Skip to main content
. 2023 Jul 26;15(7):687–700. doi: 10.4252/wjsc.v15.i7.687

Figure 2.

Figure 2

Application of nanomaterials in stem cell therapy of Parkinson’s disease. Preoperative preparation: Nanomaterials, with their small size, unique physicochemical properties, and capability for surface functionalisation, offer the potential for designed manipulating cell behaviour. A promising strategy is that fabricating the extracellular matrix with biocompatible nanomaterial-based scaffolds with topology simulating the microenvironment. Preoperative phase: nanomaterials capable of suppressing oxidative stress, neuroinflammation, and toxic protein aggregation can act as bioactive nanomedicines addressing the limitations of cell-based therapy for Parkinson’s disease. Moreover, “intelligent” nano-drug delivery systems functionalised by targeting ligands with the controlled release of loaded molecules like growth factor aims to support and expand stem cells for brain repair. At the postoperative stage, nanomaterials, with their unique optical properties, cellular uptake, surface functionalisation, and good biocompatibility, are promising candidates for cell tracking and imaging. MRI: Magnetic resonance imaging. Citation: The parts of the figures were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/Licenses/by/3.0/).