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Fast protein folding is governed by memory-dependent friction
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When described by a low-dimensional reaction coordinate, the folding rates of most
proteins are determined by a subtle interplay between free-energy barriers, which
separate folded and unfolded states, and friction. While it is commonplace to extract
free-energy profiles from molecular trajectories, a direct evaluation of friction is far more
elusive and typically relies on fits of measured reaction rates to memoryless reaction-
rate theories. Here, using memory-kernel extraction methods founded on a generalized
Langevin equation (GLE) formalism, we directly calculate the time-dependent friction
acting on the fraction of native contacts reaction coordinate Q, evaluated for eight fast-
folding proteins, taken from a published set of large-scale molecular dynamics protein
simulations. Our results reveal that, across the diverse range of proteins represented
in this dataset, friction is more influential than free-energy barriers in determining
protein folding rates. We also show that proteins fold in a regime where the finite
decay time of friction significantly reduces the folding times, in some instances by as
much as a factor of 10, compared to predictions based on memoryless friction.

protein folding | reaction rate theory | molecular friction | generalized Langevin equation |
non-Markovian dynamics

For many proteins, functionality depends on successfully folding into a specific three-
dimensional conformational state. This requires that a linear polypeptide chain is driven
to explore conformation space by interactions with a solvating environment and is
shaped by both solvent interactions and internal interactions between amino acids.
When described by a low-dimensional reaction coordinate, folding and unfolding are
typically described by a free-energy landscape (1–6), with distinct states separated by
free-energy barriers. For proteins that fold in less than 100 μs, so-called “fast-folding”
proteins, barrier heights determined from experiment, theory, and simulation are of the
order of just a few kBT ’s in height. Theories for describing protein folding are often
phrased as reaction rate theories with an explicit dependence on the free energy barrier
and friction. An accurate understanding of the kinetics in barrier-crossing reactions is
important not only in characterizing protein folding but also in many other domains,
including nucleation theory and chemical reaction kinetics. Reaction rate theory dates
back to Arrhenius, who, in 1889, showed that the transition times between reactant
and product scale according to κeU0/kBT , where U0 represents the energy barrier height
between the two states (7). In principle, the prefactor κ can depend on both the free-
energy profile and friction. Building on the transition state theory of Eyring (8), Kramers
was the first to include an explicit dependence of κ on solvent friction (9). The friction
in Kramers’ theory is frequency-independent, suggesting that the environment of the
reacting system, and possibly internal processes, relax infinitely fast compared to the
barrier crossing time. Despite its simplicity, Kramers’ theory predicts reaction rates in
both overdamped and inertia-dominated regimes, making it suitable for describing a
wide range of systems. Several advancements have emerged that bridge the gap between
the overdamped and inertia-dominated regimes, while also accommodating finite friction
relaxation times (10–14). When considering proteins, it is understood that friction arises
from a complex interplay between interactions with the surrounding solvent and internal
intramolecular interactions (15–18). This ultimately leads to finite relaxation times (19).
A direct evaluation of the friction acting on a protein has not been possible and approaches
have rather relied on determining friction indirectly from memoryless reaction rate theory
(20–23). This paper presents a method for directly extracting the friction that affects the
conformational dynamics of proteins from molecular dynamics simulation trajectories,
which accounts for both internal and external friction contributions, as well as finite
relaxation times.

We evaluate friction for eight fast-folding proteins using previously published
large-scale molecular dynamics (MD) simulation trajectories (24). These simulations,
conducted by the Shaw group on the purpose-built Anton super-computer (25, 26),
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represent a breakthrough in large-scale simulation. The resulting
trajectories cover protein lengths ranging from 10 to 80 amino
acid residues and simulation times of 100 μs to 3 ms. They
represent a diverse protein dataset, composed of mixtures of α-
helix and β-hairpin secondary structures and an assortment of
different tertiary structures.

We analyze the protein folding trajectories in the framework
of a non-Markovian, generalized Langevin equation (GLE).
Although previous studies have examined non-Markovian effects
in protein folding (27, 28) and Markov-state models have been
expanded to include memory effects (29), our investigation is the
first to employ such extensive simulation data and utilize recent
GLE memory-kernel extraction methods (30–32). The GLE is
a reduced dynamic description of a complex multidimensional
system (33, 34). Here, we map the all-atom dynamics of the
composite water–protein systems onto a one-dimensional frac-
tion of native contacts reaction coordinate Q (35, 36) and hence
extract friction memory kernels fromQ(t).Q has been previously
established as a good reaction coordinate for the proteins studied
in this paper (36). Free-energy profiles and friction are specific to
a given reaction coordinate. The extracted friction kernels reflect
the combined dissipative effects of solvent and internal relaxation
on the reaction coordinate over a wide range of time scales.
To simulate multiple folding and unfolding events, Lindorff-
Larsen et al. selected for proteins that have fast folding times (24).
Using the extracted free-energy profiles and friction kernels, we

predict folding times based on reaction rate theory on different
levels of sophistication and compare to folding times from MD
simulations. Our analysis shows that the variation of folding and
unfolding times across the considered proteins is correlated more
strongly with friction than with free energy barriers. In fact, the
most accurate prediction for protein folding times is given by
a previously developed multi-time-scale, non-Markovian theory
(13, 14). Interestingly, we find that memory decay times are
long for all proteins in the dataset, with some being as long
as the folding times themselves. This indicates that Q is a poor
reaction coordinate when judged based on its non-Markovianity.
Overall, our results suggest that friction plays a dominant role
in governing the fast conformational dynamics of proteins, and
when represented by a reduced-dimensional reaction coordinate,
one must account for strong non-Markovian effects.

Results & Discussion

Extracting Friction from Protein Simulations. The native state
structures and the number of residues of each protein are
presented in Fig. 1A. The fraction of native contacts reaction
coordinate Q provides a contact-based measure for the deviation
of a given state away from the native configuration, which
typically represents the folded state. Q is closer to Q = 1
in the folded state and closer to Q = 0 when unfolded. In
Fig. 1B, we show a 250 μs trajectory segment for the α3D
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Fig. 1. The folding and unfolding of eight fast-folding proteins. (A) Native states for all proteins with the number of amino acids indicated. All protein trajectories
are taken from ref. 24. (B) 250 μs trajectory segment for the Q(t) reaction coordinate (�3D protein). Left magnification: a sequence of folding first-passage
events, from the unfolded state Qu to the barrier top Qb. Right magnification: an example folding transition path and corresponding transition path time �TP.
(C) Free-energy profile for the �3D protein. Configuration snapshots show example unfolded, barrier-top, and folded states. Qu, Qb, and Qf are the reaction
coordinate values in the unfolded, barrier-top, and folded states, respectively. For �3D, the barrier faced by the unfolded protein,Uu

0 = U(Qb)−U(Qu) = 1.8 kBT ,
is less than the barrier faced by the folded protein Uf

0 = U(Qb) − U(Qf) = 3.2 kBT . The distance from the unfolded state to the barrier top Lu = Qb − Qu is
greater than the distance from the folded state to the barrier top Lf = Qf −Qb. (D) Normalized GLE memory kernel 0(t), extracted from Q(t) for the �3D protein.
Inset: Running integral G(t) (black line), the limiting total friction  (dashed line), and an exponential fit (red curve). (E) Total friction  for each protein, divided
by kBT , plotted as a function of the number of residues N, (power law with exponent ∼ 2.8 (red line)). (F ) Effective mass m, plotted as a function of N (power law
with exponent ∼ 1.5 (red line)). (G) and (H) show the Arrhenius factor eU0/kBT and barrier crossing times �MD

MFP for folding and unfolding transitions individually.
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protein (for a summary of simulation details, see Methods and
SI Appendix, section 1). The folded and unfolded states are
discernible, located at Qf = 0.75 and Qu = 0.51, respectively,
separated by a barrier at Qb = 0.66. Throughout this paper, we
consider folding transitions as leading from the unfolded state
minimum to the barrier top (Qu → Qb) and unfolding transi-
tions as leading from the folded state minimum to the barrier top
(Qf → Qb). This accounts for the asymmetries observed in the
free-energy profiles for the eight proteins. In the Left magnifica-
tion above the trajectory, we identify a sequence of folding first-
passage events. The mean of all first-passage events gives the mean
first-passage time τMD

MFP for the folding reaction. Similarly, we
evaluate the unfolding times as the mean of all first-passage events
fromQf toQb. In theRight magnification, we present an example
folding transition path, linking the unfolded state minimum
directly to the barrier top. The mean transition path time τMTP is
the mean of all transition path durations for either folding or un-
folding transition. From the trajectories of Q(t) for each protein,
we calculate the free-energy profile U (Q) acting on the reaction
coordinate. In Fig. 1C, we show U (Q) = −kBT log[ρ(Q)] for
the α3D protein, where ρ(Q) is the probability density for Q(t),
kB is Boltzmann’s constant, and T is the temperature, which is
different for each protein. The free-energy profiles for all proteins
are asymmetric, so that the barrier heights faced by the folded
and unfolded states (U u

0 and U f
0 ) are not equal. Similarly, the

distances in reaction-coordinate space from the minima to the
barrier top (Lf and Lu) are also different. The free-energy profiles
for all proteins are shown in SI Appendix, section 2.

Central to this paper is extracting time-dependent friction
kernels 0(t) from Q(t) trajectories of each of the eight proteins.
We describe the stochastic dynamics of Q(t) with the one-
dimensional generalized Langevin equation (GLE)

mQ̈(t) = −

t∫
0

0(t − t ′)Q̇(t ′)dt ′ −∇U
[
Q(t)

]
+ FR(t), [1]

where 0(t) is the friction memory kernel, FR(t) is the ran-
dom force term satisfying the fluctuation-dissipation theorem
〈FR(t)FR(t ′)〉 = kBT0(t − t ′), m is the effective mass of
the reaction coordinate, and U (Q) is the free-energy profile.
Although Eq. 1 neglects nonlinear friction and is approximate
(37–39), it has been demonstrated to be accurate for polypeptides
(32), pair reactions in water (40), and chemical bond vibrations
(41). There are different techniques for extracting dynamic
friction from discrete time-series trajectories (30, 31, 42–44).
We explain the method used to extract 0(t) from Q(t) in
detail in SI Appendix, section 3. In short, we directly extract
the running integral of the memory kernel G(t) =

∫ t
0 0(t ′)dt ′

using a Volterra extraction scheme, which is appropriate for
arbitrary, nonlinear free-energy profiles U (Q) (31, 32). The
memory kernel is then given by 0(t) = dG(t)/dt, which is
evaluated numerically. In Fig. 1D, we show the memory kernel
for the α3D protein, normalized by 0(0). The dynamics of the
α3D protein exhibit significant memory effects, which is evident
from the inset that shows the running integral G(t) reaching a
plateau after about 10 μs. We present the memory kernels for all
proteins in SI Appendix, section 4.

Chain-Length Dependence of Protein Dynamics. After extract-
ing the full time-dependent friction kernel via G(t), we have
access to the steady-state friction γ = G(t → ∞), which we
refer to as the total friction throughout. In Fig. 1E, we show γ
for each protein as a function of the number of residues in each

chain N . Since each system has a unique temperature, we divide
by kBT and hence display the inverse total diffusivity along Q .
We fit a power law and find that γ /kBT = 3.2×10−3N 2.8 μs
(red line). For a normalized reaction coordinate that is a sum of
N uncorrelated atomic distances, one expects linear scaling in
N (SI Appendix, section 5). However, Q is a highly nonlinear
reaction coordinate. Additionally, it is known that reptation
dominates the dynamics of collapsed polymers (45, 46). Both
of these effects contribute to the super-linearity in N -scaling
for the total friction. The effective mass of Q , calculated
using the equipartition theorem m = kBT /〈Q̇〉2, also depends
on N (Fig. 1F ). The power law scaling is given by m =
3.4×106N 1.5 unm2 (red line). The super-linearity here is solely
due to the nonlinearity of Q (37). The Arrhenius factors eU0/kBT,
plotted in Fig. 1G, show very little correlation with protein
size. The folding and unfolding kinetics, however, quantified
by the mean first-passage times τMD

MFP (Fig. 1H ), increase with
N . The correlation is weak but the results are consistent with
experimental results for a different dataset that encompasses larger
proteins (47) (see SI Appendix, section 6 for a statistical analysis).
Overall, Fig. 1 E–H reveal that, when projected onto Q , friction
plays the dominant role in governing the dynamics and kinetics of
the proteins considered here. A similar conclusion was previously
reported using a 1D Markovian Langevin model (48). We explore
this in more detail in a subsequent section.

Memory Duration Is Significant in Protein Folding. Extracting
0(t) provides not only the total friction γ but also a time scale
for the duration of memory effects. In addition, γ can be used
predictively to assess other key dynamic time scales. The inertia
time τm = m/γ is the time scale at which the system becomes
diffusive (49), while the diffusion time,

τD =
γL2

kBT
, [2]

is the time taken for a Brownian particle to diffuse over a
characteristic distance L in the absence of free-energy gradients.
L is the distance from the unfolded state minimum to the top
of the folding barrier (Lu) or the distance from the folded state
minimum to the barrier top (Lf ). A system is considered to be
in the overdamped regime when τm � τD. All eight proteins
in this study meet this condition for both Lu and Lf (Fig. 2A).
One borderline case is Chignolin unfolding (τm/τD = 0.027),
for which both Lf and γ are small.

By comparing τD to the decay times of extracted memory
kernels, we can assess the expected influence of memory on
barrier-crossing processes (12). Memory-dependent friction is
typically multimodal, with time scales spanning many orders
of magnitude (32). To assign a single effective time-scale to
the memory decay, we evaluate the first-moment according to
τmem =

∫
∞

0 t0(t)dt/
∫
∞

0 0(t)dt. In SI Appendix, section 7,
we address the issue of temporal discretisation of the MD
data. Fig. 2B shows that memory times are nonnegligible
when compared to diffusion times. Memory has been shown
to accelerate barrier crossing kinetics in the range 1×10−2 <

τmem/τD < 1×101 (12–14), as indicated in Fig. 2B. Thus, for
the proteins considered here, memory is predicted to accelerate
protein folding and unfolding, which we quantify further below.
In Fig. 2C, we see that memory times are of the same order as the
reaction times, indicating that Q is a poor reaction coordinate.
The overall concurrence between τmem, τD, and τMD

MFP predicts a
coupling between memory effects and folding kinetics.
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Fig. 2. Comparison of relevant time scales for
protein folding and unfolding kinetics. (A) The
inertia time scales �m compared to the diffusion
times �D, showing that all systems are in the
over-damped regime. (B) Memory decay time
scales �mem, calculated from the first moment
of the memory kernel 0(t), compared to the
diffusion times �D . The light gray lines indi-
cate the bounding regime for �mem between
�D×10−2 and �D×101, which is the domain in
which memory-induced kinetic acceleration is
expected. (C) Memory times �mem compared to
the folding and unfolding times, expressed as
the mean first-passage times �MD

MFP. (D) Memory
times compared to the transition path times
�MTP leading from the folded and unfolded state
minima to the barrier tops. The broken lines in
each plot indicate exact equivalence between the
respective times.

In Fig. 2D, we show that transition path times are much
shorter than memory times for all proteins, sometimes by up to
two orders of magnitude. This is significant since it indicates that
entire transition processes occur under the influence of memory
effects that extend back relatively far into the protein’s dynamic
history. Transition paths, which are the segments of a trajectory
where the protein undergoes a transition from one state to a
target state, are of great interest since they reveal the actual
folding mechanisms of a protein. They have been extensively
studied in experiments (23, 50–55) and in simulations and
theory (24, 36, 56–60).

Non-Markovian Rate Theory Predicts Protein Folding Times.
From the simulation trajectories, we extract the folding and
unfolding times, evaluated via the mean first-passage times
τMD

MFP. Since we also extract the friction directly from the
simulation trajectories, we can compare the performance of
various reaction rate theories. To quantify deviations between
predicted and measured folding times, we calculate the root-
mean-square logarithmic deviation (RMSLD), which is a loga-
rithmic measure of the relative deviations given by RMSLD =√∑n

i=1(log(τMD
MFP,i)− log(τ theo

MFP,i))
2/n. Here, τMD

MFP,i is the value

measured from MD, τ theo
MFP,i is the theoretical prediction for a

given model, and n = 16 is the total number of folding and
unfolding reactions (for details, see SI Appendix, section 8).
Fig. 3A shows that τD provides a remarkably good prediction of
the MD data, despite completely neglecting contributions from
free-energy profiles. A Markovian prediction, which in addition
to friction explicitly accounts for the extracted free energy profile
(49), is given by

τMar
MFP

(
Qs, Qe

)
= τDξU

= τD

∫ Qe

Qs

eU(x)/kBT
[ ∫ x

−∞

e−U(y)/kBT dy
L

]
dx
L
.

[3]

Eq. 3 assumes constant friction across Q and evaluates the mean
first-passage times between a start and end-point on the free-
energy profile, Qs and Qe. For folding reactions, for example, we
calculate τMar

MFP(Qu, Qb) (SI Appendix, section 9). In Fig. 3B, we
see that the Markovian predictions are generally slow compared to
the MD data. The RMSLD of 1.41 indicates that the Markovian
prediction (Eq. 3) is slightly more accurate than τD, which has
an RMSLD of 1.51, indicating that by explicitly including the
free-energy profile via the correction factor ξU, defined in Eq. 3,
we only slightly improve the prediction. To emphasize this, we
consider the predictive power of the free energy profiles alone
and hence evaluate τ ′DξU (Fig. 3C ), where τ ′D is the diffusion
time using a common friction coefficient for all proteins, chosen
to minimize the RMSLD. The relatively large RMSLD value of
1.98 indicates that ξU is not a good predictor for folding times.
We conclude that friction alone describes the variation of folding
and unfolding times among this set of proteins well, while the
explicit inclusion of free-energy profiles does little to improve the
prediction.

We now consider the influence of non-Markovian effects on
the folding time predictions. A formula was recently constructed
that predicts the memory-induced speed-up and slow-down
regimes (12–14). Tested against extensive simulations, this
formula explicitly accounts for non-Markovian dynamics cor-
rectly for multiexponential memory. Based on this formula, we
introduce a non-Markovian correction factor ξnoMar as

ξnoMar =
τH

MFP(τD, U0, {γi}, {τi}, τm)

τH
MFP(τD, U0, {γi}, 0, 0)

. [4]

Here, τH
MFP is the barrier-crossing time of a one-dimensional

reaction coordinate with finite mass and a memory kernel0(t) =∑M
i=1(γi/τi) exp (t/τi), characterized by M friction amplitudes
{γi} and M memory times {τi} (13, 14) (see Methods section
Eqs.M2–M4 and SI Appendix, section 10 for details of ξnoMar and
τH

MFP). The multiexponential fits of our extracted memory kernels
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A B

C D Fig. 3. Comparison of simulated protein folding and unfolding
times �MD

MFP with predictions on different levels of theory. (A) Diffusion
times �D, according to Eq. 2, which do not depend on free-energy
barriers. (B) Markovian predictions �Mar

MFP, according to Eq. 3, which
use the extracted free-energy profile for each protein. (C) Free-
energy-dependent factor �U that accounts for the effect of the free
energy profile but not for the friction, according to Eq. 3. (D) Non-
Markovian predictions �noMar

MFP , according to Eq. 5. Multiexponential
memory kernels are explicitly accounted for. The root-mean-squared
deviations of the logarithmically transformed data (RMSLD) provides
a measure of relative deviations for each model prediction from the
observed data �MD

MFP over the combined set of folding and unfolding
times. A lower RMSLD indicates that a given model prediction is more
accurate, where the dashed lines indicate an exact prediction. In (C),
�′D is calculated using  = 1.1×109unm2μs−1 for all proteins, chosen
to minimize the RMSLD. See Fig. 2 for symbol legend.

are discussed in SI Appendix, section 4, for Chignolin we useM=2
and for all other proteins M=3. We note that all parameters in
Eq. 4 are uniquely extracted from the MD simulations. The
denominator in Eq. 4 represents the overdamped Markovian
limit, where the inertial time and all memory times limit to zero.
The non-Markovian prediction for the barrier-crossing time can
thus be written as

τ noMar
MFP = ξnoMarτ

Mar
MFP = ξnoMarξUτD. [5]

In Fig. 3D, we see that τ noMar
MFP improves the overall prediction

of the MD folding and unfolding times (except for Chignolin,
Villin and Protein G), as confirmed by the relatively low RMSLD
value of 0.86. See SI Appendix, section 8 for additional statistical
analysis of the data in Fig. 3.

Proteins Fold in the Memory-Induced Speed-Up Regime. Mem-
ory effects can either speed-up or slow-down barrier-crossing
times when compared to the memoryless limit, depending on
the value of τmem/τD (12–14). In our analysis, we use τMar

MFP,
as given by Eq. 3, to represent the overdamped, memoryless
limit. By plotting τMD

MFP/τ
Mar
MFP against the rescaled memory times

τmem/τD for both folding (red symbols) and unfolding (black
symbols) of all proteins in Fig. 4A, we reveal that speed-up
is most pronounced for intermediate values of 1×10−1 <

τmem/τD < 1×101, while in the short memory-time limit
τmem/τD → 0, the reaction times trend to Markovian behaviour,
i.e., τMD

MFP/τ
Mar
MFP → 1. This is in line with previous treatments of

model systems (13, 14) and simulations of short homo-peptide
chains (32). Fig. 4A, therefore, indicates that protein folding and
unfolding times are significantly accelerated by memory effects, in
some instances by as much as a factor of 10, which is a remarkable
contribution.

This notion can be made more quantitative by using ξnoMar
predictively. According to Eq. 5, ξnoMar describes the ratio
τ noMar

MFP /τMar
MFP and quantifies deviations from Markovianity. In

Fig. 4A, we observe an excellent agreement between ξnoMar (blue
and yellow symbols for folding and unfolding) and the rescaled
simulation data, suggesting that a multimodal, non-Markovian
reaction rate theory accurately describes the accelerated barrier-
crossing in protein folding simulations, even predicting a 10-fold
acceleration for intermediate memory times.

To gain a deeper understanding of how memory affects
protein folding times, we rescale all memory times in Eq. 4
by a common factor α and generate an α-dependent memory
kernel 0α(t) =

∑M
i=1(γi/ατi) exp (t/ατi). Such time-rescaling

can be considered analogous to varying the solvent viscosity. In
Fig. 4B, we show ξαnoMar from Eq. 4 using the α-dependent
memory kernel 0α(t) for four proteins as solid lines, plotted
as a function of ατmem/τD. The vertical dashed lines denote
α = 1, corresponding to the original proteins described by the
MD simulations. We overlay the MD results (τMD

MFP/τ
Mar
MFP—the

same colors and symbols as in Fig. 4A) atα = 1, which show good
agreement with Eq. 4. For comparison, we also show the folding
and unfolding times predicted by Grote–Hynes (GH) theory (11)
as broken lines, which also explicitly accounts for memory effects
(see Methods section Eqs. M6–M10). The Grote–Hynes curves,
τGH,α/τHF

GH, agree with ξαnoMar for small memory times but
disagree significantly for longer memory times. Here, τGH,α is the
GH prediction (τGH - Eq. M6) with memory times rescaled by
α, and τGH

HF is the high-friction, memoryless GH limit (Eq.M10)
(see SI Appendix, section 10 for details). Previous work has
discussed the breakdown of GH theory for long memory times
for model systems (12, 40). Here, we demonstrate the relevance
for protein folding kinetics. While GH theory agrees with ξnoMar
for some proteins (e.g., α3D and the λ-repressor in Fig. 4B),
it significantly fails for other proteins (e.g., Trp-Cage and WW
Domain; see also SI Appendix, Figs. S8 and S9), depending on the
value of τmem/τD. Specifically, Trp-Cage unfolding is described
by a particularly high value of τmem/τD = 2, which corresponds
to the onset of memory-induced slowdown, as predicted well by
Eq. 4 but not by GH theory.
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A B

Fig. 4. Barrier crossing times indicate memory-induced speed up. (A) Deviations from Markovian barrier crossing kinetics, plotted as a function of rescaled
memory times �mem/�D, for the folding and unfolding of all eight proteins. Rescaled MD simulation values for each protein (�MD

MFP/�
Mar
MFP, red and black symbols)

are compared to multimodal, non-Markovian prediction (�noMar, Eq. 4, blue and yellow symbols). See Fig. 2 for symbol legend. (B) Reaction-time curves generated
by scaling all memory times by a common factor �. Vertical dashed lines indicate � = 1, which are different for folding (f) and unfolding (u) due to unique �D
values. The multimodal non-Markovian prediction (��noMar from Eq. 4—folding (blue) and unfolding (yellow)) is compared to the Grote–Hynes prediction (�GH,�

from Eq. M6), rescaled by the memoryless, high-friction limit (�GH
HF - Eq. M10) for folding (orange) and unfolding (grey). The blue and yellow symbols shown

in (A) for the four example proteins coincide with the curve intercepts of the � = 1 lines in (B) for ��noMar. The red and black symbols are the same as those
shown in (A), corresponding to the MD results for each protein, located at � = 1. The solid black lines show quadratic scaling, predicted for �noMar in the long
memory-time limit. Dashed horizontal black lines show unity for all plots.

Conclusion

We have extracted memory kernels from published MD sim-
ulation trajectories of eight fast-folding proteins (24) and have
shown that, for theQ reaction coordinate, each protein’s memory
time is comparable to its folding time and typically vastly exceeds
its transition path time. By extracting the memory kernels, and
from that the total friction γ , we show that a simple prediction
for the barrier crossing times, which only depends on friction, i.e.,
τD, represents the simulated barrier crossing times well (Fig. 3A).
Explicitly accounting for the exact free-energy profiles (Figs. 3
B and C ) does not particularly improve upon this prediction.
A theory that explicitly accounts for multi-time-scale memory-
dependent friction most accurately predicts the folding and
unfolding times observed in the MD simulations (Fig. 3D),
demonstrating that non-Markovian effects must be accounted for
when describing protein dynamics via some reduced-dimensional
reaction coordinate.

The quality of reaction coordinates has been estimated using
transition-state-ensemble and commitment-probability methods
(58, 61, 62), based on the idea that an ideal reaction coordinate
should project all transition states onto a single point and be
Markovian (28). Using such methods and the same dataset
from the Shaw group as we use here (24), Best and Hummer
argued that Q is a good reaction coordinate for describing
protein folding dynamics (36). However, we demonstrate that
Q displays strong non-Markovianity, suggesting that qualifying a
reaction coordinate is subtle. In SI Appendix, section 11, we show
memory kernels for other standard reaction coordinates, such
as the end-to-end distance, radius of gyration, and the RMSD
from the native state. The resultant memory times span orders
of magnitudes but are typically of the order of the diffusion
time scale τD. Therefore, none of these reaction coordinates

can be considered as a good reaction coordinate when judged
based on their Markovianity. Regardless, by faithfully extracting
memory friction functions from MD trajectories and using non-
Markovian reaction rate theories, the folding kinetics of proteins
can be analyzed and accurately predicted. Such a method may
prove to be ideal in the experimental context (50–52, 63, 64)
where the investigator does not have the luxury to choose optimal
reaction coordinates.

Alternative models, which neglect non-Markovian effects but
assume position-dependent friction (5, 58), fail to generate
a unique friction profile γ (Q) that describes both folding
and unfolding kinetics (SI Appendix, section 12). This was
already demonstrated for a simple α-helix forming homo-alanine
chain (32). Similarly, we show in SI Appendix, section 13 that
Markovian simulations with position-independent friction can-
not reproduce the characteristic subdiffusive dynamics exhibited
by proteins, contrary to simple GLE simulations. It is possible
that position-dependent memory effects may also be important
for protein folding in general (37–39), but as we demonstrate in
SI Appendix, section 13, any such effects are minor and therefore
negligible for the proteins studied here. Finally, we mention
that multidimensional projection techniques may significantly
improve our analysis, especially for proteins that exhibit multiple
distinct folding or unfolding pathways, such as NTL9 and the
WW-Domain (24). However, this is beyond the scope of our
present investigation.

Methods

In the document, SI Appendix, section 1, we present details for the molecular
dynamics simulations, including various relevant simulation parameters.
Additionally, we include a range of measured time-scales and other extracted
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quantities, and we compare results for our analysis of reaction times to those
from Lindorff-Larsen et al. (24).

The Fraction of Native Contacts Reaction Coordinate. For each protein, we
project the backbone Cα atomic positions from the all-atom trajectories taken
from ref. 24 onto the fraction of native contacts reaction coordinateQ, evaluated
with a soft cut-off potential (36). The evaluation of Q(t) requires a reference
state, which we take to be the native state for each trajectory. To evaluate the
native state, we follow previous implementations and select from amongst the
member states of the trajectories (as opposed to using, for example, the PDB
entry). The approach is similar to that used by Lindorff-Larsen et al. (24) and
Best et al. (36), which follows from ref. 65. Briefly, we sample a subset of evenly
spaced states from the full trajectory. For each pair of states, we calculate the
corresponding root-mean-squared deviation (RMSD) between the two states. If
the RMSD between two states is less than 0.2 nm, then we place the pair into
a list. We assign the state that has the most listed pairs satisfying the RMSD
condition as the native state for a given protein. The native states for each protein
are displayed in Fig. 1A. Note that for proteins with more than one independent
trajectory segments, we select a single native state from amongst all trajectory
segments, which we then use for all segments. In the native state, we define
all Cα pairs that are separated by at least 5 residues in the primary sequence
and which are separated by less than 0.9 nm in Cartesian distance, as the
native contacts. Each protein will haveNnc native contacts. s0

ij are the separation
vectors for all native contact pairs in the native state, which have magnitudes

s0
ij =

√
s0
ij · s

0
ij . sij(t) are the separation vectors for all native contact pairs at

each time, with magnitudes sij(t) =
√
sij(t) · sij(t). This gives the fraction of

the native contacts that are deemed to be in contact at time t as

Q(t) =
1
Nnc

∑
i<j

1

1 + eβ(sij(t)−γ s
0
ij)
, [M1]

where the summation indices i and j are only for native contact pairs. Here, we
set the parameters such that β = 30 nm−1 and γ = 1.6.

Non-Markovian Correction Factor �noMar. From Kappler et al. (13) and
Lavacchi et al. (14), we describe multiexponential memory dependent barrier
crossing times as a sum of contributions from M overdamped contributions
{τ iOD}, and M energy-diffusion contributions {τ iED}, where i = 1, 2, ..., M.
The individual contributions are defined as follows. For the overdamped
contributions, we have

τ iOD = τD
γi
γ

eβU0

βU0

×

[
π

2
√

2

1
1 + 10βU0τi/τD

+

√
βU0

τm
τD

]
,

[M2]

and for the energy-diffusion contributions

τ iED = τD
γ

γi

eβU0

βU0

×

[
τm
τD

+ 4βU0

(
τi
τD

)2
+

√
βU0

τm
τD

]
.

[M3]

Here, β = 1/kBT . We combine Eqs. M2 and M3 such that the predicted
mean passage times are given by

τH
MFP(τD, U0, {γi}, {τi}, τm)

=

M∑
i=1

τ iOD +

[ M∑
i=1

1

τ iED

]−1

.
[M4]

{γi} and {τi} are the sets ofM amplitudes and time-scales that appear in Eqs.M2
and M3. The total friction γ that appears in Eqs. M2 and M3 is accounted for
since γ =

∑M
i=1 γi. The overdamped Markovian limit is achieved by setting

all memory time scales and inertial times equal to 0 and is given by

τH
MFP(τD, U0, {γi}, 0, 0) = τDπeβU0/2βU0

√

2, [M5]

leading to the non-Markovian correction factor ξnoMar and the non-Markovian
barrier crossing timeτ noMar

MFP , as given by Eqs.4and5, respectively. Theα-scaling
ξαnoMar, as discussed in the main text, is described in detail in SI Appendix,
section 10.

Grote–Hynes Theory and Barrier Crossing Predictions. The Grote–Hynes
(GH) prediction for barrier crossing with frequency-dependent friction is given
by ref. 11

τGH =
2πωmax
λωmin

eβU0 , [M6]

where ωmax =
√
|U′′max|/m and ωmin =

√
U′′min/m are the barrier

frequencies at the free energy maximum and minimum, assumed to be parabolic
such thatU′′max andU′′min are the quadratic curvatures at those locations.λ is the
barrier reactive frequency determined by solving the Grote–Hynes equation

λ2 + λ
0̃(λ)

m
= ω2

max. [M7]

0̃(λ) is the Laplace transform of the friction memory kernel, given by

0̃(λ) =

∞∫
0

0(t′)e−λt
′

dt′. [M8]

In the Markovian limit, i.e., when0(t) = γ δ(t), it can be shown that Eq.M6
reduces to the well-known Kramers (Kr) prediction for a massive particle in the
medium-to-high friction regime

τGH
Kr =

[√
γ 2

4m2
+ ω2

max −
γ

2m

]−1
2πωmax
ωmin

eβU0 . [M9]

In the high-friction (HF) limit, i.e., τm/τD → 0, Eq. M9 further reduces to

τGH
HF =

2πγ
mωminωmax

eβU0 . [M10]

An extended discussion of the Grote–Hynes calculation, including the α-
scaling discussed in the main text, is given in SI Appendix, section 10.

Data, Materials, and Software Availability. Previously published data were
used for this work (24). Processed data is available upon reasonable request.
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