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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is a dismal dis-

ease, with the majority of patients diagnosed at an advanced, 
metastatic stage. Combination regimens such as FOLFIRINOX 
or gemcitabine and nab-paclitaxel have improved patient out-
comes, yet the median overall survival (mOS) for patients with 
advanced disease remains less than 1 year (1, 2).

Comprehensive genomic analysis has identified an unstable 
PDAC genome subtype associated with genomic alterations in 
DNA damage repair (DDR) genes. This group is predominantly 
enriched in patients harboring germline BRCA1/2 (glBRCA) 
mutations. BRCA1/2 proteins are key mediators of the DDR 
pathway, including DNA double-strand break repair via homol-
ogous recombination (HR; ref.  3). The frequency of glBRCA 
mutations is 4.6% to 6.2% in most PDAC cases, and 10% to 15% 
in high-risk populations (e.g., Ashkenazi Jewish; refs. 4, 5).

PDAC tumors with glBRCA mutations display enhanced 
response to platinum-based therapy and PARP inhibitors 
(PARPi; refs. 4, 6). Importantly, glBRCA is one of the first bio-
marker-driven PDAC subtypes to be targeted in a phase III trial 
(7). Patients with glBRCA PDAC treated in the PARPi mainte-
nance setting following systemic therapy with platinum ana-
logues demonstrated improved progression-free survival (PFS; 
ref. 7). Indeed, the PARPi olaparib has recently received FDA 
and European Medicines Agency approval for maintenance 
therapy for platinum-sensitive stage IV BRCA-associated pan-
creatic cancer. Despite these promising results, patients with 
glBRCA PDAC display a spectrum of responses to platinum-
based and/or PARPi treatment; a subset of patients are refrac-
tory to first-line platinum-based therapy, most patients are 
initially responsive but eventually develop resistance, and a 
third group demonstrates complete response or stable oligo-
metastatic disease for over 36 months (8). However, the mech-
anisms that underlie these differing responses are unknown.

Preclinical models that recapitulate specific clinical sce-
narios and the pathologic, cellular, and molecular properties 
of human PDAC have been well described (8). For example, 
patient-derived xenograft (PDX) models from glBRCA PDAC 
patient tumors sustain a high mutational load and may serve 
as surrogate model systems (9, 10). Moreover, PDX models 
have been shown to be predictive of drug sensitivity and 
to correlate with clinical scenarios. In order to model the 
response to treatments in an alternative ex vivo system that 
retains the architecture, tumor–stromal interactions, and 
genetic heterogeneity of PDAC (11), we chose to utilize an ex 
vivo organ culture (EVOC) system that has been optimized for 
culturing tumors ex vivo for 5 or more days (12). The EVOC 
method enables testing of drug efficacy on tumor slices from 
both human biopsies and PDXs.

ABSTRACT Germline BRCA–associated pancreatic ductal adenocarcinoma (glBRCA PDAC) 
tumors are susceptible to platinum and PARP inhibition. The clinical outcomes 

of 125 patients with glBRCA PDAC were stratified based on the spectrum of response to platinum/
PARP inhibition: (i) refractory [overall survival (OS) <6 months], (ii) durable response followed by 
acquired resistance (OS <36 months), and (iii) long-term responders (OS >36 months). Patient-derived 
xenografts (PDX) were generated from 25 patients with glBRCA PDAC at different clinical time points. 
Response to platinum/PARP inhibition in vivo and ex vivo culture (EVOC) correlated with clinical 
response. We deciphered the mechanisms of resistance in glBRCA PDAC and identified homologous 
recombination (HR) proficiency and secondary mutations restoring partial functionality as the most 
dominant resistant mechanism. Yet, a subset of HR-deficient (HRD) patients demonstrated clinical 
resistance. Their tumors displayed basal-like molecular subtype and were more aneuploid. Tumor muta-
tional burden was high in HRD PDAC and significantly higher in tumors with secondary mutations. Anti–
PD-1 attenuated tumor growth in a novel humanized glBRCA PDAC PDX model. This work demonstrates 
the utility of preclinical models, including EVOC, to predict the response of glBRCA PDAC to treatment, 
which has the potential to inform time-sensitive medical decisions.

SIGNIFICANCE: glBRCA PDAC has a favorable response to platinum/PARP inhibition. However, most 
patients develop resistance. Additional treatment options for this unique subpopulation are needed. 
We generated model systems in PDXs and an ex vivo system (EVOC) that faithfully recapitulate these 
specific clinical scenarios as a platform to investigate the mechanisms of resistance for further drug 
development.

1Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel. 2Faculty 
of Medicine, Tel Aviv University, Tel Aviv, Israel. 3Ontario Institute of 
Cancer Research (OICR), Toronto, Canada. 4Pathology Department, Sheba 
Medical Center, Tel Hashomer, Israel. 5Curesponse Ltd., Rechovot, Israel. 
6Weizmann Institute of Science, Rechovot, Israel. 7Pangea Biomed Ltd., 
Tel Aviv, Israel.
Note: C. Stossel and M. Raitses-Gurevich contributed equally to this article.
Corresponding Author: Talia Golan, Oncology Institute, Sheba Medical 
Center, Tel Hashomer, Israel. Phone: 972-530-7424; E-mail: talia.golan@
sheba.health.gov.il
Cancer Discov 2023;13:1826–43
doi: 10.1158/2159-8290.CD-22-0412
This open access article is distributed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.
©2023 The Authors; Published by the American Association for Cancer Research

mailto:talia.golan@sheba.health.gov.il
mailto:talia.golan@sheba.health.gov.il


Stossel et al.RESEARCH ARTICLE

1828 | CANCER DISCOVERY AUGUST  2023 AACRJournals.org

In this study, we aimed to recapitulate the glBRCA PDAC 
population spectrum of responses to platinum and PARPi 
therapy, to explore the genomic and clinical features that 
may lead to different responses, and to investigate the mecha-
nisms of resistance.

RESULTS
Clinical Characteristics

The Sheba Medical Center (SMC) PDAC patient cohort 
harboring glBRCA mutations included a total of 125 patients. 
Germline mutational distribution was as follows: BRCA1 
n = 43 (34.4%), BRCA2 n = 81 (64.8%), with one patient har-
boring both BRCA1 and BRCA2 germline mutations. Thirty-
six patients (28.8%) had previous malignancy, with 72.2% 
BRCA-associated tumors. Moreover, 94.4% of patients had a 
family history of malignancy—the majority of those BRCA-
associated tumors (79.6%)—and 17.8% had a family history of 
PDAC (Table 1).

Spectrum of Response of glBRCA PDAC to 
Platinum and PARPi Treatment

We explored the clinical response and OS of 125 patients 
with glBRCA-mutated PDAC treated at the SMC over a 
12-year period (2010–2022). Ninety-five percent of patients 
were exposed to standard-of-care platinum-based treatment 
during their disease (neoadjuvant/adjuvant/1–5 lines), with 
82.5% of patients with metastatic disease treated with plati-
num as first-line treatment. Fifty-seven metastatic patients 
(58.8%) were treated with PARPi. Six metastatic patients (6.2%) 
were treated with immune checkpoint inhibitors (Table 1).

Among all patients who were treated for metastatic dis-
ease (at diagnosis or from recurrence; n = 97), the mOS was 
13 months [range, 0–138 months (95% confidence interval 
[CI], 15.84–24.76)]. At the time of analysis (censor date), 11 
patients (11.3%) were responding to platinum/PARPi treat-
ment and excluded from categorization. We classified clinical 
response into three groups using the following definitions:

 ● Refractory: patients who demonstrated short-term or 
lack of response to platinum agents, with OS ≤6 months 
[mOS = 3 months; range, 0–6 months, n = 20 (20.6%)].

 ● Acquired resistance: patients with durable response to 
platinum agents and PARPi maintenance treatment, 
followed by the emergence of clinical resistance (n =  54; 
55.7%). mOS for this group was 14 months (range, 
7–36 months).

 ● Long-term responders: patients responding to platinum 
and maintenance PARPi for >36 months (n = 12; 12.3%). 
mOS for this unique population was 68 months (range, 
43–138 months). Nine patients had no evidence of dis-
ease for over 4 years.

The mOS for all metastatic patients, excluding the refractory 
group, was 18 months [range, 7–138 (95% CI, 20.06–30.05)]. 
The clinical response of the metastatic patients (stage IV at 
the time of diagnosis/recurrence) is presented in a swimmer 
plot (Fig. 1).

The long-term responding cohort was enriched with patients 
who had a significant deep response to platinum-based 

chemo therapy (mostly FOLFIRINOX). Additionally, most of 
these patients had oligometastatic disease, predominantly 
lung or liver metastasis at the initiation of PARPi mainte-
nance therapy. These data exemplify the spectrum of response 
to platinum and PARPi therapy of glBRCA PDAC patients.

To explore the mechanisms underlying the varying res-
ponses, we established PDX models that recapitulate the het-
erogeneous nature of glBRCA PDAC tumors and performed 
whole-genome sequencing (WGS) and RNA sequencing 
(RNA-seq; refs. 8, 13).

Table 1. glBRCA PDAC clinical characterization

Characteristics n = 125 (%)
Age at diagnosis
 Mean ± SD 66 ± 12
 Range 26–88

Sex
 Male 75 (59.5)
 Female 50 (40.5)

AJCC stage at diagnosis
 I/II 47 (37.6)
 III 11 (8.8)
 IV 66 (52.8)
 UNK 1 (0.8)

Tumor location
 Head 63 (50.4)
 Body 18 (14.4)
 Tail 28 (22.4)
 Head + body/body + tail 4 (3.2)/7 (5.6)
 Multiple 2 (1.6)
 UNK 3 (2.4)

Mutation distribution
 BRCA1 43 (34.4)
  185delAG 29 (67.4)
  5285insC 7 (16.3)
  Other 7 (16.3)
 BRCA2 81 (64.8)
  6174delT 60 (74.1)
  Other 21 (25.9)
 BRCA1 + BRCA2 1 (0.008)

Personal history of malignancy 36 (28.8)
 BRCA-associated malignancya 26 (72.2)

Family history of malignancy 118 (94.4)
 BRCA-associated malignancy 94 (79.6)
 PDAC 21 (17.8)

Treatments (all stages)
 Plt/PARPi 119 (95.2)
 Plt only 56 (44.8)
 PARPi only 3 (2.4)
 Other/no treatments 6 (4.8)
 Immunotherapy 6 (4.8)

Abbreviations: AJCC, American Joint Committee on Cancer; PARPi, 
PARP inhibitor; Plt, platinum therapy; UNK, unknown.
aBRCA-associated malignancies include breast, ovarian, prostate, and 
pancreatic cancers.
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glBRCA-Mutated PDAC PDX Models
Twenty-five PDX models from 24 different patients with 

glBRCA PDAC at different clinical time points were estab-
lished as previously described (9, 13). From the glBRCA 

cohort, we transplanted 48 tumor samples, of which 25 (54%) 
engrafted to establish PDX models. Tissue origin of estab-
lished tumors was as follows: primary tumors, liver metasta-
ses, peritoneum, and ascites malignant fluid (Supplementary 

Figure 1. Spectrum of response for patients with stage IV glBRCA-mutated PDAC. Swimmer plot of glBRCA patients with stage IV PDAC: time from 
diagnosis until last follow-up or death, with time from diagnosis until last follow-up or death. Blue: time on platinum/PARPi treatment. Red: time off 
platinum/PARPi treatment. Green: time from last platinum/PARPi treatment to censor date. Red infinity symbol: patients with complete response. Black 
arrow: patients alive at censor date. Inset, Kaplan–Meier curves of patients by clinical subgroup (red, refractory; gray, acquired resistance; green, long-
term responders). Plt/PARPi tx, platinum/PARPi treatment. 
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Fig.  S1A). Liver biopsies had the highest engraftment rate 
(Supplementary Fig. S1B). To capture different clinical time 
points, some tumor samples were acquired before treatment 
initiation (naive; n =  14) and others at tumor progression 
following exposure to platinum and/or PARPi treatment 
(exposed; n = 11). In a retrospective analysis, we categorized 
the PDXs based on the patient clinical responses at the 
time point of PDX generation into three groups: sensitive/
responding (n = 7), refractory (n = 12), and acquired resist-
ance (n = 5). The clinical response for one patient (SPC_285) 
was unknown. A smaller proportion of successful engraft-
ment was noted in the tissues obtained from the responding 
population (40%) compared with 70% engraftment in the 
refractory/resistant population (Supplementary Fig. S1C).

In Vivo Efficacy of Cisplatin and Olaparib (PARPi)
The therapeutic response to olaparib and cisplatin was 

tested in vivo in 11 different glBRCA PDAC PDX models and 
correlated to clinical response at the time of tissue acquisi-
tion. In vivo average tumor volume was calculated after 28 to 
52 days of cisplatin (n = 11 models) or olaparib (n = 8 mod-
els) treatment. Six PDX models were resistant to cisplatin 
(>0.7-fold change in treatment vs. control; range, 0.7–1.15), 
and four of these were also resistant to olaparib (0.74–2.15-
fold change). Five PDX models demonstrated sensitivity to 
cisplatin (<0.7-fold change; 0.05–0.41) and olaparib (0.1–0.68; 
Fig.  2A). Representative tumor growth kinetics for sensitive 
(SPC_467) and resistant (SPC_187) models are presented in 
Fig. 2B and Supplementary Fig. S1D.

EVOC as a Predictive Diagnostic Tool for 
Clinical Response

To test whether the ex vivo (EVOC) system could accu-
rately predict the clinical responses and recapitulate the 
in vivo efficacy data, 18 glBRCA PDX models were treated 
with cisplatin or olaparib (total n = 36 tumor samples) in the 
EVOC system. Sensitivity to treatment was evaluated based 
on histopathologic [hematoxylin and eosin (H&E)] charac-
terization and Ki-67 index staining and scored from zero 
(resistant) to 100 (sensitive). Twenty-three tumors (n =  23) 
were graded as resistant to olaparib or cisplatin, and 13 were 
sensitive to both. Representative images of sensitive and 
resistant models (SPC_467 and SPC_187, respectively) are 
shown in Fig. 2C.

We next compared the EVOC scores with the patient clini-
cal responses to platinum agents (FOLFIRNOX/cisplatin) 
and PARPi for 17 and 10 patients, respectively (Fig.  2D). 
EVOC predicted patient responses with a specificity of 89% 
(17/19) and sensitivity of 100% (8/8). Specifically, in eight out 
of 10 PDXs generated from diagnostic biopsies at a “naive” 

clinical time point, EVOC accurately predicted clinical out-
comes. Next, EVOC scores were compared with the in vivo 
response for each model and treatment. A significant correla-
tion between EVOC sensitivity to cisplatin and olaparib and 
in vivo tumor growth was noted (R2 = 0.59, n = 16, P < 0.001). 
Concordance was observed between EVOC and PDX response 
in 13/16 models, with a sensitivity of 100% and specificity of 
89% (Fig. 2E). Notably, in the three patients with discordance, 
each showed limited clinical response to platinum and the 
EVOC score was borderline for classification as responsive 
(Supplementary Table S1). Overall, these results demonstrate 
a significant correlation between the clinical response to 
platinum agents and PARPi and the preclinical PDX and in 
EVOC responses.

Preclinical Olaparib Maintenance Therapy 
Model and Establishment of “In Vivo Acquired 
Resistance” Models

To compare sensitive versus resistant tumors in the same 
patient, and to recapitulate the clinical setting of olapa-
rib maintenance therapy after platinum, as recommended 
for glBRCA patients (7), we developed a complementary 
“olaparib maintenance therapy preclinical” and an acquired 
resistant model. We utilized clinical treatment-naive PDX 
models—SPC_467, SPC_123, and SPC_285—and treated 
them with cisplatin followed by PARPi until resistance emer-
gence. For PDX SPC_285, mice were initially randomized to 
control (n = 6) and cisplatin (n = 7) treatment groups, and 
tumor volume was monitored twice a week. Control mice 
reached a maximum tumor volume (∼1,206 mm3) 28 days 
after treatment initiation, at which point they were sacrificed 
(Fig. 3A). On day 28, the average tumor volume for the cis-
platin group was significantly lower than control (311 mm3; 
P  <  0.001). At this time point, cisplatin-treated mice were 
divided into groups to continue cisplatin (n = 2) or initiate 
olaparib (n = 5) maintenance treatment. A durable response 
was demonstrated in the cisplatin:olaparib group, with max-
imum tumor growth inhibition on day 63. From this time 
point, tumors started to regrow in the olaparib-treated mice 
(range, 63–171 days after treatment initiation). Mice con-
tinued to receive daily olaparib treatment to generate an 
“in vivo olaparib acquired resistance” model. Tumors were 
excised when they reached maximum volume (1,500–2,000 
mm3) or upon study termination. Two mice treated with 
continuous cisplatin demonstrated complete response until 
study termination (day 185; Fig. 3A, part i, and B). No viable 
cells were observed in the remaining tissue excised from cis-
platin-treated mice. In both the acquired resistance tumors 
with large volume tumors and in mice with small tumors, 
viable glandular cells were detected (Fig. 3C). The two clones 

Figure 2. Efficacy of cisplatin and olaparib in preclinical models and correlation to clinical response. A, In vivo antitumor activity of PARPi (olaparib) 
and cisplatin in glBRCA PDAC PDXs. Tumor growth (y-axis) for each PDX model after 28 to 52 days (x-axis) of cisplatin (2 mg/kg; i.p.; once weekly) or 
olaparib (50 mg/kg; i.p.; 5 days on/2 days off) treatment. The dashed line represented a 70% threshold for sensitivity. Columns color code models by 
the clinical subgroup of response to platinum/PARPi at the time of tissue acquisition (green, sensitive; yellow, refractory; red, acquired resistance; and 
gray, unknown). B, Tumor growth curves of sensitive (SPC_467; top) and acquired resistance (SPC_187) models. Average relative tumor volume (y-axis) of 
control, cisplatin-treated (2 mg/kg; i.p; once weekly), and olaparib-treated (50 mg/kg; i.p.; 5 days on/2 days off) mice (n = 6–8 mice/group). C, EVOC H&E 
representative images of sensitive (SPC_467) and resistant (SPC_187) PDX models. Scale bar indicated in the figure. Insert, magnification ×2.5. D, A 2 × 2 
table showing the distribution of responders and nonresponders based on EVOC prediction and clinical actual response to PARPi and platinum agents. 
E, Correlation between the in vivo and EVOC efficacy for each model and treatment; y-axis, in vivo tumor growth (%); x-axis, EVOC score (0–60 resistant; 
61–100 sensitive); black circles [cisplatin (Cis)]; and gray circles [olaparib (Olap)]. r2 = 0.59; P < 0.001.
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(original naive PDX and “in vivo acquired resistance” clone) 
were tested by EVOC for sensitivity to cisplatin and olaparib. 
A profound response with a score of 26 (sensitive) was seen 
in the original PDX model (Supplementary Fig. S1B, left). In 
contrast, viable cancer cells were observed in the “acquired 
resistance” clone, which scored 45 (resistant; Supplementary 
Fig. S1B, right).

Growth kinetics for SPC_467 can be observed in Fig. 3A, 
part ii. Mice were initially randomized to cisplatin (n = 13), 
olaparib (n = 7), and control (n = 7). Both cisplatin and olapa-
rib treatments significantly decreased tumor growth. On day 

49, nine cisplatin-treated mice started olaparib maintenance 
therapy (n = 9). Six of the nine mice demonstrated complete 
response. Two mice, one with complete response and one 
with partial response, developed acquired resistance on con-
tinuous olaparib treatment (Fig. 3A, part ii).

To investigate the mechanisms of resistance in the in vivo 
acquired resistance models, we performed WGS on three 
paired samples: baseline PDX (“platinum sensitive”) and the 
acquired resistance PDX tumor. In all models, WGS dem-
onstrated that the majority of the mutations were shared 
rather than private (66%–82%; Fig.  3D and Supplementary 

A (i). (ii).
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middle, cisplatin → olaparib; and bottom, cisplatin) on sacrifice day as indicated. C, H&E representative images of tumors treated in control, cisplatin, and 
cisplatin → olaparib groups. AR, acquired resistance. (continued on following page)



Spectrum of Response of Germline BRCA–Associated PDAC RESEARCH ARTICLE

 AUGUST  2023 CANCER DISCOVERY | 1833 

Fig.  S2A), with similar variant allele frequency (VAF) at 
baseline and in acquired resistance tumors. Interestingly, we 
found the presence of the platinum-specific mutational sig-
nature DBS5 (ref. 14; characterized by doublet base substitu-
tions of CT>AA/AC) in all acquired resistance models and 
complete absence of this score in baseline tumors (Fig. 3E).

Mechanism of Response and Resistance to 
Platinum and PARPi in glBRCA PDAC

Multiple mechanisms of resistance in BRCA-mutated 
tumors have been described, mainly for ovarian and breast 
tumors (15–17). These can be directed to the DDR pathway, 
non–DDR-related mechanisms, and clonal selection during 

exposure to platinum/PARPi. To identify relevant resist-
ance mechanisms in our cohort, we analyzed the genomic 
and clinical data in the sensitive and resistant groups based 
on the time point of tissue acquisition (Supplementary 
Table S2).

BRCA Allelic Status

Inactivation of the second BRCA allele [biallelic; HR-defi-
cient (HRD)] correlates with the BRCA mutation signature 
(18) and is associated with response to platinum/PARPi 
therapy (19). Correspondingly, lack of BRCA inactivation 
[monoallelic; HR-proficient (HRP)] is associated with a lack 
of response (20, 21). Somatic BRCA status was available for 37 
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Figure 3. (Continued) D, Top: Venn diagrams showing SNV overlap between platinum-sensitive baseline and AR samples. Scatter plots comparing 
single-nucleotide variant (SNV) variant allele frequencies (VAF) of AR xenograft samples to paired baseline. Bottom, dotted black line represents y = x, 
where SNV VAF of AR xenograft is equal to SNV VAF of the baseline. Baseline unique variants are shown in gray, whereas AR unique variants are in red 
and shared variants in orange. E, Double nucleotide alterations characterized by doublet base substitutions of CT>AA/AC in the acquired resistance 
exposed to the platinum/PARPi model.
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patients [WGS n = 26, BRCA restriction analysis (refs. 22, 23) 
n = 11]. In our cohort, the BRCA monoallelic and biallelic frac-
tions were 24% and 73%, respectively. The biallelic fraction was 
significantly higher in BRCA2- (n = 24; 87.5%) versus BRCA1-
mutated tumors (n = 12; 50%; P < 0.02). Monoallelic tumors 
were significantly associated with resistance (45% in resistant 
vs. 6% in sensitive tumors; P < 0.001; Supplementary Fig. S2B). 
The second hits in BRCA genes leading to biallelic inactiva-
tion were predominantly somatic loss of heterozygosity of 
the wild-type allele (n =  23); the next most common altera-
tions were due to frameshift mutations (n  =  3), structural 
variants (n =  2), and a splicing mutation (n =  1). The WGS 
summary is presented in Fig.  4A. In two patients, somatic 
structural variant inactivations involved large-scale chromo-
thripsis events that shattered and rearranged chr13/BRCA2 
and chr17/BRCA1, respectively (Supplementary Fig. S2C).

Secondary Mutations

In the resistant group (Fig. 4B), secondary mutations were 
identified by WGS in five tumors (31.2%; termed HRDsecond_mut). 
These secondary mutations may partially restore BRCA 

function, thus leading to HR proficiency and lack of response 
to platinum/PARPi therapy. This is in line with our previ-
ous findings demonstrating secondary mutations in 35% of 
acquired resistance samples (20). Depiction of the secondary 
mutation (deletion) restoring the reading frame back to wild-
type is presented in Fig.  4C. In one patient (SPC_291), the 
reversion occurred through a large chromothripsis-associated 
deletion that restored the germline BRCA2 reading frame and 
potentially HR function (Fig. 4D).

Additional genomic analysis demonstrated that HRD and 
HRDsecond_mut tumors were both dominated by the COSMIC 
(24) signature 3, whereas HRP tumors largely showed age-
related signatures 1, 8, and 5, consistent with previous litera-
ture (14). Importantly, we were able to detect the presence of 
platinum signatures DBS5, SBS31, and SBS35 in 10 out of 12 
tumors treated with platinum prior to WGS, including all five 
HRDsecond_mut tumors (Fig. 4A).

There was no difference in the frequency of driver gene muta-
tions (KRAS, TP53, CDKN2A, and SMAD4) between the sensi-
tive, refractory, and acquired resistance groups. We in-depth 
analyzed the alterations, translocations, and copy-number  

Figure 4. WGS and mechanisms of resistance. A, Genomic mutational profiles of 26 whole-genome sequenced tumors. Tumor mutational burden (TMB), 
HR status, BRCA gene allelic state, mutated BRCA gene, patient clinical response, patient platinum exposure, presence of platinum mutational signature, 
HRDetect score, HRD mutational signature proportion, tumor ploidy, and mutations observed in PDAC driver genes are shown. HRD−SM, HRDsecond_mut; SV, 
structural variant. B, Table of resistant samples with specific information. WT, wild-type. (continued on following page)
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Figure 4. (Continued) C, Illustration of secondary mutation reversing reading frame back to WT in patient SPC_187. D, Integrative Genomics Viewer 
(IGV) snapshot of SPC_291 WGS reads mapping to the BRCA2 locus. Reads from normal are shown in the middle, where the blue box highlights a 1-bp 
germline frameshift with a zoomed-in view on the right. Reads from tumor are shown on top, where the orange box highlights a somatic SV that deletes 
the region around the germline frameshift. Zoomed-in view of somatic SV breakpoints at the bottom shows BRCA2 codons reverted to inframe as a result 
of SV. E, IGV snapshot capturing the BRCA2 germline (left) and the somatic (right) insertion or deletion (indel) frameshift in SPC285. Reads mapping to 
this region are shown for the germline reference (bottom), platinum-sensitive baseline xenograft (middle), and acquired resistance (AR) xenograft (top). 
The AR clone was analyzed by WGS and compared with baseline PDX. F, Distance from diploid [absolute(ploidy-2)] in resistant and sensitive samples 
(P < 0.05). G, Molecular subtype by response—basal-like score–classical score in resistant and sensitive samples (P < 0.05). H, SHAP analysis. A detailed 
perspective on the contribution of the various factors to the resistance classification score. Each line corresponds to one factor and each dot in it to a 
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gain/loss specifically of 22 DDR genes known to be associ ated 
with platinum/PARPi resistance, including TP53BP1, RIF1, 
and CHD4 (25). No pathogenic alterations or copy-number 
loss/gain was identified in this gene set (Supplementary 
Table S3).

Clonality

Tumor cell clonality has been shown to contribute to 
resistance (26). In the context of BRCA-deficient tumors, 
sparse evidence in ovarian cancer exists for BRCA1 wild-
type copies positively selected under treatment pressure and 
dominant at resistance (27). To determine subclonality in 
our cohort, baseline BRCA VAF was evaluated in six tumors 
harboring somatic biallelic inactivation. Somatic second hits 
were clonal in these cases. However, bulk tumor WGS of one 
tumor sample per patient cannot accurately estimate sub-
clonal heterogeneity; such analysis could be best addressed by 
single-cell sequencing.

Subclonality was identified in one in vivo acquired resistance 
model (SPC_285; biallelic inactivated by a somatic frameshift 
mutation). The VAF of the somatic BRCA2 frameshift 
dropped from 26.5% at baseline to 4.5% in the acquired resist-
ance model (Fig.  4E). The VAF of this somatic frameshift 
suggests the presence of two subclones at baseline—an HRD 
subclone carrying the somatic BRCA2 frameshift and an HRP 
subclone retaining the wild-type allele. Furthermore, the 
drop in VAF from baseline to acquired resistance implies that 
treatment selected for the HRP subclone retains the wild-type 
allele, potentially leading to acquired resistance.

Aneuploidy

Tumor aneuploidy is known to be associated with tumor 
aggressiveness and chemoresistance (10, 28). In 25 samples 
with available data on tumor ploidy, we determined the 
degree of aneuploidy based on the distance from a diploid 
genome [absolute(ploidy-2)]. The resistant tumors were sig-
nificantly more aneuploid than the sensitive ones (0.58 vs. 
0.27; P <  0.01). Specifically, this was most significant in the 
acquired resistance tumors (n = 5; average distance from dip-
loidy = 0.75; Fig. 4F).

Expression Subtype

We profiled 121 PDX models by bulk RNA-seq, including 
23 glBRCA tumors. The basal-like phenotype is known to be 
associated with chemoresistance and worse survival (29, 30). 
Refractory samples displayed significantly more “basal-like” 
subtype (Fig. 4G; P < 0.05), which was independently predic-
tive of worse survival (Supplementary Fig. S2D). Importantly, 
all five clinical resistant patients with HRD (biallelic) and no 
secondary mutations displayed a basal-like phenotype.

We performed DESeq2 (31) analysis to identify differen-
tially expressed genes between resistant and sensitive models, 
and then applied gene set enrichment analysis (32) to find 
pathways with a significant enrichment score (FDR corrected 
P < 0.05). DNA repair, focal adhesion, reactive oxygen species, 
and the p53 pathways were upregulated in the resistant sam-
ples (Supplementary Fig. S2E). These pathways are correlated 
with the basal-like phenotype (33, 34). We utilized the entire 
cohort of non–BRCA-mutated tumors (n = 121) as a validation 

set; these pathways were upregulated in basal-sensitive tumors 
compared with classical resistance tumors, further supporting 
the strong impact of the basal-like phenotype in platinum/
PARPi resistance in the BRCA cohort.

To evaluate the prediction value of each variable men-
tioned above on the probability of resistance to PARPi/
platinum, we performed a multivariable logistic regression 
analysis (SHAP analysis: A Unified Approach to Interpreting 
Model Predictions; arXiv:1705.07874v2), including sex, age, 
BRCA1/2, BRCA allelic status, transcriptomic subtype, and 
tumor ploidy. Patient outcome was determined as sensitive or 
resistant based on the clinical response at tumor acquisition. 
Monoallelic status and the existence of secondary mutations 
were the strongest predictors for resistance (mean absolute 
SHAP values 0.15 and 0.12, respectively; Fig. 4H; Supplemen-
tary Fig.  S2F). Expression of the “basal-like” subtype also 
showed a strong predictive value for resistance (0.11), and 
tumor cell aneuploidy had a predictive value of 0.08. The 
type of germline mutation (BRCA1/BRCA2) had a very low 
contribution (0.01). AUC for the dataset was 0.89 (0.73–0.99; 
Supplementary Fig. S2G).

Correlation of Clinical Data to Resistance

We reviewed the clinical data from the patients from 
whom resistant samples were acquired (Fig.  4B). These 
patients were enriched with poor Eastern Cooperative Oncol-
ogy Group performance status, multiple comorbidities, and 
widespread extensive metastatic disease—clinical findings that 
have been shown to compromise the dose intensity of doublet/
triplet chemotherapy treatment and contribute to lower OS 
(35, 36). These poor prognostic parameters seen in resist-
ant patients with biallelic, HRD tumors may contribute to 
clinical resistance, in addition to the tumor polyploidy and 
basal-like subtype.

Full clinical information, including demographics, tissue 
analyzed, genomics, and clinical parameters of this cohort, is 
presented in Supplementary Table S2.

ENLIGHT: Treatment Predictor Based on Artificial 
Intelligence and Omics Analysis

We applied a computational tool called ENLIGHT (37), 
which identifies synthetic lethal/rescue interactions between 
the gene targets of a specific drug and other genes, using big 
pan-cancer data, and uses them as a biomarker to predict 
patient response to that drug based on the tumor tran-
scriptome. We used the ENLIGHT PARPi network to retro-
spectively analyze response to platinum/PARPi. ENLIGHT 
accurately predicted which models would be resistant (objec-
tive response: 1.375, average precision: 0.474; Supplementary 
Fig. S2H). We explored the genes that constitute the ENLIGHT 
PARPi network, which highlighted the upregulation of genes 
involved in the G2–M cell-cycle checkpoint and focal adhesion 
pathways (both pathways are statistically enriched in the bio-
marker; FDR corrected P value of hypergeometric test: 0.004 
and 0.02, respectively). Activation of these pathways is known 
to be associated with resistance and is highly correlated to the 
basal-like subtype, but the ENLIGHT predictive biomarker 
was derived from a pan-cancer dataset, providing independ-
ent support for the hypothesis that these pathways play a role 
in resistance to platinum and PARPi therapy.
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Immune Checkpoint Inhibition Efficacy in a 
Humanized BRCA2 PDX Model

A significantly higher tumor mutational burden (TMB) was 
noted in biallelic tumors with HRDsecond_mut [9.7 mutations/  
megabase (Mb), P = 0.003] vs. HRD (4.1 mutations/Mb) and 
HRP (2.5 mutations/Mb) tumors (Fig.  4A). The high TMB 
and neoantigen load in the BRCA-mutated tumors and spe-
cifically tumors with HRD may indicate that patients in this 

subgroup may benefit from immune checkpoint inhibition. In 
our cohort, six patients were treated with immune checkpoint 
blockade agents alone or in combination in clinical trial set-
tings. Five of these patients did not respond, but one patient 
displayed complete response for over 2 years.

To test the potential of anti–PD-1 treatment in the preclin-
ical setting, we established a novel humanized glBRCA2 PDAC 
PDX utilizing an acquired resistant HRDsecond_mut tumor with 
the highest TMB in our cohort (SPC_126; 12.2 mutations/Mb).  

Figure 5. Anti–PD-1 efficacy in a humanized glBRCA2 PDAC PDX model. A, Preclinical illustration of humanized mouse model generation. CD34+ 
cells were isolated from umbilical cord blood by magnetic beads. Purity was validated by FACS analysis. CD34+ cells or PBS control was injected into 
3- to 4-week-old sublethal irradiated NSG mice. Peripheral blood was obtained every 2 to 3 weeks, and human CD45 was assessed. On week 18, a PDX 
tumor chunk was subcutaneously transplanted to mice and treated with pembrolizumab (10 mg/kg; i.p.) or vehicle control. B, Average tumor volume in 
nonhumanized mice (blue); humanized control-treated (green) mice; and humanized/pembrolizumab-treated mice (red). C, Immune cell characterization: 
mouse CD45 (mCD45), human CD45 (hCD45), B cells (CD19), and T cells (CD3) in the blood, spleen, and bone marrow of all mice at study termination. 
D, IHC staining of tumors demonstrating T-cell infiltrate in the CD34+ engrafted mice. Created with BioRender.com.
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We isolated CD34+ stem cells from umbilical cord blood 
and injected them into 3- to 4-week-old NOD/SCID/ILgRKO 
(NSG) mice (38). Human cell engraftment (hCD45) was 
detected in the peripheral blood from week 12 onward. 
At week 18, cryopreserved tumor chunks from the afore-
mentioned PDX model were subcutaneously transplanted 
to hCD45-engrafted and nonengrafted mice, and treatment 
with anti–PD-1 was initiated when tumors reached an aver-
age volume of 100 mm3 (Fig. 5A). A significant attenuation of 
the tumor growth rate was observed in the hCD45-engrafted 
anti–PD-1–treated mice compared with hCD45-engrafted 
control untreated mice, with one mouse demonstrating 
complete response (Fig.  5B). hCD45+ cells, B (CD19) cells, 
and T (CD4 and CD8) cells were detected in the spleen, 
bone marrow, and blood of engrafted mice (Fig.  5C). IHC 
analysis demonstrated tumor T-cell infiltration (Fig.  5D). 
These preliminary data demonstrate the potential of immune 
checkpoint blockade in glBRCA2-mutated PDAC with high 
mutational load.

DISCUSSION
PDAC patients with glBRCA mutations are a clinical out-

lier cohort with extended OS, and BRCA mutation status is 
an important biomarker in PDAC (4, 5). Several studies have 
shown the effectiveness of PARPi treatment in glBRCA PDAC, 
and it has become a standard of care for this population. 
However, there is a spectrum of responses of glBRCA PDAC to 
platinum and PARPi treatment. Here, we sought to clinically 
characterize a large cohort of patients with glBRCA PDAC, 
develop preclinical models reflecting the spectrum of response, 
and decipher the mechanisms of sensitivity and resistance. 
Based on clinical observations, we stratified patients into three 
groups of response: refractory, durable response, followed by 
acquired resistance, and long-term responders (8, 9).

The clinical spectrum of response is reflected in clini-
cal trials (7, 39, 40). In the phase III POLO maintenance 
PARPi trial, approximately 30% of patients did not meet 
inclusion criteria due to disease progression on platinum-
based chemotherapy (41). These patients are likely refractory 
to treatment and signify the underlying aggressive nature 
of pancreatic cancer even in the setting of glBRCA. Spe-
cific markers predictive for resistance to platinum/PARPi in 
glBRCA PDAC include monoallelic tumors (42), secondary 
mutations (10, 20), basal-like subtype (29, 30), and tumor 
aneuploidy (10, 28).

PDXs derived from metastatic refractory patients are a 
unique opportunity to study the resistance mechanisms 
in glBRCA PDAC. These tumor samples are underrepre-
sented in large genomic databases, which are fueled mainly 
by primary tumors (19) and lately by metastatic samples 
(43). In a cohort of 19 resistant samples, we found that the 
BRCA monoallelic status and the presence of secondary 
mutations were the strongest predictors of platinum/PARPi 
resistance. Somatic secondary mutations are the most preva-
lent described mechanism of resistance in glBRCA-associated 
tumors (20, 25, 44). Recently, reversion mutations were 
identified by cell-free DNA (cfDNA) analysis in ovarian can-
cer (45). In future studies, we will utilize our PDAC blood 
biobank for cfDNA analysis, which may detect secondary 

mutations at an earlier stage before clinical progression 
by imaging.

The basal-like subtype has been associated with poor res-
ponse to chemotherapy and shorter survival in PDAC (43, 
46, 47). Accordingly, in our HRD PDAC series, we found that  
a basal-like transcriptomic subtype was independently pre-
dictive of resistance and worse survival. Furthermore, tumor  
aneuploidy predicted resistance. This is consistent with previous  
reports showing that polyploid cells are resistant to cytotoxic and 
biological drugs (48, 49). In our cohort, we specifically identified 
an association between aneuploidy and DDR resistance. It was 
recently shown that aneuploid clones activate the DDR and are 
consequently more resistant to further DNA damage induction 
(https://www.biorxiv.org/content/10.1101/2023.01.27.525822v1).  
Resistance to DNA-damaging agents is associated with the 
degree of aneuploidy. Interestingly, the highest polyploidy in 
our cohort was noted in the acquired resistance samples. In the 
future, it will be important to dissect the evolutionary process 
of aneuploidy and examine tumor ploidy status at baseline.

Resistance can develop due to subclonal selection. A study 
in ovarian cancer demonstrated the existence of BRCA1 wild-
type copies present at baseline and positively selected under 
treatment pressure, resulting in the dominance of clones with 
wild-type copies at resistance (50). In our resistant preclini-
cal models, we demonstrate evidence of subclonality during 
treatment leading to platinum/PARPi resistance. This mecha-
nism of resistance is sparsely described in the literature, 
but subclone analysis at initial diagnosis and at progres-
sion by single-cell and deep analysis may reveal low preva-
lence subpopulations (15–17) that could have prognostic and 
predictive value.

In an analysis of the resistant patient population, we found 
common and direct disruption of BRCA1/2 function, such 
as monoallelic tumors or secondary mutations. However, an 
interesting small subset of patients harbored biallelic tumors 
and HR deficiency. These tumors display the basal-like phe-
notype and are more aneuploid. Combined with patient 
poor prognostic clinical parameters, this may influence their 
clinical resistance. Further investigation of the basal-like 
phenotype and discovery of more effective treatment options 
for these patients may improve outcome. We hypothesize that 
the tumor biology is primarily driven by the basal-like pheno-
type, and the anticipated synthetic lethality in HR deficiency 
to PARPi has limited clinical impact.

To recapitulate the clinical spectrum of the disease we 
generated PDX models at different clinical time points. A 
strong correlation was observed between the in vivo PDX 
response to cisplatin and olaparib and the clinical response 
at the time of PDX generation (tumor naive to treatment and 
patient responsive/refractory vs. tumor sample obtained at 
time of clinical resistance). We demonstrate that EVOC 
predicts the in vivo PDX response and reflects the clinical 
response. EVOC offers several advantages, with the main 
ones being the short turnaround time and the potential of 
performing several treatment combinations in parallel. The 
main limitation of the EVOC system is it reflects of one time 
point, which in the clinical setting would be at diagnosis or 
change of the line of treatment. Furthermore, the EVOC 
score cannot predict the durability of response or how rap-
idly resistance will emerge.

https://www.biorxiv.org/content/10.1101/2023.01.27.525822v1
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Over the past decade, our research team has invested sub-
stantial efforts in obtaining adequate paired tumor samples 
for model establishment. However, in PDAC, low cellular-
ity and engraftment rate have limited the establishment of 
preclinical models from all patients and extensive genomic 
analysis (9, 13). Therefore, to compare sensitive versus resist-
ant tumors in the same patient we generated “in vivo acquired 
resistance” models. Comparative WGS analysis demonstrated 
high concordance between the sensitive and acquired resist-
ance models and no evidence for secondary mutations in 
BRCA genes. This preclinical acquired resistance model sys-
tem can be used to investigate combinatorial treatment strat-
egies at the time of acquired resistance.

There are several limitations to PDX models, such as dif-
ferential response to drugs observed in the same model. 
This exemplifies the heterogeneity within a tumor and can 
indicate a bias to a specific clone that selectively grows at 
PDX generation. Indeed, intratumoral PDAC heterogeneity, 
in which both classical and basal-like cells coexist, has been 
described in several publications (51, 52). Furthermore, in 
clinical practice and in our cohort, mixed clinical response is 
observed, perhaps reflecting the apparent heterogeneity. Sev-
eral studies have shown the resemblance of PDXs to primary 
tumors in different cancer types (53, 54) and the use of PDX 
as a tool for predicting treatment (55).

Interestingly, in our PDX cohort, we do not have a repre-
sentative model of a superresponder patient. Tumor samples 
from such patients were transplanted, but the engraftment 
rate for the “sensitive” tumor samples is low (40%) compared 
with 70% in the “resistant” tumor samples. This can be attrib-
uted to genomic features, tumor cellularity, or tumor cell 
turnover. The sensitive samples were enriched with biallelic 
tumors, classic phenotype, and diploid tumors. Clinically, 
these patients tend to demonstrate a deep response to first-
line platinum therapy and typically display oligometastatic 
disease to liver or lungs. Additional genomic and immune 
analysis is currently being performed from those patient 
tumor samples and is beyond the scope of this paper.

Approximately 50% of glBRCA patients demonstrate an 
initial good response to platinum followed by PARPi, and in 
some cases, the tumor mass load reaches a minimal state with 
oligometastatic disease. It is important to identify patients 
who are likely to progress prior to clinical manifestation of 
resistance and seek novel treatment options in this unique 
disease state. Whole-genome analysis has demonstrated that 
the majority of the glBRCA PDXs harbor a high TMB load, 
specifically the HRDsecond_mut tumors (9.7 mutations/Mb). 
Increased TMB in these tumors may be partially attributed to 
neoantigens as a result of new secondary mutations, usually 
caused by deletions/insertions in the vicinity of the origi-
nal pathogenic germline mutations. In the case of certain 
founder pathogenic mutations (e.g., BRCA2:c.5946delT, all 
HRDsecond_mut cases presented herein), it was shown that the 
reversions that arise are generally localized to the 3′ flanking 
sequence of the original frameshift mutation (56). Com-
pensatory frameshift secondary mutations introduce novel 
amino acid sequences, which differ from the original wild-
type protein, and can thus constitute neoantigens. This may 
open a window of opportunity to treat with alternative 
treatments such as immunotherapy. A small clinical cohort 

demonstrating the potential efficacy of PD-1 inhibition and 
CTLA4 inhibition has recently been published (57).

Limited clinical data support this hypothesis (58–61). 
Studies have shown that in addition to the effect of PARPi on 
cancer cell death, PARPi can enhance the immune response. 
PARPi can induce accumulation of cytosolic DNA dam-
age and trigger the interferon pathways (62, 63), and thus 
activation of immune cells. PARPi can also induce PD-L1 
expression (64). The high mutational load of BRCA-mutated 
tumors and the PARPi effect on the tumor microenviron-
ment and priming of the immune system provide a strong 
rationale for the integration of immune checkpoint inhi-
bition in glBRCA PDAC. Clinical assessment of the com-
bination of PARPi with immune checkpoint inhibition in 
pancreatic cancer is ongoing (NCT: 04548752, 04753879, 
03851614, and 03637491).

To summarize, herein we characterize the spectrum of 
response of patients with glBRCA PDAC to platinum/PARPi 
into three subgroups. Such clinical distinction of patients may 
facilitate more informative treatment decisions. We precisely 
recapitulated various clinical scenarios of glBRCA PDAC to 
platinum/PARPi in the preclinical setting. Further analyses 
to decipher additional mechanisms of resistance and develop 
alternative treatments for BRCA-associated PDAC are ongoing.

METHODS
Clinical Data and Survival Analysis

Patients with PDAC harboring glBRCA mutations, treated at the 
SMC during a 10-year period (2010–2022), were included in this 
cohort. All clinical data on participants were extracted from patient 
records or an existing institutional review board (IRB)–approved 
(4474 and 5073-18) institutional database. Written informed con-
sent was obtained from all patients prior to study enrollment. The 
protocols were approved by the IRB at the SMC, and the studies were 
conducted in accordance with the Good Clinical Practice guidelines 
and the Declaration of Helsinki.

Preclinical Efficacy Experiments in PDX Models
Animal studies were performed in specific pathogen–free (SPF) 

conditions and an IRB-approved study. PDXs were generated and 
monitored as previously described (13). Olaparib was purchased 
from Selleckchem (Tivan Biotech) and provided by AstraZeneca. 
Cisplatin was provided by the SMC pharmacy.

PDX tumor chunks were transplanted to the lower flank of 6-week-
old female nude mice. When tumors reached palpable size (∼100 
mm3), mice were randomized into treatment groups (n =  6–8): (a) 
PARPi (olaparib, Selleckhem) dissolved in 10% Hydroxypropyl-b-
Cyclodextrin (Sigma), 50 mg/kg, i.p., 5 days on/2 days off; (b) cis-
platin (2 mg/kg, i.p., once a week); and (c) vehicle control (solvent 
only, i.p.). Tumor volumes were measured twice a week using a caliper 
according to the formula (length 3 width2)/2. Mice were weighed 
twice a week. Mice were euthanized if the tumor burden reached 
1.5 cm3 or if they presented over 20% of the initial body weight loss. 
At study termination, animals were sacrificed by CO2 inhalation. 
Tumor growth curves are presented as mean relative tumor volume 
(RTV) ±  SE at each measurement point, for each treatment group. 
Tumor growth inhibition was calculated for each treatment group 
compared with the control (average RTV treatment group/average 
RTV control group). Mice were purchased from Envigo (Israel) and 
maintained in SPF rooms in a temperature-controlled room at 208°C 
with a 12-hour–12-hour dark–light cycle. Animals had free access to 
water and commercial chow. Differences between treatment groups 
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were analyzed by the Mann–Whitney test using GraphPad Prism 
(GraphPad Software). Error bars represent SE.

Establishment of a Humanized CD34+ Engrafted NSG PDX 
Model System

NSG mice were purchased from The Jackson Laboratory. Mice were 
bred and housed in SPF conditions. All animal experiments were 
approved by the Animal Care Committee at SMC (IRB 1007/15). Fresh 
cord blood units were obtained from the SMC cord blood bank under 
IRB-approved protocols. CD34+ cells were isolated using magnetic beads 
(Miltenyi) following the conventional method. Cells were cultured in 
SFEM media (STEMCELL) supplemented with hSCF (100 ng/μL), IL6 
(20 ng/μL), hFLT3 ligand (100 ng/μL), and TPO (20 ng/μL) for 5 days; 
100,000 cells/50 μL PBS or vehicle control (50 μL PBS) were injected (i.v.) 
into 3- to 4-week-old sublethal irradiated (125 rad) NSG mice. Mice were 
bled once every 2 to 3 weeks starting 8 weeks after transplantation to 
monitor engraftment. At ∼15 to 18 weeks after CD34+ transplantation, 
mice harboring >25% hCD45 cell engraftment underwent subcutane-
ous transplantation of PDX tumor chunks as described previously (8, 
9, 13, 38). Mice were randomized to treatment groups based on tumor 
volume and hCD45 engraftment: (i) CD34+ engrafted/pembrolizumab 
(10 mg/kg, twice a week, i.p.); (ii) CD34+ engrafted/vehicle control; and 
(iii) CD34−/vehicle control. When control mice reached the maximum 
allowed tumor volume, the study was terminated. Upon sacrifice, blood, 
tumor, bone, and spleen were excised. Spleen and peripheral blood mon-
onuclear cells were isolated and cleaned with red blood cell lysis buffer. 
Bone marrow was flushed from the femur. Cells were characterized by 
FACS. Tumors were snap-frozen and fixed in 4% formaldehyde. Paraffin-
embedded tumor sections were stained with H&E and immunostained 
for CD45, CD3, CD4, and CD8.

EVOC System
Technique. PDX tumors were sliced to a size of 250-μm thick using 

a vibratome (VF300, Precisionary Instruments) and placed in 6-well 
plates on titanium grids (Alabama R&D) with 4 mL of DMEM/F12 
medium (supplemented with 5% FCS, penicillin 100 IU/mL with 
streptomycin 100 μg/mL, amphotericin B 2.5 μg/mL, gentamicin sul-
fate 50 mg/mL, and L-glutamine 100 μL/mL). Tissues were cultured 
at 37°C, 5% CO2, and 80% O2 on an orbital shaker (TOU-120N, MRC) 
at 70 rpm. The following day, tissues were treated with cisplatin (100 
μmol/L) or olaparib (80 μmol/L) for 96 hours, with drug change after 
48 hours. Upon completion, tissues were fixed overnight (4% PFA), 
followed by formalin-fixed paraffin embedding (FFPE).

Outcome Evaluation. Tissue IHC was performed on 4-μm sections 
from FFPE tissue samples from the EVOC. H&E staining was per-
formed using an automated stainer. Ki-67 staining [Thermo Fisher 
Antibody (RM-9106); 1:500 dilution] was performed using an auto-
mated stainer (BOND RX, Leica Biosystems). Tissue viability and 
scoring were performed using pathologic criteria grading tumor cell 
death (70%), the viability of live tumor cells (20%), and Ki-67 prolif-
eration (10%). A scale of 0 to 100 was created, with a score of zero 
representing completely viable cancer cells (“resistance”) and a score 
of 100 representing no viable cancer cells (“sensitive”).

WGS
Whole-genome analysis was performed on snap-frozen PDX 

tumor chunks or fresh frozen tumor samples as previously des-
cribed (9, 14). Briefly, raw genome sequencing reads were aligned 
to human reference genome build hg38 using Burrow-Wheeler-
Aligner (BWA; v0.7.17; ref. 15). Xenograft genome sequencing reads 
were aligned to mouse reference, where contaminating mouse 
reads were removed using XenofilteR (16) with default settings. 
Germline variant calling was performed using the Genome Analysis 

Tool Kit (GATK4; v4.1.2; refs. 17, 18). Somatic single-nucleotide 
variations (SNV) were identified as the intersection of calls by two 
separate tools—“Tier 1 SNVs” from Strelka2 (v2.9.10; ref.  19) and 
“PASS” variants from MuTect2 (v4.1.2)—with both tools run using 
default settings. Insertions or deletions (indel) were identified as 
the overlap between two out of four indel variant callers—Strelka2, 
MuTect2, SVaBA (v134; ref. 20), and DELLY2 (v0.8.1; ref. 21). Copy-
number segments, tumor cellularity, and ploidy were obtained by 
using an in-house algorithm, Celluloid (22). Somatic structural 
rearrangements were called as the consensus from two out of three 
variant callers—SVaBA, DELLY2, and Manta (v1.6.0; ref. 23).

BRCA Somatic Allelic Status
BRCA allelic state was retrieved from WGS (n  =  26) and target 

sequencing (n = 1), and determined by PCR-based restriction analysis 
(24, 25).

RNA-seq Analysis
PDX tumors were profiled by bulk RNA-seq (65, 66). Each model 

(i.e., all PDX generations of a single patient specimen progeny) was 
profiled with up to three biological replicates (i.e., samples from 
different PDX generation of the same progeny). The cohort encom-
passed 301 samples from 121 models, which passed all quality con-
trol, including 23 glBRCA. We separated the malignant and stromal 
compartments by aligning each read to both mouse (stromal) and 
human (malignant) references, keeping only the best match in cases 
where a read aligned to both genomes. The biological replicates 
highly resemble each other compared with other models (R = 0.93 on 
average), suggesting that the patient’s unique expression patterns are 
preserved across PDX generations.

Statistical Analysis
In vivo tumor responses and differences between treatment groups 

were calculated by nonparametric Mann–Whitney U test comparing 
the treatment group to the control group (n =  5–10 tumors/treat-
ment group). OS was calculated using the Kaplan–Meier analysis 
and log-rank test in python. Pearson correlation between EVOC 
score and in vivo efficacy data was performed using Prism software. 
SHAP value (A Unified Approach to Interpreting Model Predic-
tions; arXiv:1705.07874v2) analysis was performed to estimate the 
contribution of each factor to the classification score. Analysis was 
performed on the full dataset (n =  38) and included sex, age, ger-
mline BRCA mutation, BRCA allelic state, subtype, and tumor ploidy. 
Patient outcome was determined as sensitive or resistant based on 
the clinical response at the time of tumor acquisition.

The AUC of the logistic regression model was estimated using the 
leave-one-out (LOO) approach. As there were 11 patients with partial 
genomic information, we also examined the LOO performance of the 
model on the remaining 27 samples.

ENLIGHT (37) was applied to the data to look for additional 
evidence of mechanisms of resistance. ENLIGHT identifies synthetic 
lethal and synthetic rescue interactions between the gene targets of 
a specific drug and other genes, using big pan-cancer data, and uses 
them as a biomarker to predict patient response to that drug based 
on the tumor transcriptome.

Data Availability Statement
PDX models generated at SMC will be available upon completion 

of material transfer agreements.
Raw sequencing data are housed at the Gene Expression Omnibus 

portal under accession number GSE235843 (RNA-seq data) and 
the European Genome-phenome Archive under accession number 
EGAD00001011129 (WGS data), and will be available to researchers 
upon completion of a data access agreement.
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