaker 
interactions than more specialized species. We end by emphasizing 
that this inverse technique has enormous promise for further 
advances in diversity–stability theory and linking this theory to 
empirical data.

The Inverse Problem: Harnessing the Power of 
Biological Information

Here, we briefly review the well-known classical diversity–stability 
matrix approach to highlight an inverse approach—effectively we 
rephrase the question as an inverse problem in a very straightfor-
ward way. We argue that the inverse approach allows us to harness 
data that are more attainable empirically and the reason related 
inverse approaches exist in food web research and applications 
(21). We begin with the typical Lotka–Volterra models used to 
describe species interactions:

	 [1]

where S is the diversity of the system, ri is the intrinsic growth rate 
of species i , and �ij is the interaction coefficient for species i on 
species j.

The classical matrix approach has been to assign the interaction 
coefficients according to some rule, often randomly, and then to 
look at the resulting system for equilibria and stability (27–29). 
Given interaction terms, the system (Eq. 1) can be solved for 
equilibrium abundances ( x∗ = − A−1r ), but unfortunately for 

dxi
dt

= xi

(
ri +

S∑
j

�ijxj

)
,
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random biologically unconstrained parameters, it is unlikely that 
almost any equilibrium value will be feasible (30).

Following its name, the inverse approach rephrases the problem 
by instead starting with the assumption that the species abun-
dances ( xi ) are known. While estimates of density are not trivial, 
empirical estimates of species density are far better quantified than 
the enormity of information required for interaction strength data. 
Further, given that there is additional basic information about 
intrinsic growth rates of species ( ri ), this assumption can be bio-
logically constrained even further. These sets of assumptions lit-
erally turn upside the classical assumptions and in doing so are 
more consistent with what we know as biologists.

With these assumptions, we now rephrase the mathematics such 
that the abundances, xi , the network structure, and estimates of 
the growth rates ri act as constraints on the possible interactions 
�ij . We then solve for the interaction coefficients instead of the 
abundances. This rephrasing leads to a severely underdetermined 
system with many more unknowns than equations (the so-called 
Inverse Problem). The underdetermined aspect of this leads to a 
set of possible answers. It is worth pointing out that even in a 
high-diversity web (i.e., high-dimensional problem), the new 
rephrasing is a more solvable problem. Indeed, this is a problem 
that is also shared in bioinformatics where a general numerically 
intensive algorithm has been developed based on the “Hit and 
Run” method (31, 32). In a sense, the biological constraints (e.g., 
equilibrium observed densities) used to construct the inverse prob-
lem act as a filter on the interaction strength structure allowing 
us to clearly see the role interaction strength plays in producing 
feasible high-diversity webs. For clarity, we first illustrate this 
approach using the familiar consumer–resource model (schemat-
ically represented in Fig. 1, 1–5) before discussing how this is 
easily extended to high-diversity problems.

A Concrete Example: The Inverse Method for Consumer–
Resource Interactions. For a classical Lotka–Volterra consumer–
resource model, there are two dynamic equations (for x2 and 
x1; classically C and R for consumer and resource) and three 
interaction coefficients (the per capital impact of the basal resource 
on itself, �11 ); the negative per capita impact of the consumer on 
the resource, �12 ; and the positive benefit the resource gives to the 
consumer from consumption, �21).

From the classical methodological perspective, we seek a solu-
tion of the following system:

	 [2]

where biomass equilibrium values (xi) satisfy the Matrix equation 
with A the matrix of interaction coefficents: Ax + r = 0 . The −r2 
term indicates that the consumer has a mortality rate, not a 
growth rate like the resource (14). The classical approach has been 
well described and sets up conditions for a “statistical universe” 
of possibilities as exemplified in Fig. 1, 1 (box of solutions con-
strained only by the parameters assumptions). As discussed, there 
are very few feasible equilibrium solutions within the statistical 
universe.

We can convert this simple C-R example problem into an 
inverse problem for the equilibrium in terms of the interactions, 
�ij , by setting Eq. 2 to and rephrasing Eq. 2 in terms of the inter-
actions not the equilibrium densities. Doing so yields:

	
[3]

with E (signifying equilibrium) the matrix specifying the equilib-
rium abundances, which leaves us with an underdetermined sys-
tem of two equations with three unknowns. In this relatively 
simple case, after setting E� + r = 0 , treating the coefficients as 
the unknowns, we can solve for the exact solution set which sat-
isfies the linear equations:

	
[4]

 

	

[5]

Next, we see how the underdetermined system leads (Fig. 1, 2) to 
the linear planar set of solutions between �12 and �11 (Fig. 1, 3; 
blue planar solutions). Immediately the rephrasing has moved us 
to feasible subset of the statistical universe. Now, the inverse prob-
lem, phrased such, also conveniently allows us to add additional 
biological constraints directly on the interaction strengths (Fig. 1, 
4). It is a major energetic constraint in model systems that the 
negative impacts of the consumer on the resource must be larger 
or equal to the benefit the consumer receives from this interaction 
(energetically, there is imperfect conversion of resource to con-
sumer). This fundamental energetic constraint is expressed as (if 
abundances are measured in terms of biomass):

	
[6]

Substituting Eqs. 4 and 5 and rearranging in terms of a11 yields:

	 [7]

With these biological constraints (feasibility and energetic), the 
system goes from the extremely large volume of solutions for 
(�11, �12, �21) , to the bounded line of solutions above (Fig. 1). 
This line represents a set of parameters given equilibrium densities 
that produce a feasible and energetically constrained C-R. 
Randomly choosing equilibrium densities thus puts us in the posi-
tion to calculate parameters that generate energetically constrained 
feasible C-R systems. With the calculated parameters and the 
equilibrium densities we can then determine the community 
matrices and calculate stability using standard numerical algo-
rithms (i.e., calculate maximum real part of all eigenvalues). In 
this case, after many random samples drawn from the constrained 
parameter space, we can use the stability results and the known 
equilibrium densities to interpret this stability result. Specifically, 
different random equilibrium draws create a range of C:R biomass 
ratios (i.e., steepness of the C-R biomass pyramid) showing us 
that steep or top-heavy C-R (x2/x1) biomass pyramids are inher-
ently less stable—a result entirely consistent with much existing 
low-dimensional theory (25). The simple inverse rephrasing of the 
problem, more numerically solvable, allows a unique and very 
general entry point into this longstanding problem.

Scaling to High-Dimensional Food Webs. Having shown the 
approach for a 2-dimensional consumer-resource model, the 
extension to higher dimension is straightforward conceptually but 
much more difficult computationally. As above, we start off with the 
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assumption that we know all equilibrium biomass densities and then 
we are free to invoke constraints for all interactions in the diverse 
webs. Various additional biological constraints can be added (e.g., 
more precise energetic relationships between consumer–resource 
that follow some stronger assumptions). Our methodology, as 
discussed above, harnesses a recent bioinformatic approach (see 
methods for details) but otherwise is identical to the consumer–
resource ideas in the simplest model, as encapsulated in Eqs. 1–7.

Results

With the bioinformatic inverse approach in hand, we now can 
answer the question of how large, diverse, stable, food webs can 

arise. We do this by considering the three following informative 
cases highlighted in the “A Concrete Example” section above: i) 
the unconstrained statistical universe model (e.g., Fig. 2A); the 
feasible equilibrium constraint (Fig. 2B), and the feasible con-
straint plus the energetic constraint (Fig. 2C). This combination 
allows us to look at the changing stability response to diversity 
(Fig. 2) over the gradient in increasing biological constraints while 
also harnessing the inverse methodology to examine the “filtered” 
interaction strength structures left behind (for both diagonal self-
limitation and off-diagonal distributions; Fig. 3). We will end by 
then showing that the most biological constrained case shows 
filtered interaction strengths distributions that generate a gener-
alist–specialist interaction strength trade-off that likely mediates 

Illustrating the Constraint Based Approach for a Consumer-Resource Interaction

Finally we restrict the
null space by the
inequality constraints,
such as the energetic
restrictions of
consumer-resource
interactions

Here we have just the
constrained subspace,
with the dotted lines
showing the break point
between the energetic
inequality.

Given the linear
subspace (a so called
polytope) of the feasible
solution set we must
then generate random
samples from this
frequently extremely
high dimensional object

For the under
determined system we
solve for the "null
space", which gives the
linear subspace of the
feasible solution set

Unconstrained,
parameters form a large
volume of possible
solutions, most of which
will not be feasible.

Solve for determined
interactions. Some of
the parameters will be
fixed once the inverse
problem is setup

1 2

3 4

5

Fig. 1. Overview of the mathematical approach used here that bridges the classical approach (1) to the inverse method under different constraints [just 
feasibility (3) and feasibility with an energetic constraint (5)] for the Lotka–Volterra consumer resource model. Circles 1–5 show the methodology of this paper 
which moves from the classical random model (1) via the inverse approach to feasible biological constrained models (5). In panel 5, the red line is the mean 
response of all runs when you are uniformly sampling from the blue line in panel 4, and the dark solid lines are the theoretical minimum and maximum stability 
responses (i.e., determined from the geometry in panel 4). The numerical values for panel 5 are r = [1.5, −0.5], x1 = 1, x2 in [1/3, 3].
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stable feasible high-diversity webs (Fig. 4)—a trade-off that has 
been repeatedly posited empirically (33).

Our first result is that the model with the most biological plau-
sible constraints (i.e., both feasible and energetically constrained 
Fig. 2C) is the only model capable of consistently producing a 
high fraction of stable webs (Fig. 2 A–C). Interestingly, the addi-
tion of the energetic constraint appears to strongly filter out both 
highly stable and highly unstable webs. Fig. 2 A–C, i show these 
results for the same local stability range, while Fig. 2 A–C, ii show 
the same results but with zoomed in local stability scales. Indeed, 
the most constrained webs show a strong tendency to hover near 
local stability at all times (i.e., weakly stable or weakly unstable; 
Fig. 2 C, i and ii), precluding the well-known destabilizing out-
come of increasing diversity that the unconstrained (Fig. 2 A, i 
and ii) or less constrained (feasible) webs produce (Fig. 2 B, i and 
ii), Thus, our most biologically constrained web yields a consist-
ently stable or nearly stable, set of solutions for more diverse webs 
(i.e., >20 species Fig. 2 C, ii), in stark contrast to the classical 
unconstrained (Fig. 2 A, ii) and feasible (Fig. 2 B, ii) model, which 

both become highly unstable [two orders of magnitude change in 
dominant Re(λ)] for the same network topologies (P) and distri-
butions of biomass (x) and growth rate (r) (Fig. 2 A and B).

To understand how the addition of biological constraints filter 
the interaction strength distributions of the food web models, we 
examined the mean and variance of the distribution for the above 
diversity–stability experiments. In Fig. 3, we display a column 
with similar y-axis scaling (mean interaction strength or variance 
in interactions) and a zoomed in y-axis scaling to allow the details 
of different biological filters to emerge. Our second set of major 
results is that the biological filters of the inverse method act to 
strongly modify the off-diagonal interaction strengths (i.e., inter-
specific interactions) and the diagonal interaction strengths 
(intraspecific interactions) compared to the classical matrix results 
(Fig. 3 A–C).

To see this, note that the classical matrix results effectively show 
unfiltered interaction strengths as the distributions for each new 
diversity sampling literally lie on top of each other for i) the mean 
interspecific interaction strengths (Fig. 3 A, i; unconstrained), and; 
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Fig. 2. Stability responses to diversity across a range of biologically constrained whole food web models. These changes in constraint level effectively consider 
all of the parameter space (here represented as an example cube; see A Concrete Example C-R section in the text), a feasibility slice (lower dimensional slice 
of parameter space represented as a plane) and even lower dimensional slice through the parameter space (here represented as a line). The mean stability 
response [solid curves, Re(λMAX)] and the 95% CI stability to diversity of (A) unconstrained random matrix models; (B) inverse method matrix model under only 
feasibility constraint, and; (C) inverse method matrix model under feasibility constraint and energetic constraint (i.e., imperfect conversion). Panel (i) shows the 
same scaling of the stability responses while panel (ii) zooms in to show the more detailed response of each case. Classical, unconstrained models (A, i, and ii) 
and feasibility alone models (B, i, and ii) show the characteristic destabilization curves with diversity while the energetically constrained model shows a decoupled 
stability response with diversity and a relatively consistent proportion of stable webs. We note in this case they are relatively weakly stable or relatively weakly 
unstable and do not experience the extreme instability of the classical and feasible model.
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ii) the mean diagonal or intraspecific interaction strengths (Fig. 3 
A, ii; unconstrained). On the other hand, the feasibility constraint, 
and the energetic constraints (recall also only feasible solutions) 
show strong filtering of structure with diversity (Fig. 3 B and C). 
Curiously, the “feasible only” case shows that interspecific inter-
actions strength increases with diversity (Fig. 3 B, i), but this 
occurs with a strong increasingly negative shift in the diagonal 
intraspecific interaction strengths (Fig. 3 B, ii). In effect, diverse 
feasible webs are strongly muted by the diagonals as argued in 
classical diversity–stability theory (34). Finally, the addition of the 
energetic constraint, or highly constrained model, yields quite 
different food web structural results. Recalling from Fig. 2, this 
most constrained case also has a relatively high proportion of 
stable, diverse webs (Fig. 2 C, i and ii). In this case, interspecific 
interaction strengths weaken significantly with diversity (Fig. 3 
C, i) as suggested in the literature (10, 14, 35), while the diagonal 
terms become increasingly less negative (i.e., less damped; Fig. 3 
C, ii). Note here, that theory suggests that the stabilizing role of 
the growing number of weak interactions must therefore over-
whelm the well-known destabilizing effect of reduced diagonal 

damping. To more fully check this, we examined the properties 
of the Gershgorin circles most likely associated with the maximum 
real eigenvalue (and thus the stability result; see SI Appendix, 
Diagonal and Off diagonal Impacts S1). Here, as diversity 
increases, the diagonal element associated with the maximum 
Gershgorin circle (i.e., the circle with the most positive extent) in 
fact gets smaller suggesting that it is unlikely that a single strong 
negative diagonal is mediating this result. The weakening of 
self-regulation with increasing diversity in this stability result is 
noteworthy and may be why the local stability in the most con-
strained model is ultimately relatively weakly stable. In both con-
strained models, the variance in diagonals follow the same pattern 
as the variance in the mean of the interspecific interactions.

To further explore what is potentially yielding the relatively high 
proportion of stable diverse solutions in our most biologically con-
strained models (energetic versus classical; Figs. 2 and 3), we 
looked to see if the food web structures intrinsically produced 
trade-offs found in real ecosystems. Since interactions were  
shown to weaken with diversity in this case—as argued both  
by low-diversity modular theory and high-diversity theory  

A
In
cr
ea
si
ng
Bi
ol
og
ic
al
R
ea
lis
m

A.iiA.i

C

B.iiB.i

C.iiC.i

B

Interspecific Interactions
(mean off diagonal)

Intraspecific Interactions
(mean diagonal)

Unconstrained

Feasible Constraint
+ Energetic Constraint

Feasible Constraint

Fig. 3. Distributional responses of interaction strength to diversity across a range of biologically constrained whole food web models for the unconstrained 
(A); the feasibility constrained (B) and the feasibility + energetically-constrained case (C). The distributional responses of the interaction strengths (green to blue) 
display the off-diagonal interspecific distributions [i.e., column marked (i)] and the off-diagonal intraspecific distributions [column marked (ii)]. The unconstrained 
random matrix models do not shift with diversity as expected (A, i and ii); the inverse method matrix models under only feasibility constraint shows a shift 
with increasing diversity to stronger interactions (B, i, and ii), and; inverse method matrix model under feasibility constraint and energetic constraint (i.e., 
imperfect conversion) show a strong shift towards weaker interactions. Note, the distributions occur for all webs (stable and unstable) under the different cases 
(unconstrained, feasible, feasible, and energetic). (C, i, and ii). Here, the energetically constrained case is effectively operating to select weak regulation. Note, 
the distributional shifts of C, i, and ii for the highly constrained case suggest that webs do not require increased self-regulation to be stable and here energetic 
constraints are associated with feasible solution that rely mostly on weak interactions. All distribution plots use automatic kernel smoothing with a Gaussian 
kernel. Manual spot checks were used to see if nearby kernels have significantly different shapes. We detected no such dependence.
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(14, 35)—we looked to see if a generalist (weak)–specialist (strong) 
interaction strength trade-off manifested. As expected, random 
models showed no patterning between the number of prey links 
and mean strength (for positive or negative impact of predator on 
prey interaction strengths) as shown here for the high–diversity 
case (Fig. 4A). On the other hand, feasibility-constrained models 
alone produced biologically odd solutions. Specialists (Fig. 4B) 
shows strong positive interaction strengths of prey on predator but 
extremely muted negative effects on their prey (energetically 
impossible). As the number of links grow, the more generalist 
species have massively strong average interaction strengths for 
predator on prey (negative) but extremely muted positive effects 
of prey on predator (Fig. 4B). This may allow feasibility but it is 
entirely inconsistent with known biological constraints. Finally, 
and consistent with our empirical understanding, the energetically 
constrained models produce strong specialist–generalist trade-offs 
such that specialists impart strong positive and negative interaction 
strengths and generalists are governed by more muted interaction 
strengths (Fig. 4C). Thus, our final result is that the energetically 
constrained model produces configurations that tend to show dra-
matic weaker interaction sets for more generalized species and 
stronger interactions in species that are more specialized (Fig. 4). 
This trade-off has long been argued to be a potent stabilizing mech-
anism in food webs, readily producing weak interactions capable 
of muting destabilizing strong interactions and here the inverse 
methods with constraints effectively demonstrate this trade-off.

Discussion

The question of the existence of large complex ecosystems has 
puzzled ecologists for a long time since classical work that suggested 
that the chance of finding a stable complex food web by random 

search among all possible webs of interaction was small (8). Here, 
following other applications of the inverse method in ecology (22), 
we have turned the problem on its head (i.e., an inverse problem), 
and started instead with the large complex web as a given and asked 
what properties (meaning interactions among species) it must have. 
We then employed numerical approaches identical to recent bio-
informatic advances in metabolic network research that had faced 
an analogous inverse computational problem (23).

This network approach has two major theoretical advantages 
over the classical approach started by Robert May over 40 y ago. 
First, the approach only produces results for feasible webs, which 
correspond to the species all being at a positive equilibrium, a 
problem the classical matrix approach frequently ignores [although 
see (14, 16)]. Second, the approach allows one to posit biological 
structure that operates to maintain the local stability of diverse real 
webs. Not only does this approach have these potential advantages, 
it produces new insights into the maintenance of complex, diverse 
food webs. With this tool in hand, we compare classical random 
matrices with realistic topology to increasingly constrained matrices 
(i.e., feasible and feasible-energetically constrained matrices). We 
find that the most biologically constrained models yield a consist-
ently larger fraction of stable high-diversity webs in contrast to the 
presence of highly unstable diverse webs known to occur from the 
classical random matrix approach with known topological struc-
ture. More specifically, feasible energetically constrained (i.e., 
requiring imperfect energy conversion) webs tend to produce more 
stable high-diversity webs than the random webs known to be 
composed mostly of infeasible matrices.

While Robert May’s approach operated with a statistical uni-
verse (all interaction strengths within some bounded set, see 
Fig. 2A), the inverse approach has the novel property that it allows 
us to only look at the collection of webs corresponding to realistic 

Specialist Generalist

B.i B.iiB
B.iii B.vi

A A.i A.ii

A.iii A.vi

C.i C.iiC
C.iii C.vi

Unconstrained
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+ Energetic Constraint

Feasible Constraint
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Fig. 4. Interaction strength relationship with generality of feeding. Here, we look at the average interaction strength for species with different numbers of feeding 
links (i.e., different degrees of generality) for (A) Unconstrained; (B) Feasible Constraints; (C) Feasible + Energetic Constraints all for food webs of 40 species. Models 
C, energetically constrained webs, alone shows reduction in mean IS with increasing generality. Intriguingly purely feasible constraints (B) show opposite effects 
of increasing generalism, leading to ever increasing negative impacts as prey links increase, while the benefit being conferred to the predator being reduced.
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feasible solutions. Here, we use this intriguing filtering property 
to show that increasing biological constraints suggest that more 
diverse webs do not require strong self-regulation as the classical 
methods seem to require and that these constrained webs show 
that an increasing preponderance of weak interactions accompany 
more diverse feasible webs (Fig. 3). We note, though, that con-
sistent with the literature that argues consistent regulation is 
required for stability (33), these same diverse webs all show con-
sistent evidence of weak regulation by all species. Finally, we exam-
ine the feasible webs to show that they naturally create biologically 
constrained matrices that produce a generalist–specialist trade-off 
whereby generalist predators have weaker interactions than more 
specialized species.

Akin to the classical matrix method that has been successfully 
producing theory for over 50 y, the inverse approach is rich in 
potential for theoretical advances. Here, we have used this approach 
to rephrase the longstanding diversity–stability problem for eco-
logical food webs and in doing so revealing patterns in interaction 
strength distributions that bely the stability responses. Clearly, we 
have only scratched the surface of realistic and interesting biological 
constraints exist. Recent developments, for example, suggest that 
the shape of the Eltonian pyramid (or lack thereof ) drive stability 
and the inverse methodology with known equilibrium densities is 
well positioned to investigate this (i.e., bottom heavy to top heavy 
as per the C-R example). Additionally, the ability to input real data 
in the form of biomass equilibrium estimates, with additional plau-
sible biological constraints, allows an empirical entry point that 
interfaces with diversity–stability theory—an area of high-diversity 
food webs that has always been lacking.

Materials and Methods

To conduct simulations of constrained random and biological food webs, we 
implemented a Hit and Run sampler in the Julia programming language (36) 
following the artificial centering algorithm described in ref. 37 based on the 
implementation found in the Python CORBA toolkit (38), as well as using the 
Gurobi optimization platform (39) so that the algorithms can be run in parallel 
(for each independent Hit and Run MC chain). This is a computationally inten-
sive procedure so high-performance algorithms and languages are required. The 
models ran on a 12-core machine so 12 Hit and Run Monte Carlo sampling chains 
were generated and run in parallel at a given time to achieve the desired output.

Generation of Constrained Food Webs. The core method requires building 
the Inverse Problem from the input of three pieces of biological information: 
1) the predation network, P, a matrix of (0, 1) describing which species feed on 
which other species, this is generated from an ecological network model, the 
Generalized Cascade Model (40). This model has been found to recreate common 
empirical findings for network structure across diverse ecosystems but does not 
introduce compartmentation like the more popular Niche model (41, 42) which 
we wanted to control for to make the results more comparable to classical random 
matrix approaches, while still being biologically meaningful. 2) A biomass value 
for each species in the food web, x, we outline the procedure we employed in the 
sampling methods below. 3) For each species in the food web either the instan-
taneous growth rate (+ value), if the species is basal, or the per capita mortality 
if the species is nonbasal (− value). This follows the basic feasibility assumption 
as outlined by (14) for basal versus predator species in random matrix models 
(or any model based on Generalized Lotka-Volterra equations). We collect this 
information into the vector, r.

With these three pieces of information, we can then produce the 
Inverse Problem E� + r = 0 . Here, E is determined by the predation 
matrix, P, with the convention that the unknown, nonzero, pairwise inter-
action strength parameters �ij , are built by row-wise concatenation (i.e., [(
�
11
�
12
⋯ �

1S

)
 
(
�
21
⋯ �

2S

)
⋯

(
�S1 ⋯ �SS

)]
=

[
�
1j �2j ⋯ �Sj

]
, �ij ≠ 0 ) , 

where S is the number of species in the food web. To maintain the equality 
relationship of the Inverse Problem, entries in E, are made by forming a block 
diagonal matrix with the diagonal blocks being the associated biomass entries 

xn such that for the nonzero elements of the nth row of A , {anj |∀j where anj ≠ 0} 
we take the associated nonzero indices (js) and take the xj element into E. For 
example, given the matrix:

and biomass vector x = (x1 x2 x3) , first we produce the vector 
� = [a11, a12, a21, a22, a23, a32] by concatenating the nonzero entries of 
A row wise. Then, row 1 of E has nonzero elements ( − a11, − a12) the cor-
responding column indices (1, 2); therefore, we have first block of E equal to 
(−x1 − x2) . Similarly for the second row, we have the nonzero elements being 
B1 = (a21 − a22 − a23) with correspoinding column indices (1, 2, 3), giving the 
second block of E equal to B2 = (x1 − x2 − x3) , finally the only nonzero ele-
ment in the third row of A is �32 with column index (2), given their block of E as 
B3 = (x2) , yielding the block diagonal matrix:

This inverse problem determines the equality constraints required for the network 
structure, biomass, and growth/morality rates to be feasible. We further allow 
inequality constraints to be defined on any linear combination of the � vector. In 
our model, we have simple energetic constraints that |�ij| ≥ |�ji| representing 
the ecological constraint that the per capita growth potential a predator receives 
from its prey cannot be larger than its impact.

With the equality and inequality constraints, we then can use a linear program-
ming optimization routine to determine if the constrained random food web has 
a nonempty solution (i.e., a nondegenerate polytope in the solution space). As 
we are using this approach to be in line with random matrix approaches, each of 
our inputs are random, though biologically motivated/constrained, we can have 
a situation where no solution fits the particular triple (P, x, r). In which case, we 
draw a new random set of equilibrium conditions and test again. We allowed 
for up to 1,000 restarts, and that was sufficient to always find a feasible starting 
configuration (i.e., we found parameters that solved for the equilibrium so we 
found a feasible solution).

Once we have a nonempty solution space for the Inverse Problem we proceed 
to sample the set of solutions using the Hit and Run algorithm.

Sampling Procedure. The Hit and Run sampler we are using returns a vector of 
the nonzero elements of the matrix A . This parameterization is a bit awkward to 
use for biological models so it is common to build numerical libraries that can 
move between the biological representation of the problem and the low-level 
form needed by the numerical methods (38). The approach used by standard 
libraries like COBRApy are tailored for metabolic networks, so we first built tools 
that transformed a Generalized Lotka Volterra (GLV) system into the form needed 
by the sampler, and back (from the vector our sampled parameters, back into 
a GLV form for analysis). The code for this is available at https://github.com/
gabrielgellner/constrained-foodwebs.

Specifically, we start with a system in the generalized Lotka-Volterra form 
dx

dt
= Ax + r , with S being the species diversity of the system, A , the S × S matrix 

of per capita interaction terms, x , the S length vector of equilibrium biomass/
density for each species, and r  is the S length vector of growth and death rates 
(43). The algorithm requires inputs for the x and r  vectors, and the Hit and Run 
sampler will return a uniform sample from A (32, 37).

To generate the biomass vector, we first use the random predation matrix, 
P , to calculate the binary trophic position using Levine’s algorithm (44) and 
save this information for each species i  in the array TP[i] . Then biomass pyr-
amid parameter, � , is randomized between −10 and 10 to model top-heavy 
webs ( 𝛿 > 0 ) and bottom-heavy ( 𝛿 < 0 ) biomass equilibrium instead of just 
have biomass structures with not pyramid structure, like a purely uniform 

A =

⎛⎜⎜⎜⎜⎝

−a11 −a12 0

a21 −a22 −a23

0 a32 0

⎞⎟⎟⎟⎟⎠
,

E =

⎛⎜⎜⎜⎜⎝

B1 0 0

0 B2 0

0 0 B3

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

−x1 −x2 0 0 0 0

0 0 x1 −x2 −x3 0

0 0 0 0 0 x2

⎞⎟⎟⎟⎟⎠
.
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distribution would. Specifically, we have the specific biomass determined as 
xmin + TP

[
i
]
U(0.8, 1.0)i� if � ≥ 0 and xmin − maxTL

[
i
]
� + TP

[
i
]
U(0.8, 1.0)i� 

if 𝛿 < 0.
For the r  vector, we first determine which species are basal using the TP calcu-

lation from above and then set all basal species to have intrinsic growth rates of 
U(0, 5) and all nonbasal species to have mortalities of U( − 1, 0).

We ran each sampler chain for 10^6 iterations, saving only the last 5 × 10^5 
samples to allow burn in. We then shuffled the resulting samples to remove serial 

correlation as described in ref 37. We generated 5 × 10^5 samples 1,200 times 
per species diversity level, S, ranging from 10 to 40.

Data, Materials, and Software Availability. There are no data underlying 
this work.
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