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The trial-unique nonmatching to location (TUNL) touchscreen task shows promise as a translational assay of working memory (WM)
deficits in rodent models of autism, ADHD, and schizophrenia. However, the low-level neurocognitive processes that drive behavior in
the TUNL task have not been fully elucidated. In particular, it is commonly assumed that the TUNL task predominantly measures
spatial WM dependent on hippocampal pattern separation, but this proposition has not previously been tested. In this project, we
tested this question using computational modeling of behavior from male and female mice performing the TUNL task (N=163 across
three datasets; 158,843 trials). Using this approach, we empirically tested whether TUNL behavior solely measured retrospective WM,
or whether it was possible to deconstruct behavior into additional neurocognitive subprocesses. Overall, contrary to common assump-
tions, modeling analyses revealed that behavior on the TUNL task did not primarily reflect retrospective spatial WM. Instead, behavior
was best explained as a mixture of response strategies, including both retrospective WM (remembering the spatial location of a previ-
ous stimulus) and prospective WM (remembering an anticipated future behavioral response) as well as animal-specific response biases.
These results suggest that retrospective spatial WM is just one of a number of cognitive subprocesses that contribute to choice behav-
ior on the TUNL task. We suggest that findings can be understood within a resource-rational framework, and use computational
model simulations to propose several task-design principles that we predict will maximize spatial WM and minimize alternative be-
havioral strategies in the TUNL task.
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Significance Statement

Touchscreen tasks represent a paradigm shift for assessment of cognition in nonhuman animals by automating large-scale behav-
ioral data collection. Their main relevance, however, depends on the assumption of functional equivalence to cognitive domains in
humans. The trial-unique, delayed nonmatching to location (TUNL) touchscreen task has revolutionized the study of rodent spatial
working memory. However, its assumption of functional equivalence to human spatial working memory is untested. We leveraged
previously untapped single-trial TUNL data to uncover a novel set of hierarchically ordered cognitive processes that underlie mouse
behavior on this task. The strategies used demonstrate multiple cognitive approaches to a single behavioral outcome and the
requirement for more precise task design and sophisticated data analysis in interpreting rodent spatial working memory.
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Introduction
Working memory (WM), the active maintenance and manipula-
tion of a small amount of information within a transient, lim-
ited-capacity memory store, is fundamental to many tasks that
humans face in their day-to-day lives (Baddeley, 2010; Cowan,
2014; Oberauer and Lin, 2017; Gold and Luck, 2022). WM is
impaired in many psychiatric disorders (Steele et al., 2007; Kofler
et al., 2018; Gold et al., 2019), and WM deficits are predictive of
poor clinical and functional outcomes in both schizophrenia and
autism (Troyb et al., 2014; Fu et al., 2017). Despite this, there are
no current treatments that address WM impairments in psychiat-
ric disorders. In overcoming this absence, animal behavioral test-
ing paradigms are key to trialing the effects of novel therapeutic
compounds on cognition (Castner et al., 2004; Dudchenko et al.,
2013). However, the translation of novel therapeutics to clinical
application is dependent on the validity of the animal behavioral
paradigms used to assay cognitive deficits in preclinical evalua-
tions of potential therapeutics (Pound and Ritskes-Hoitinga,
2018).

Behaviors indicative of WM have been observed across
insects, fish, birds, rodents, and nonhuman primates (Roberts,
1972; Miller et al., 1996; Aultman and Moghaddam, 2001; Giurfa
et al., 2001; Bloch et al., 2019). This similarity notwithstanding,
however, there are pronounced between-species differences in
WM, particularly in memory capacity (i.e., in the number of rep-
resentations that can be held inWM) and in the rate of forgetting
during a retention interval (Dudchenko, 2004; Carruthers, 2013;
Lind et al., 2015; Roberts and Santi, 2017). From a translational
perspective, this raises the concern that neurocognitive processes
of WM in a given species may be too dissimilar to human WM
to use the species as a translational model. Recent initiatives have
sought to address this concern by developing animal WM tasks
that are maximally similar to standard human WM tasks (Barch
et al., 2009, 2012; Dudchenko et al., 2013), thereby allowing
researchers to assay WM processes that are similar across
species despite quantitative between-species differences in
the capacity and forgetting rate of WM. One particularly in-
fluential task is the trial-unique nonmatching-to-location
(TUNL) task, a touchscreen-based nonmatch-to-sample task
that allows for high-throughput measurement of spatial WM
in rodents (Talpos et al., 2010; Bussey et al., 2012; Oomen et
al., 2013; Kim et al., 2015).

An important unresolved question concerns the representa-
tional code with which information is held in rodent WM during
the TUNL task. Broadly, we can distinguish a retrospective code,
in which WM maintains a representation of a previous sample
stimulus, from a prospective code, in which WM maintains a
representation of a planned behavioral response (see Roitblat,
1982; Cook et al., 1985). Previous work using the TUNL task
(e.g., Talpos et al., 2010; Kim et al., 2015; Zeleznikow-Johnston et
al., 2017) has tended to interpret behavioral results as reflecting
spatial WM for the location of a previous sample stimulus, that
is, a retrospective WM code for spatial location, rather than a
planned future behavioral response. It is indeed the case that
many standard human WM tasks assess retrospective WM (e.g.,
Hopkins et al., 1995; Della Sala et al., 1999; Nunn et al., 1999).
However, nonhuman animals have been shown to use a mixture
of prospective and retrospective memory codes across tasks,
including 12-arm radial mazes, plus mazes, and delayed match-
to-sample tasks (Cook et al., 1985; Kametani and Kesner, 1989;
Kesner, 1989; Ferbinteanu and Shapiro, 2003), and humans may
also use a mixture of retrospective and prospective WM under
some circumstances (Zimmer, 2008).

UnderstandingWM coding within the TUNL task is also cru-
cial for the neural interpretation of TUNL data. Under the
assumption that it reflects retrospective WM for spatial location,
TUNL behavior on small-separation trials is frequently taken as
an index of pattern separation algorithms in the hippocampus
(Talpos et al., 2010; McAllister et al., 2013; Kumar et al., 2015;
Kenton et al., 2018). However, because of the strong links
between spatial stimulus encoding and the hippocampus (e.g.,
Spellman et al., 2015), this neural-algorithmic interpretation of
TUNL data depends on the assumption that animals are solely
using retrospective (i.e., spatial) WM. The reason for this is
that, by definition, pattern separation can only be an explana-
tion of behavior in circumstances where the two stimuli being
pattern-separated by the hippocampus are similar to one
another in WM. For small-separation trials in the TUNL, the
two stimuli are only similar to one another in memory if we
assume that it is their spatial location that is being encoded in
WM (in other words, a retrospective WM code).

The nature of WM coding in the TUNL task is a crucial ques-
tion both for the task’s translational validity and for the neural
interpretation of TUNL behavior. In the present study, we sought
to rigorously test the relative contributions of retrospective and
prospective WM to TUNL behavior (as well as several response
biases unrelated to memory), using hierarchical Bayesian model-
ing of single-trial behavioral data from three distinct datasets of
mice completing the TUNL task. Based on previous studies detail-
ing usage of both retrospective and prospective WM in rodents
(e.g., Kametani and Kesner, 1989; Kesner, 1989), we hypothesized
that mouse behavior on the TUNL task might be driven by both
retrospective and prospective WM.

Materials and Methods
Overview of TUNL task
The TUNL task is a touchscreen spatial nonmatch-to-sample task that
was designed as an assay of rodent WM (Talpos et al., 2010; Bussey et
al., 2012; Oomen et al., 2013). In each trial, mice within a touchscreen
operant chamber must first touch an illuminated “sample” location (one
of five horizontally spaced locations on the touchscreen, signaled by
increased luminance; see Fig. 1A). After a delay (the “retention interval”)
in which no locations are illuminated, animals complete a choice phase
in which two locations are illuminated: one that matches the sample
location and one that is nonmatching. Animals receive a reward if they
touch the nonmatching location.

Trial difficulty in the TUNL task is typically manipulated (see, e.g.,
Talpos et al., 2010; Bussey et al., 2012; Oomen et al., 2013; Kim et al.,
2015) either by increasing the duration of the retention interval (thereby
increasing the duration for which the sample location must be held in
WM) or by reducing the spatial separation between the sample location
and the nonmatching location (thereby increasing the similarity between
the two possible choice options). Different separation conditions in the
TUNL task are typically described based on the number of unlit loca-
tions that separate the two response options in the choice phase (e.g., the
example trial in Fig. 1A is referred to as a Separation-3 or S3 trial because
three unlit squares separate the two response options in the choice
phase).

Each separation condition in the TUNL task can be constructed
using multiple different configurations of sample location and nonmatch
location: a Separation-3 (or S3) trial, for instance, can be constructed ei-
ther with the sample at the far left and the (correct) nonmatch option at
the far right, or vice versa. This is a strength of the task because, unlike
earlier nonmatch-to-sample tasks involving only two response levers
(e.g., Chudasama and Muir, 1997), there are 20 different unique configu-
rations of sample and nonmatching location that can be tested across the
four different separation conditions (see Fig. 1B). A relative increase in
trial uniqueness is thought to reduce the likelihood of mediating behav-
ioral responses (e.g., repeatedly pressing a response lever during the

5694 • J. Neurosci., August 2, 2023 • 43(31):5693–5709 Bennett et al. · TUNL Behavior Reflects Distinct Memory Codes



retention interval) (Talpos et al., 2010). This feature of the TUNL task
therefore also increases the similarity between the TUNL task and com-
parable visuo-spatial WM tasks in humans that also rely on remember-
ing the spatial location or configuration of stimuli (e.g., Park and
Holzman, 1992; Della Sala et al., 1999; Duff and Hampson, 2001; for
review, see Logie, 2014).

In the TUNL task, an animal’s ability to respond at the nonmatching
location in the choice phase is typically taken as an indication that the
animal has retained the spatial location of the sample stimulus in its
WM throughout the retention interval. For this reason, the TUNL task is
considered a task of (retrospectively coded) spatial WM. However, it is
also possible for mice to attain above-chance performance on the TUNL
task using prospective WM alone (although the maximum performance
of prospective WM is still inferior to performance levels achievable using
retrospective WM; see Extended Data Fig. 1-1). This can be done by
using the sample stimulus to encode, not a spatial location, but a behav-
ioral intention to respond either at the leftmost or the rightmost of the
response options in the choice phase. For trials with a sample on the far
left, for example, accuracy would be 100% for a mouse that simply
choose the rightmost of the two choice options (see Fig. 1B, leftmost col-
umn). Extended Data Figure 1-1 provides more information of the re-
spective utilities of retrospective and prospective WM on the TUNL
task; it is important to note that, despite the sophistication of the TUNL
task design, it is nevertheless possible for animals to achieve above-
chance performance in this task using only prospective WM.

Overview of datasets
The present study reports data from a total sample of 158,843 choice tri-
als from N=163 mice completing the TUNL task in three distinct

datasets (two of which have been previously published; see Table 1). We
focused our analyses on the post-training “probe” test phase of the task,
after animals had successfully learned the task to asymptote. It is
behavior on these probe trials that is typically taken as the measure
of spatial WM performance in studies using the TUNL task (e.g.,
Kim et al., 2015; Nilsson et al., 2016; Zeleznikow-Johnston et al.,
2017).

Although the three datasets had equivalent training protocols, each
dataset used a slightly different set of trial types in the probe phase of the
task (as is common practice in studies using the TUNL task). For exam-
ple, in the probe phase of Datasets 2 and 3 (but not the probe phase of
Dataset 1), incorrect responses were followed by “correction trials,” in
which the same two choice locations remained illuminated until animals
correctly selected the nonmatching location. As per standard training
protocols, correction trials were provided during the training phase for
all three datasets. In choosing datasets for analysis, we deliberately
selected datasets with a heterogeneous set of trial types because our
overall goal was to ensure that our model selection procedures were
broadly generalizable. By fitting models to datasets that differed in their
trial types and probe-phase parameters, our goal is to avoid overfitting
our models to one specific set of trial types or testing parameters. If we
observe that the same computational model provides the best fit to
data across datasets despite the large differences between datasets, we
can have increased confidence that the model applies to TUNL behav-
ior broadly, rather than simply TUNL behavior for specific testing pa-
rameters. Similarly, by testing across animal cohorts that were
genetically diverse and that received different experimental manipula-
tions (see below), we sought to ensure that results were generalizable
across different animal and experiment types.

Figure 1. Trial schematic for the mouse TUNL task. A, Sequence of events in each trial. The animal initiates the delay period by touching the sample location (white square). After the reten-
tion interval, the animal is shown two lit squares; to receive a reward, it must touch the square that is a nonmatch for the trial’s sample location (green tick represents correct location; red
cross represents incorrect location; ticks and crosses are for illustration purposes only and are not visible to mice). B, Overview of each of the 20 possible configurations of sample and nonmatch
location. Separation conditions are defined in terms of the number of unlit squares that separate the sample location and the nonmatching location (e.g., in a Separation 3 trial, the sample
location and the nonmatch location are separated by three unlit squares). Within each separation type, there are multiple different configurations of sample locations (red crosses) and non-
match locations (green ticks). The 20 different possible configurations of sample location and nonmatch location that can be presented comprise two configurations constituting a Separation 3
trial, four for Separation 2 trials, six for Separation 1 trials, and eight for Separation 0 trials. Simulated proportions of correct responses for each separation condition under retrospective and
prospective WM can be found in Extended Data Figure 1-1.
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All animal experiments were conducted in accordance with the
guidelines in the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes (National Health and Medical Research
Council of Australia, Ed 8, 2013) and the ARRIVE guidelines. Mice from
Dataset 1 were C57Bl/6J mice obtained from the breeding colony at the
Monash Animal Research Platform, Monash Medical Center (Clayton,
Victoria, Australia). All subsequent husbandry, housing, and behavioral
testing were also undertaken at Monash University. Mice were exposed
prenatally to maternal immune activation manipulation, such that timed
mated dams were injected either with polyinosinic-polycytidylic (5mg/
kg) solution or vehicle saline solution via the intraperitoneal route (10
ml/kg) on 3 consecutive days of GD 9,10, and 11 or GD 13, 14, or 15.
Offspring were weaned at postnatal day 21. Mice were housed in a
reverse 12:12 h light cycle in individually ventilated cages (GM500,
Tecniplast) with ad libitum access to food and water until the initiation
of food restriction. Cages were monitored daily and changed fortnightly.
This experiment was approved under Monash University Animal Ethics
Committee MMCB/2017/10. Further details regarding this dataset are
available in Nakamura et al. (2021).

For Dataset 2, mice were transported from Tokyo Metropolitan
Institute of Medical Science to a breeding colony established and main-
tained at the Monash Animal Research Platform, Monash Medical
Center. GluN2D heterozygous male and female C57BL/6J mice were
bred to obtain WT, heterozygous, and homozygous GluN2D-KO litter-
mates. All mice were housed in groups of 2-5 in individually ventilated
cages (Tecniplast) with ad libitum access to food and water until the ini-
tiation of food restriction. At 6-7weeks of age, mice were transferred
from the breeding facility to the behavioral holding room with a reversed
12 h dark-light cycle (lights off at 8:30 A.M.) and kept there until the end
of the experiment. Cages were monitored daily and changed fortnightly.
Male and female WT and GluN2D-KO mice were used in behavioral
testing. This experiment was approved under Monash University
Animal Ethics Committee (#E/1837/2018/M).

C57Bl/6 in Dataset 3 PV-Cre (JAX: 008069) and CaMKIIa-Cre
(JAX: 005359) mice were crossed with GluN1-floxed mice (JAX: 005246)
to obtain either PV1 interneuron-specific GluN1 KO mice (PV-Cre/wt;
GluN1fl/fl), or forebrain pyramidal cell-specific GluN1 KOmice (CaMKIIa-
Cre/wt; GluN1fl/fl), or WT littermates controls (w/w; GluN1fl/fl or w/w;
GluN1fl/wt). Mice were originally obtained from The Jackson Laboratory,
and group-housed in open top cages in the Kenneth Myer Building,
Parkville, Victoria, Australia, on a reverse-lighting schedule (lights off from
0700 to 1900). Mice were provided ad libitum access to standard chow until
10weeks of age, when food restriction was initiated. This experiment was
approved under the Florey Neuroscience Institute Animal Ethics Committee
(#16-028). Further details regarding this dataset are available in Sokolenko et
al. (2020).

Before touchscreen testing, mice were gradually food restricted over
a period of ;3-5 d until reaching 85%-90% of their free-feeding weight,
which was maintained until the end of testing. Strawberry milk (Nippy’s)
liquid food reward was introduced 2 d before testing to familiarize the
mice with the reward. Mice were handled daily for 1week before initiating
touchscreen training to habituate to the handler. The TUNL task was
run in isolated touchscreen operant chambers for mice (Campden
Instruments) through ABET II software. Chambers were dedicated to ei-
ther male or female mice only. The apparatus was cleaned with ethanol
80% v/v after each session. The training schedule used to train mice in use
of the apparatus and in performance of the TUNL tasks is provided in
Extended Data Table 1-1. In the present study, we solely analyzed data
drawn from blocks of the task after animals had learned the task to crite-
rion (i.e., from the “probe” phase of the task). Within the probe phase

of the task, delay manipulations were fixed for all datasets (i.e., each
probe testing session assessed performance on a single delay length). In
Dataset 1, testing sessions each assessed a mixture of different separation
conditions, whereas in Datasets 2 and 3, each testing session assessed a
single separation condition.

All mice were trained to criterion on the task using a standard habit-
uation and conditioning protocol (Kim et al., 2015), with minor varia-
tion between datasets in the criterion asymptotic performance level
required to proceed to the testing phase (Dataset 1: accuracy �70%;
Dataset 2: accuracy�80%; Dataset 3: accuracy�75%). All other training
parameters were identical to those described by Kim et al. (2015), with
the exception that mice in Datasets 2 and 3 were not trained to criterion
on S0 trials.

In all datasets, we report analyses from the entire sample of mice
without reference to distinctions between experimental groups in the
original publications (e.g., maternal immune activation for a subset of
mice in Dataset 1). This was because our goal was to assess patterns
of behavior that were observed consistently across multiple datasets of
TUNL data from different samples of mice, without reference to distinc-
tions between groups of mice in any specific experiment. Nevertheless,
to ensure that our results were not driven by impaired performance
induced by atypical mouse genotypes or experimental manipulations, we
repeated all analyses among control mice only. Of particular note,
we investigated performance among the WT control mice in
Dataset 2, which were genetically typical and did not undergo any
form of experimental manipulation which might have been
expected to impair performance The results of these analyses indi-
cated that similar overall behavioral patterns were observed even
when we restricted analyses to control mice only (see Extended
Data Table 2-5; Extended Data Fig. 2-1). To maximize statistical
power and emphasize the generalizability of our results, we there-
fore report analyses from the entire sample of mice in each dataset
in this manuscript.

Experimental design and statistical analysis
For statistical analysis of TUNL data, we adopted a two-stage approach.
First, we used a series of model-agnostic analyses (detailed immediately
below) to quantify relevant aspects of animals’ choice behavior using
standard inferential statistics. We then conducted a series of hierarchical
Bayesian computational modeling analyses to address more nuanced
questions about the relative strength of the effects of different WM codes
and response biases on task behavior.

Logistic regression analyses. The effects of separation, delay, and trial
type (i.e., the 20 unique configurations as per Fig. 1B) on behavior on
the TUNL task were assessed using mixed-effects logistic regression
analyses, with choice accuracy as the dependent variable (choice of non-
match location coded as 1, choice of sample location coded as 0).
Analyses were conducted using the lme4 package for R (Bates et al.,
2015). All regression models included per-animal random intercepts, as
well as per-animal slopes for all main effects and interactions that were
entirely within-animal (Barr et al., 2013). Nonconverging models were
simplified by removing higher-order random slopes until convergence
was achieved. Coefficient p values were calculated using the Wald t-to-z
test (Meteyard and Davies, 2020).

Calculation of side bias metric. We computed a measure of the
strength of each animal’s preference for responding in a leftward/right-
ward direction, taking into account the different choice options available
within the different datasets. To do this, we first calculated the choice
disparity for each of the five possible response locations, which is a

Table 1. Overview of datasetsa

Dataset # Original publication N mice (female/male) N probe-phase trials Separation conditions Delays (s) Correction trials at test?

1 Nakamura et al. (2021) 83 (46/37) 113 599 S0, S1, S2, S3 0, 3, 6, 9, 12, 15, 18, 21, 24 No
2 Vinnakota et al. (in preparation) 44 (19/25) 24 947 S1, S2, S3 1, 2, 3 Yes
3 Sokolenko et al. (2020) 36 (0/36) 20 297 S1b 1, 2, 3, 6 Yes
aFor details of the training protocol for all datasets before the probe phase, see Extended Data Table 1-1.
bDataset 3 only tested S1 trials for which either the sample location or the nonmatch location was at the center response location (Fig. 1B: Separation-1 row, columns 1, 3, and 5).

5696 • J. Neurosci., August 2, 2023 • 43(31):5693–5709 Bennett et al. · TUNL Behavior Reflects Distinct Memory Codes

https://doi.org/10.1523/JNEUROSCI.2101-22.2023.t1-1
https://doi.org/10.1523/JNEUROSCI.2101-22.2023.t2-5
https://doi.org/10.1523/JNEUROSCI.2101-22.2023.f2-1
https://doi.org/10.1523/JNEUROSCI.2101-22.2023.t1-1


normalized measure of how often each animal responded at each
response location (compare Broschard et al., 2021) as follows:

DisparityðiÞ ¼ Nchosen ið Þ � NcorrectðiÞ
Ntotal

(1)

Here, i 2 1; 2; 3; 4; 5½ � denotes the response location (1= far left, 3 =
center, 5 = far right), Nchosen ið Þ denotes the number of times that the ani-
mal responded at location i, and Ncorrect ið Þ denotes the number of times
that location i was the correct response location. The denominator Ntotal

denotes the total number of trials completed by the animal, allowing us
to compare the choice disparity index across animals who completed dif-
ferent total numbers of trials. This metric can be interpreted as an index
of whether an animal chose a particular response location more often
than expected given the trial types it completed (positive disparity), or
less often than expected (negative disparity).

For each animal, we then computed the side bias index simply by cal-
culating the difference between the choice disparity for rightward
response options and the choice disparity for leftward response options.
This provides a normalized index of whether an animal preferred right-
ward response options (positive side bias metric) or leftward response
options (negative metric) as follows:

Side bias ¼ Disparity 4ð Þ1Disparity 5ð Þ� �
� Disparity 1ð Þ1Disparity 2ð Þ� �

(2)

Within Figure 3, we computed the animal-by-animal significance of
the side bias metric using a nonparametric empirical permutation test. For
each animal, we tested significance by randomly shuffling the actual Nchosen

vector 1000 times to estimate an empirical null distribution of the side bias
metric. An animal’s side bias was taken to be significantly different from
chance if the actual metric as computed by Equation 2 fell outside the 95%
CI of this metric as estimated by the empirical permutation test.

Calculation of distal-response bias metric. Similar to the side bias
metric above, we also computed a measure of the strength of each ani-
mal’s preference for responding at locations closer to the edges of the
testing arena (“distal” responses) versus locations in the center of the
testing arena (“central” responses options). The computation of the dis-
tal-response bias metric was also based on differences in choice dispar-
ities as defined in Equation 1. In this case, however, we were solely
concerned with whether each animal responded at the central response
location more or less often than would be expected by chance as follows:

Centre bias ¼ Disparity (3)

This computes an index of whether animals preferred the central
response option or more distal response options (positive/negative val-
ues, respectively). As with the side bias index, significance was estimated
on a per-animal basis using a nonparametric empirical permutation test.

Computational models
The model-agnostic statistical analyses described above are appropriate
for answering high-level questions about the patterns evident in the be-
havioral data. For a more nuanced consideration of the relative contribu-
tions of different WM coding schemes and response biases to task
behavior, we next turned to computational modeling within a hierarchi-
cal Bayesian framework. Our overarching goal in this analysis was to
determine the extent to which behavior was determined by four separa-
ble response factors:

• Retrospective WM: memory for the spatial location of a previous
sample stimulus

• Prospective WM: using the sample stimulus to encode an intended
response direction in the choice phase

• Side biases: animal-specific preferences for responding in either a
leftward or a rightward direction, independent of the sample stimu-
lus (i.e., no WM component)

• Distal-response biases: animal-specific preferences for responding at
locations either closer to the walls of the chamber or closer to the
center of the chamber, independent of the sample stimulus (i.e., no
WM component)

All models assumed that choices on a given trial were driven by the
competition between two response strengths: one for the matching (i.e.,
incorrect) location and one for the nonmatching (i.e., correct) location
(compare Nosofsky, 1986; Kruschke, 1992). We compared a set of differ-
ent computational models that differed in their assumptions about how
the response strengths for each response location was determined. The
specific set of models that we compared comprised all one-, three-, and
four-way combinations of the four response factors (see Table 2). As
such, formal comparison of computational models allowed us to deter-
mine which response factors were important in driving behavior, and
estimation of model parameters allowed us to quantify the strength of
the effects of each response factor.

Modeling framework
In all models, the response strengths for the matching and nonmatching
response locations were denoted Rm and Rnm, respectively. The probability of
making a (correct) nonmatch response was assumed to be a logistic function
of the difference between these competing response strengths (also known as
a softmax function or Luce choice rule) on a given trial t as follows:

Pr nmð Þ ¼ 1
11 eRm tð Þ�RnmðtÞ (4)

Different models made contrasting assumptions about how these
response strengths were calculated. Specifically, different models com-
prised different additive combinations of four different response factors:
retrospective WM, prospective WM, side biases, and distal-responses
biases. For instance, in the most complex model (model M9) all four

Table 2. Overview of computational model fits to each dataseta

Model
number

N model parameters
per mouse

Forgetting
function

Retrospective
WM

Prospective
WM

Side
biases

Distal-response
biases

Dataset 1 Dataset 2 Dataset 3

WAIC DWAIC (SE) WAIC DWAIC (SE) WAIC DWAIC (SE)

M1 3b Power-law � — — — 71 495.2 15 678.6 (362.0) 7940.5 584.8 (74.3) 3807.6 441.9 (76.1)
M2 2 Power-law — � — — 71 471.2 15 654.7 (361.1) 8491.5 1135.8 (103.5) 6753.4 3387.6 (359.0)
M3 1 NA — — � — 66 937.5 11 120.9 (370.9) 14 189.0 6833.3 (300.2) 10 405.6 7039.8 (576.7)
M4 1 NA — — — � 76 250.8 20 434.3 (422.7) 14 321.4 6965.7 (296.0) 10 502.6 7136.8 (571.0)
M5 4 Power-law — � � � 56 025.8 211.3 (65.5) 7378.2 22.5 (15.7) 3812.1 446.3 (80.9)
M6 5b Power-law � — � � 57 088.1 1271.6 (117.6) 7511.2 155.5 (36.7) 3382.2 16.5 (18.5)
M7 5b Power-law � � — � 68 261.1 12 444.5 (335.2) 7771.4 415.7 (61.4) 3707.8 342.0 (69.7)
M8 5b Power-law � � � — 58 258.4 2441.9 (148.0) 7511.9 156.2 (36.7) 3401.1 35.3 (17.4)
M9 6b Power-law � � � � 55 816.5 — 7355.0 — 3365.8 —
aWAIC values are presented on a deviance scale (lower values indicate better model fit). Equivalent model fits for exponential and sigmoidal forgetting functions can be found in Extended Data Tables 2-1 and 2-2,
respectively. Model parameter estimates for the best-fitting model M9 can be found in Extended Data Table 2-3. Results of a further comparison of variants of M9 with two forgetting rates can be found in Extended Data
Table 2-4. Results of model comparison for data from control animals only can be found in Extended Data Table 2-5.
bThere is one fewer parameter per mouse in Dataset 3 because a smaller number of separations in this dataset rendered the a parameter nonidentifiable.
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response factors influenced choice, and response strengths were calcu-
lated as per Equation 5 as follows:

Rloc ¼ wretroRetro loc; dð Þ1wprospProsp loc; dð Þ

1wsideSide locð Þ1wdistalDistal locð Þ (5)

Where loc stands for either the sample location m or the nonmatching
location nm (m, nm 2 1; 2; 3; 4; 5½ �), and d denotes the duration of the
retention interval. Each of the w parameters in Equation 5 is an animal- and
component-specific weighting parameter that controls the strength of each
of the response factors (as specified by the functions Retro, Prosp, Side, and
Distal; see below). By contrast, the simpler models M1-M8 consisted of
more restricted combinations of the different combinations, as specified in
Table 2. For instance, response strengths in the retrospective-memory-only
M1 were computed as per Equations 6 and 7 as follows:

Rloc ¼ wretroRetro loc; dð Þ (6)

In all models, the key distinction between the WM factors (Retro and
Prosp functions) and the response-bias factors (Side and Distal) was that
the response strength produced by WM factors was assumed to decrease
over time as information was forgotten from WM during the retention
interval of each trial (i.e., these functions depend both on the locations
m and nm and the delay d), whereas the response strength produced by
response biases was assumed to remain constant over time within each
trial (and therefore depend only onm and nm). In all models reported in
the main text, we modeled the rate of this information loss using a power-
law forgetting function (Wickelgren, 1974; Wixted and Carpenter, 2007;
Donkin and Nosofsky, 2012) as follows:

Retro loc; dð Þ ¼ Retro0ðlocÞ 11 dð Þ�b
(7a)

Prosp loc; dð Þ ¼ Prosp0ðlocÞ 11 dð Þ�b
(7b)

Here, the remaining response strength produced by WM after t sec-
onds depends both on the initial response strength functions Retro0 and
Prosp0 (i.e., the response strength immediately after the presentation of
the sample location as per retrospective and prospective WM, respec-
tively; see below) and the retention duration d. The free parameter b
controls the rate at which information is forgotten fromWM.1

We also tested several alternative forgetting functions (exponential
and logistic/sigmoidal functions; Eqs. 8 and 9, respectively). However,
we found the power-law function provided the best overall fit to data,
and the rank order of different models’ goodness of fit was largely
unchanged across the different forgetting functions (see Extended Data
Tables 2-1 and 2-2). We therefore solely report conclusions from power-
law computational models in the main text.

Retro loc; dð Þ ¼ Retro0ðlocÞe�b d (8a)

Prosp loc; dð Þ ¼ Prosp0ðdirectionÞe�b d (8b)

Retro loc; dð Þ ¼ Retro0ðlocÞ
11 ebðd�midÞ (9a)

Prosp loc; dð Þ ¼ Prosp0ðlocÞ
11 ebðd�midÞ (9b)

Retrospective WM. The retrospective WM equation instantiated the
hypothesis that animals made choices in the TUNL task by holding the

location of the original sample stimulus in WM during the retention
interval. At the choice phase, each possible response location was then
assumed to accrue response strength in proportion to its spatial distance
to the sample location (i.e., greater response strength for locations at a
greater distance from the sample location). We modeled this accrual of
response strength using an exponential similarity kernel (Shepard, 1957,
1987) as follows:

Retro0 locð Þ ¼ ea�jloc�samplej (10)

Where a is a free parameter corresponding to the kernel width of the
dissimilarity kernel. This parameter can be interpreted as the degree of
cognitive dissimilarity between different response locations (i.e., cogni-
tive capacity for pattern separation). When a is large, different response
locations are sharply distinguished from one another; as a approaches 0,
the animal treats all possible response locations as equivalent. To avoid
parameter nonidentifiability, the a parameter was constrained to be pos-
itive in all datasets. a was fixed to a value of 1 in Dataset 3 because the
paucity of different separation conditions in this dataset (see Table 1)
meant that the a parameter was not uniquely identified.

Prospective WM. The prospective WM equation instantiated the
hypothesis that animals made choices in the TUNL task by holding
an intended response direction in WM during the retention inter-
val. That is, on seeing the sample location, animals were assumed
to form a prospective behavioral intention to select either the left-
most or the rightmost response location at the choice phase
(according to whichever direction was most associated with reward
in training for each sample location; see Table 1). Specifically, this
model component assumed that the response strength for the dif-
ferent locations at the choice phase was proportional to the proba-
bility that that response direction would be correct given the
sample location as follows:

Prosp0 directionð Þ ¼ Prðdirection ¼ correctjsampleÞ (11)

These probabilities were assumed to be learned by animals through-
out the conditioning phases of the task.

Distal-response bias. This response factor assumed that, independent
of all other task factors, individual animals idiosyncratically preferred to
respond either closer to the walls of the testing chamber (both left and
right walls), or to respond closer to the center of the testing chamber as
follows:

Distal locð Þ ¼ 1; loc ¼ 3
0; otherwise

�
(12)

Where loc = 3 denotes that the response location was in the cen-
ter of the five possible locations. Accordingly, a positive value of
the weighting parameter wdistal denotes a preference for central
stimuli, a negative value denotes a preference for distal stimuli,
and a value of zero denotes no overall preference for central versus
distal response options.

Side bias. This response factor assumed that, independent of all other
task factors, individual animals idiosyncratically preferred to choose ei-
ther the leftward or the rightward of the two response options on a given
trial as follows:

Side locð Þ ¼ 1; loc. alt
0; loc, alt

�
(13)

Where loc . alt indicates that the response location was to the right
of the alternative location, and loc, alt indicates that it was to the right.
Accordingly, a positive value of the weighting parameter wside indi-
cates a preference for rightward stimuli, a negative value indicates
a preference for leftward stimuli, and a value of zero indicates no
bias in either direction.

Model fitting and comparison. All models were fit within a hierarchi-
cal Bayesian framework using the probabilistic programming language

1In the additional models reported in Extended Data Table 2-4, different b parame-
ters were fit for Equation 7a and Equation 7b for each animal. In all other models, a sin-
gle b per animal was fit for both Equations 7a and 7b.
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Stan (Carpenter et al., 2017) and the cmdstanr package for R. For each
model, we took 3000 samples from the joint posterior per chain across a
total of four chains. The first 1750 samples per chain were discarded to
prevent dependence on initial values, resulting in a total of 5000 post-
warmup posterior samples being retained for analysis across the four
chains. Models were compared using the Watanabe-Akaike Information
Criterion (WAIC) (Watanabe, 2013) as estimated within the loo package
in R (Vehtari et al., 2017). This criterion is an approximation of the
leave-one-out posterior predictive density of the data given the
model, and assesses goodness of fit while penalizing models with
excessive complexity. Statistical ties between different models (i.e.,
differences in WAIC of ,1 SE of the difference of WAIC) were
broken according to statistical parsimony, defined as number of pa-
rameters per animal (Table 2). All chains converged in all models as
indicated by an R̂ value ,1.1, and there were no divergent transitions
in any model. All models used partial pooling, with animal-level pa-
rameters assumed to be drawn from a group-level distribution with a
mean and SD estimated from the data. Point estimates of animal-level
parameters were calculated as the median of the posterior distribution
per parameter per animal.

Variance partitioning analysis. Once we had identified a best-fitting
model according to the procedure above, we next computed the amount
of variance explained by each response factor in that model. In this anal-
ysis, we calculated the change in the overall group-level model R2 when
different response factors were removed one at a time from the best-fit-
ting model. R2 values in this analysis were computed for each trial type
and delay duration at the group-mean level.

Model simulations. After selecting the best-fitting model overall, we
conducted two sets of simulation analyses to dissect the behavioral signa-
tures of retrospective versus prospective WM in the TUNL task.

First, we conducted several simple simulations to calculate the
expected proportion correct for different configurations of sample
location and nonmatch location under retrospective WM versus
prospective WM (see Fig. 1B; Extended Data Fig. 1-1). In these sim-
ulations, we assumed that each of the 20 trial types in Figure 1B was
presented equally often, and that animals deterministically selected
the response locations indicated by either a retrospective or

prospective WM code (or selected at random between the different
indicated locations in cases where more than one response location
was equally indicated). For retrospective WM, simulations assumed
that animals were perfectly able to select the nonmatching location.
For prospective WM, simulations assumed that animals selected a
response direction (leftward vs rightward) on the basis of the sample
location alone, and then deterministically responded at the location
that was further in the selected response direction in the choice
phase. The response direction was assumed to be learned during the
conditioning phase of the task by marginalizing across the different
subsequent nonmatch locations that followed each possible sample
location. For instance, when the sample location was second from
the left (see Fig. 1B, second column), then 75% of the time the cor-
rect response location would be the rightward of the two options in
the choice phase. The simulations reported in Extended Data Figure
1-1 therefore assume that mice deterministically responded at the
rightward response location after a sample location that was second
from the left (and were therefore correct on 75% of trials for this
sample location).

The second set of simulations relaxed the unrealistic assumption
that animals were able to perfectly execute either retrospective or
prospective WM. Here, we estimated the performance of both ret-
rospective and prospective WM under the assumption that the
response strength according to WM (of either kind) became weaker
over time, consistent with the behavioral data presented in Figure
2. For each dataset, we specifically estimated the performance of
each WM code using point estimates of the forgetting rate parame-
ter b for the best-fitting model for that dataset. Since these simula-
tions were probabilistic rather than deterministic, we repeated
simulations 10,000 times and computed the proportion of datasets
in which an animal using retrospective WM alone would obtain
more reward than an animal using prospective WM alone. For each
dataset, we simulated performance according to the actual configu-
ration of trial types that were presented in that dataset. To inform
the design of future studies, we also simulated performance under
other trial configurations that experimenters might wish to test
(Extended Data Fig. 6-1).

Figure 2. Mouse behavioral data as a function of separation and delay across three independent datasets: A, Nakamura et al. (2021). B, Vinnakota et al. (in preparation). C, Sokolenko et al.
(2020). Each subplot represents mean proportion of correct responses (y axis) across animals as a function of delay between memory sample and response screen (x axis) and separation condi-
tion (plot facets). Each individual point within a delay/separation condition presents data from a unique configuration of sample location and nonmatch location (see Fig. 1B). Error bars indicate
the 95% CI of the mean. Equivalent plots among control mice only can be found in Extended Data Figure 2-1.
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Results
Different configurations at the same spatial separation are
not interchangeable
In previous studies, behavior on the TUNL task has been ana-
lyzed by averaging across the different possible stimulus configu-
rations within a separation condition to create a single summary
measurement per animal per separation and delay (i.e., averaging
across the different configurations within each row of Fig. 1B).
When we conducted an equivalent analysis in Datasets 1 and 2
(which tested different separation conditions), we found the
usual effect of increasing accuracy with increased separation
between matching and nonmatching locations (Dataset 1: b =
0.05, p, 0.001; Dataset 2: b = 0.11, p, 0.001). However, this
summary approach implicitly assumes that different stimulus
configurations within a separation condition are otherwise inter-
changeable with one another, and that the only feature of a sam-
ple/nonmatch location pair that is relevant for behavior is the
amount of spatial separation between the two locations. We next
tested whether this assumption was met in our data by testing
for differences in performance across different configurations
within a separation condition.

As can be seen in Figure 2, this assumption was not met:
instead of different configurations falling on the same temporal
decay curve (as we would expect if configurations were inter-
changeable with one another), there was marked heterogeneity
between configurations within each separation condition. Mixed-
effects logistic regression analyses revealed that these differences
were statistically significant in all three of our datasets: for Dataset
1 (Fig. 2A), there was a significant difference between different
configurations on accuracy for S0 trials (x 2

(7) = 287.26, p, 0.001),
S1 trials (x 2

(5) = 402.39, p, 0.001), and S2 trials (x 2
(3) = 170.14,

p, 0.001), although the effect of configuration was not statistically
significant for S3 trials (x 2

(1) = 1.67, p=0.20). For Dataset 2 (Fig.

2B), there was a significant effect of configuration on accuracy for
S1 trials (x 2

(5) = 21.18, p, 0.001) and S2 trials (x 2
(3) = 23.06,

p, 0.001), although again the effect of configuration was not stat-
istically significant for S3 trials (x2

(1) = 0.08, p=0.77). For Dataset 3
(Fig. 2C), which used a smaller number of unique trial configura-
tions, the effect of configuration on accuracy for S1 trials
(x 2

(3) = 5.79, p= 0.12) was not statistically significant, but there was
a significant interaction between configuration and delay
(x 2

(3) = 19.96, p, 0.001), indicating that the rate at which per-
formance deteriorated as a function of delay differed between the
different configurations. These results indicate that, contrary to
common assumptions, there are widespread differences in TUNL
performance depending on the exact configuration of sample loca-
tion and nonmatch location that was tested.

Between-configuration differences are consistent with
prospective WM coding
We next sought to unravel the source of these between-configu-
ration differences in behavior. In particular, we investigated a
striking pattern in which some pairs of Separation-0 stimulus
configurations showed markedly different patterns of perform-
ance from one another, although they shared the same pair of
response options in the choice phase of the trial.

One such pair (from Dataset 1) is presented in Figure 3A.
When the sample location was at the far left and the correct non-
match response location was second from the left, animals per-
formed the task well above chance-level performance at zero delay
(mixed-effects logistic regression; intercept = 1.26, p, 0.001),
and this performance level slowly deteriorated with increases in
the duration of the retention interval (b = �0.05, x 2

(1) = 22.99,
p, 0.001). Notably, however, when these locations were reversed
(sample location second from left and correct nonmatch response
location at far left), animals performed the task significantly below

Figure 3. A, Demonstration of direction-dependent effects in two putatively similar S0 choice configurations across multiple delays from Dataset 1. Top, Sample location (red cross) at far
left and nonmatch location (green tick) second from the left; mice display above-chance performance at delay 0 that deteriorates with increasing delay duration. Bottom, Sample location sec-
ond from the left and nonmatch location at the far left; mice show below-chance performance at delay 0, and improving performance as delays increase. Error bars indicate the 95% CI of the
mean. Equivalent results for sample locations at far right and second from right can be found in Extended Data Figure 3-1. B–D, Side biases (left column) and center-biases (right column) for
Dataset 1 (B), Dataset 2 (C), and Dataset 3 (D). A positive side bias index indicates that a mouse preferred to respond at the right-hand side of the chamber, and a negative side bias index indi-
cates that a mouse preferred to respond at the left-hand side of the chamber. A positive center bias indicates that a mouse preferred to respond at the center of the chamber, and a negative
center bias indicates that a mouse preferred to respond at the edges of the chamber. Distributions represent estimates of the group-level distributions in each dataset. Individual points repre-
sent statistics for individual animals. Filled data points represent animals with biases that were significantly different from chance. Unfilled data points represent animals with biases not signifi-
cantly different from chance.
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chance performance at zero delay (intercept = �0.49, p, 0.001),
and performance improved with increases in the duration of the
retention interval (b = 0.02, x2

(1) = 5.99, p=0.01). This pattern
was not restricted to the left side of the testing arena (for a similar
pattern, see Extended Data Fig. 3-1).

This striking pattern of results is difficult to reconcile with the
standard hypothesis that animals are performing this task using
spatial WM (i.e., a retrospective memory code; maintaining a rep-
resentation in WM of the spatial location of the sample stimulus).
Under this standard explanation, the difficulty of Separation-0 tri-
als results from the strong spatial similarity in the two possible
response locations in the choice phase locations. Crucially, how-
ever, this similarity is symmetric: by definition, the spatial similar-
ity of the far-left location compared with the second-from-left
location is identical to the spatial similarity of the second-from-left
location compared with the far-left location. Because of this sym-
metry, it is difficult to explain under the assumption of retrospec-
tive WM coding how behavior could be significantly above-
chance (and deteriorating with increasing delays) in Figure 3A
(top) but significantly below-chance (and improving with increas-
ing delays) in Figure 3A (bottom).

By contrast, this puzzling pattern of effects is relatively easily
explained if we instead assume that animals were using prospective
WM coding. Recall that under a prospective WM code, animals
would maintain in WM during the retention interval a behavioral
intention. This is possible because, depending on the sample loca-
tion, the animal can often predict with reasonable accuracy the
direction in which it should respond on the basis of the sample
location that it sees. For instance, if the sample location is at the far
left, then the animal should always choose whichever response
option is further to the right at the choice phase, independent of
separation condition (Fig. 1B, left column; Extended Data Fig. 1-1).
Similarly, if the sample location is second from the left, then in
75% of trials the correct response location will be whichever choice
option is further to the right in the choice phase (Fig. 1B, second
column from left; Extended Data Fig. 1-1); this means that the
TUNL task can be partially solved using prospective WM coding.
Then, if the animal is using a prospective WM code, when it
observes a sample location second from the left (Fig. 3A, bottom),
it will encode in WM a prospective intention to choose whichever
response option is further right, which will produce below-chance
performance in this particular case. Moreover, its performance will
also improve with increasing delays for this configuration because
the animal’s choices will become more random (and therefore
more correct in this case, until it reaches chance level) as the pro-
spective WM representation fades. Conversely, because trials with
the sample location in the center cannot be solved with prospective
WM, these trials may be particularly indicative of retrospective
coding inWM.

Animals also show idiosyncratic side biases and distal-
response biases
We also investigated how behavior in the TUNL task was influ-
enced by two response biases unrelated to WM: side biases and
distal-response biases. Side biases refer to the tendency for indi-
vidual animals to prefer leftward or rightward response options,
and have been observed across species and operant conditioning
paradigms (Alber and Strupp, 1996; Miletto Petrazzini et al.,
2020). By contrast, distal-response biases2 are more specific to
the TUNL task, and refer to the tendency of mice to prefer

response locations closer to the left or right walls of the testing
arena over more central response locations (see Kim et al., 2015).

We found evidence for both side biases and distal-response
biases in all three datasets (Fig. 3B–D). For side biases (Fig. 3,
middle column), although there was no average preference for
leftward versus rightward responses at the group level in any
individual dataset (Dataset 1: t(82) = 1.63, p= 0.11; Dataset 2:
t(43) = 1.80, p=0.08; Dataset 3: t(89) = 1.23, p= 0.23), permutation
tests revealed statistically significant side biases within the behav-
ior of a majority of individual animals in each dataset. In Dataset
1, 27 of 83 mice (33%) showed a significant leftward bias and 43
of 83 mice (52%) showed a significant rightward bias; in Dataset
2, 8 of 44 mice (18%) showed a significant leftward bias and 15
of 44 mice (34%) showed a significant rightward bias; in Dataset
3, 7 of 36 mice (19%) showed a significant leftward bias and 12
of 36 mice (33%) showed a significant rightward bias. Across all
datasets, there was no evidence for an association between
the strength of animals’ side biases and their accuracy rate on
the task (Dataset 1: Pearson r(83) = –0.08, p= 0.49; Dataset 2:
r(44) = –0.17, p=0.27; Dataset 3: r(36) = –0.12, p= 0.48).

Distal-response biases (Fig. 3, right column) were less promi-
nent overall than side biases, but nevertheless accounted for a
proportion of group-level and animal-level variance. At a group
level, we found a significant preference for distal response
options over central response options in both Datasets 1 and 2
(Dataset 1: t(82) = �7.27, p, 0.001; Dataset 2: t(43) = �2.55,
p= 0.01), though not in Dataset 3 (Dataset 3: t(35) = �1.56,
p= 0.12). Moreover, permutation tests revealed statistically sig-
nificant distal- or central-response biases within the behavior of
a sizeable proportion of individual animals in each dataset. In
Dataset 1, 52 of 83 mice (63%) showed a significant distal-
response bias and 9 of 83 mice (11%) showed a significant cen-
ter-response bias; in Dataset 2, 5 of 44 mice (11%) showed a sig-
nificant distal-response bias and 3 of 44 mice (7%) showed a
significant center-response bias; in Dataset 3, 8 of 36 mice (22%)
showed a significant distal-response bias and 7 of 36 mice (19%)
showed a significant center-response bias. It is noteworthy that,
although there was a significant group-level preference for distal
response options on average, some individual animals showed a
significant preference for the center response options. This
speaks to the heterogeneity of behavior in the TUNL task and
raises the possibility that individual animals might perform the
task using different combinations of WM coding schemes and
response biases. In Datasets 1 and 2, there was no evidence for
an association between the strength of animals’ distal-response
biases and their accuracy rate on the task (Dataset 1: Pearson
r(83) = 0.03, p= 0.82; Dataset 2: r(44) = 0.01 p. 0.99). In Dataset 3,
animals that preferred central response options more strongly
tended to perform better on the task overall (r(36) = 0.44,
p, 0.01). Given that Dataset 3 tested only S1c trials (i.e., trials in
which either the sample location or the nonmatching location
was in the center), this suggests that animals that were better able
to suppress the instinct to move toward the walls of the testing
chamber when the correct response location was in the center
might have performed better on the task overall.

Task behavior is best explained by a mixture of WM codes
and response biases
The model-agnostic analyses above provide evidence that behav-
ior in the TUNL task was consistent with both retrospective and

2For succinctness we here refer to “distal-response biases,” even though some mice
preferred central response locations. In the nomenclature that we adopt here, such a

preference would be represented as a negative distal-response bias (i.e., a preference
away from distal response locations)
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prospective WM. In addition, these analyses
revealed that individual animals’ choice
behavior was affected by animal-specific
response biases (both side biases and distal-
response biases). To dissect the relative con-
tributions of each of these response factors,
we next turned to hierarchical Bayesian
computational modeling of the data.

We first compared a suite of models
that differed in the set of response factors
that were assumed to influence choice
behavior (Table 2). Consistent with the
results reported in previous sections, we
found that the best-fitting model overall
was model M9, in which behavior was pro-
duced by a mixture of both retrospective
and prospective WM, as well as being
affected by both side biases and distal-
response biases (for parameter estimates,
see Extended Data Table 2-3). Model M9
was the best-fitting model in all three data-
sets, indicating that the observed pattern
of results was not consistent to any one
animal cohort or experimental design, but
rather was displayed consistently across all
the datasets we analyzed. The one caveat
to this otherwise consistent result comes
from Dataset 3: although model M9 was
still the best-fitting model overall as meas-
ured by the WAIC statistic, model M6
provided a statistically equivalent fit to
data when model fit uncertainty was
accounted for (i.e., the difference in WAIC values between M6
and M9 in Dataset 3 was smaller than the SE of this difference)
(compare Bennett et al., 2021; Weber et al., 2022). Since the dif-
ference between model M9 and model M6 is that the former
includes prospective WM but the latter does not, this result sug-
gests that prospective WM may have accounted for less variance
in behavior in Dataset 3 compared with Datasets 1 and 2. In gen-
eral, however, posterior predictive checks of model M9 (visual-
ized in Fig. 4) indicated that this model provided a good account
of data for all three datasets in absolute terms.

In addition, although model M9 included all four response
factors, this does not imply that all four factors necessarily
accounted for an equal amount of variance in behavior. To
investigate this more quantitatively, we conducted a variance
partitioning analysis to estimate the amount of unique variance
explained by each of the four response factors in M9 (see Table
3). The results of this analysis indicate substantial heterogeneity
across datasets in the proportion of variance accounted for by
different factors. In particular, the balance between retro-
spective and prospective WM differed substantially across
datasets: in Dataset 1, prospective WM uniquely accounted for
17.9% of group-level behavioral variance and retrospective WM
only 3.1%, whereas in Dataset 3 prospective WM uniquely
accounted for only 6.7% of variance and retrospective WM
accounted for 22%.

Individual animals varied in their mixture of WM codes and
response biases
The results presented above provide evidence that, at a group level,
animal behavior was best explained as a mixture of WM codes and
response biases. Of particular note, there was evidence that mouse

behavior in each of the three datasets was produced by both
prospective and retrospective WM. There are several different
ways that this pattern of data might emerge: first, each individ-
ual mouse might have used either prospective or retrospective
WM, and each dataset might have consisted of mixtures of
these two kinds of mouse in varying proportions. Second, such
a result might also arise if individual animals used both pro-
spective and retrospective WM coding. We next sought to
determine which of these two possibilities provided the best
account of data for individual animals (see Fig. 5).

This analysis revealed three notable features of the data. The
first is that, in all three datasets, every mouse used either a pro-
spective WM code, a retrospective WM code, or both. This result
is to be expected given that all animals were trained to criterion
on the task, but nevertheless confirms that model M9 provided a
good fit to the behavior of individual animals as well as of group-
level behavior. Second, an overwhelming majority of animals in
all three datasets (95% of mice in Dataset 1, 100% of mice in
Dataset 2, 83% of mice in Dataset 3) showed evidence of either
distal-response biases, side biases, or both. This indicates that
these idiosyncratic response biases were a pervasive feature of
animal behavior on the TUNL task.

Figure 4. Posterior predictive checks for the best-fitting computational model on each of the three datasets: A, Dataset 1.
B, Dataset 2. C, Dataset 3. Subplots represent the correspondence between the actual mean proportion of correct responses
across mice (y axis) and the model’s predicted mean proportion of correct responses across mice (x axis), with different sepa-
ration conditions presented in different plot facets and colors. Each point represents a unique combination of sample location,
nonmatch location, and delay, averaged across mice. Diagonal dotted line indicates equality between actual and predicted
proportion; in a perfectly calibrated model, every point would fall exactly on this diagonal. The best-fitting computational
model provides an excellent fit to data in each of the three independent datasets.

Table 3. Partitioning of unique variance explained within model M9

Dataset #
Overall
model R2 (%)

Unique variance explained by each response factora

Spatial/retrospective
WM (%)

Prospective
WM (%)

Distal-response
biases (%)

Side
biases (%)

1 88.6 3.1 17.9 32.8 4.6
2 91.1 3.9 4.5 7.5 2.8
3 85.6 22.0 6.7 7.6 1.7
aCalculated as change in group-level R2 when removing a response factor from the model.
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Third, this analysis revealed that the distribution of prospective
and retrospective WM coding was similar across animals in
Datasets 1 and 2, but that animals in Dataset 3 showed a qualita-
tively different pattern of effects. Within Datasets 1 and 2, a large
majority of mice showed effects of prospectiveWM (95% of animals
in Dataset 1, 93% of animals in Dataset 2), whereas the proportion
of animals using retrospectiveWMwas significantly smaller in these
datasets: 51% of animals in Dataset 1 (x 2

(1) = 39.51, p, 0.001, two-
sample test for equality of proportions) and 52% of animals in
Dataset 2 (x 2

(1) =16.56, p, 0.001). In Dataset 3, by contrast, this
difference was significant in the opposite direction: only 31% of ani-
mals showed an effect of prospective WM, but 100% showed an
effect of retrospective WM (x 2

(1) = 35.30, p, 0.001). Simultaneous
use of prospective and retrospective WM was relatively common
within individual animals in all three datasets (although Dataset 3
once again showed somewhat discrepant results). Within Datasets 1
and 2, relatively few mice used only retrospective WM (5% and 7%,
respectively), whereas a plurality of mice used either prospective
WM only (49% and 47%, respectively) or both retrospective and
prospective WM (46% and 45%, respectively). By contrast, in
Dataset 3, the majority of animals used only retrospective WM
(69%), none used only prospective WM, and 31% used both retro-
spective and prospectiveWM.

The most likely explanation for the discrepant results across
datasets is that animals were tested on different trial types in the
different datasets: specifically, mice in Dataset 3 were only tested

in Separation-1 trials involving the central
response location (see Table 1), which is a
much smaller subset of trial types than
were assessed in Datasets 1 and 2. We
therefore sought to ensure that the differing
model comparison results between datasets
were not a statistical artifact of this differ-
ence by refitting models to a subset of trials
in Datasets 1 and 2 that corresponded to
the subset of trials tested in Dataset 3 (i.e.,
S1c trials only). Our rationale for this analy-
sis is that, if the differences between datasets
evident in Figure 5 were solely because of
the fact that different separation conditions
were tested in different datasets, then we
would expect an analysis of S1c trials in
Datasets 1 and 2 to produce a very similar
response factor distributions to what we
observed in Dataset 3. The results of this
analysis (see Extended Data Fig. 5-1) indi-
cated that choice behavior on S1c trials
within Datasets 1 and 2 was not dominated
by prospective WM, as was the case in
Dataset 3. We therefore conclude that
between-datasets differences in the distribu-
tions of response factors are likely to reflect
the use of different patterns of response fac-
tors by mice in Dataset 3 compared with
Datasets 1 and 2. Moreover, this result also
suggests that, to measure primarily retro-
spective WM with the TUNL, it may be
necessary to change the entire set of separa-
tions that is tested in the probe phase. Our
results suggest that performance on specific
trial types can be affected by mice’s experi-
ence with other trial types (particularly
when exposed to sessions of mixed trial
types), and so it is likely to be insufficient

simply to extract S1c trials and analyze those trials in isolation, for
instance. Conversely, one alternative hypothesis is suggested by
between-dataset differences in the sex of the animals (all male in
Dataset 3, compared with a mix of male and female mice in
Datasets 1 and 2). Although we consider the effects of testing con-
figuration to be a more likely explanation for between-dataset dif-
ferences in use of prospective WM, future research could test
female mice solely on the S1c configurations from Dataset 3 to
rule out sex as an explanation for this phenomenon.

Prospective WM coding may reflect rational allocation of
cognitive resources
The results presented in the previous section raise two im-
portant questions: first, given that prospective WM is a sub-
optimal strategy on the TUNL task (as detailed in Extended
Data Fig. 1-1), why might so many animals have used pro-
spective memory instead of retrospective WM? Second, why
might the distribution of response factors across animals
have been so markedly different in Dataset 3 compared with
Datasets 1 and 2? These differences might merely reflect unex-
plained variance within specific animal cohorts or testing facili-
ties; however, another possibility is that the different sets of
trial types used in the different studies differed in the degree to
which they gave mice an incentive to use prospective versus ret-
rospective WM.

Figure 5. Breakdown of significant model components across mice in each dataset: A, Dataset 1. B, Dataset 2. C, Dataset
3. Venn diagrams represent the breakdown of the numbers of mice who fit into each possible configuration of significant
model components (presented as raw numbers and percentage of dataset). Histograms represent the proportion of mice in
each dataset that displayed a significant effect of each model component overall (i.e., the sum of the percentages within
each colored circle in the Venn diagrams). Results of an equivalent analysis in subsets of trials from Datasets 1 and 2
designed to match the trial types tested in Dataset 3 can be found in Extended Data Figure 5-1.
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Here we propose that these two questions can both be
answered by considering the balance between prospective and
retrospective WM in each dataset in terms of animals’ adaptive
responses to the behavioral and cognitive demands of the specific
configurations of trial types that were tested. This is consistent with
a resource-rational perspective, in which animals’ behavior is under-
stood as reflecting a trade-off between the competing demands
of reward maximization and physical/cognitive effort minimization
(e.g., Lieder and Griffiths, 2020). We specifically propose that, across
all datasets, retrospective WM was more cognitively effortful
(i.e., required animals to use more cognitive resources) than
prospective WM. In Datasets 1 and 2, mice might therefore
have favored prospective WM as the less effortful of the two
coding schemes (despite its lower expected reward). By con-
trast, the greater relative reward to be obtained3 via retrospec-
tive WM in Dataset 3 might have given mice in this dataset an
incentive to use retrospective WM despite the greater cognitive
demands of this response factor.

There are three different lines of evidence in support of this
hypothesis: one theoretical, one empirical, and one based on sim-
ulations of model performance. From a theoretical perspective,
prospective WM is likely to require fewer neurocognitive resour-
ces than retrospective WM in the TUNL task because there are
fewer possible distinct items that might be coded in prospective
WM (two possible prospective response directions vs five possible
retrospective sample locations), therefore requiring less memory
allocation. Moreover, forgetting may have been more rapid in
retrospective WM because of greater interference between rep-
resentations of the five different sample locations, compared
with the lesser similarity of the two diametrically opposed
response directions in prospective WM (Wickelgren, 1965;
Bunting, 2006). This would be consistent with Figure 3A, in
which the effects of prospective WM take ;15 s to return to
chance-level performance.

This resource-rational explanation makes testable predic-
tions for the data. If it was harder for animals to maintain
retrospectively coded items in WM than prospectively coded
items, we would also expect that information should be lost
more rapidly from retrospective WM than from prospective
WM. To test whether this was the case, we formulated an
additional set of computational models in which the forget-
ting rate parameter b was allowed to vary between retro-
spective and prospective WM. The results of this additional
set of model comparisons (see Extended Data Table 2-4) pro-
vided evidence that, in line with our resource-rational expla-
nation, information was lost more rapidly from retrospective
WM than from prospective WM in Dataset 1 (difference in
means of group-level b distributions = 0.38; 95% Bayesian
HDI: [0.01, 0.86]) and Dataset 2 (mean difference = 3.41;
95% Bayesian HDI: [2.46, 4.53]), although this difference was
not credibly different from 0 in Dataset 3 (mean difference =
�0.21; 95% Bayesian HDI: [�1.23, 0.41]). We note that the
finding that information was lost from prospective WM over
time (albeit more slowly than from retrospective WM) is also
a point of evidence in favor of interpreting this response fac-
tor as memory per se (rather than, for instance, in terms of
explicit rehearsal behaviors or postural bias).

Finally, simulated model performance provides further evi-
dence that animals’ use of prospective WM may have been
rational. If information can be held for longer in prospective
WM than in retrospective WM, this may mean that animals can
acquire more reward using prospective WM at longer retention
intervals. This is illustrated via computational simulations of the
different WM coding schemes in Figure 6. In particular, the em-
pirical forgetting rates in the best-fitting model in each dataset
reveal the resource-rationality of animals’ observed strategy:
under the observed WM forgetting rates (i.e., b parameters) in
Datasets 1 and 2, there was no substantial reward advantage to
be gained by using retrospective WM. In Dataset 3, by contrast,
for the observed empirical WM forgetting rate, animals could
obtain more reward using retrospective WM than using prospec-
tive WM. This resource-rational analysis can therefore explain
why animals in Dataset 3 used primarily retrospective WM, even
as animals in Datasets 1 and 2 used a mixture of both WM
types. The results of this analysis also suggest that mouse WM,
and especially retrospective WM, is best assayed at short reten-
tion intervals (not .6 s), before the memory trace is entirely
forgotten.

Extended Data Figure 6-1 includes further material related to
the effect of different trial types on the incentives for animals to
use prospective versus retrospective WM, including recommen-
dations on the specific trial types that best isolate retrospective
WM in the TUNL task. In short, our simulations suggest that use
of trial types at small spatial separations (S0 and S1) promote use
of retrospective WM, whereas trial types at larger spatial separa-
tions (S2 and S3) will tend to promote use of prospective WM.
As such, we suggest that probe-phase trials at small spatial sepa-
rations should be used if experimenters wish to promote use of
spatial WM (as distinct from memory for a prospective behav-
ioral response) in mice completing the TUNL task.

Discussion
By automating large-scale behavioral data collection, touchscreen
tasks represent a paradigm shift in the assessment of translational
cognitive phenotypes (Bussey et al., 2012; Oomen et al., 2013). A
crucial outstanding question, however, concerns the external va-
lidity of these tasks: that is, whether touchscreen tasks measure
cognitive processes in animals that are equivalent to the cognitive
processes that are impaired in human neuropsychiatric disorders
(Pound and Ritskes-Hoitinga, 2018). In this project, we used
computational modeling to investigate the neurocognitive proc-
esses that underlie the touchscreen TUNL task of spatial WM
in mice. Our goal was to use the rich data produced by the
touchscreen paradigm to dissect TUNL behavior into its cogni-
tive subprocesses, thereby appraising to what extent the TUNL
task measures an analog of human spatial WM. To our knowl-
edge, previous work has not considered behavior in the TUNL
task through the prism of the prospective/retrospective WM di-
chotomy. Instead, it is often assumed that TUNL behavior is a
reflection of spatial WM, which in this context we interpret as a
memory representation of the spatial location of a sample stimu-
lus, that is, a retrospective WM code. Our results suggest that in
addition to this spatial/retrospective WM code, mice also made
use of a prospective WM code. The best-fitting computational
model also included two types of response biases, representing
animal-specific preferences for responding at particular spatial
locations independent of WM processes.

Across three separate datasets, our computational modeling
results consistently showed that behavior was best explained by a

3Dataset 3 tested a different subset of trial types to Datasets 1 and 2 (for details, see
Table 1). Specifically, Dataset 3 tested solely “S1c” trials, in which prospective working
memory cannot produce above-chance performance (see Extended Data Fig. 1-1). The
advantage for retrospective working memory is therefore significantly greater in Dataset
3 than in Datasets 1 and 2.
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combination of retrospective WM (i.e., encoding of the spatial
location of the prior sample stimulus) and prospective WM (i.e.,
encoding an intended future behavioral policy). Although this
finding stands in contrast to the standard assumption that behav-
ioral strategy in this task solely reflects a purely retrospective WM
code, the consistency of model comparison results across datasets
indicates that the TUNL reliably assays the same set of four
response factors across testing parameters, as well as across different
genotypes and experimental manipulations. In our results, the pro-
portion of behavioral variance that was uniquely accounted for by
retrospective WMwas never.22% in any of our three datasets; we
therefore conclude that in mice, performance on the TUNL task
does not solely reflect spatial WM. As such, great care is needed in
translational neuroscience research using this task, where it is
critical to ensure that impairments observed in a given genetic,
pharmacological, or acquired model of a psychiatric or neuro-
logic disorder do indeed reflect deficits in retrospective WM
(thus capturing clinically relevant symptoms). Our results sug-
gest the importance of careful analysis to distinguish this possi-
bility both from deficits in prospective WM and from changes
in the balance between animals’ usage of retrospective versus
prospective WM codes.

A robust behavioral finding in the TUNL task is that animals’
response accuracy reduces with decreasing spatial separation
between the sample location and the nonmatching response
location. This finding has previously been taken as evidence that
animals use retrospective WM to complete the task (e.g., Kim et
al., 2015; Sbisa et al., 2017; Gogos et al., 2020). However, our
results show that the same qualitative pattern can also be pro-
duced by prospective WM, since closer spatial separations also
result in greater prospective response ambiguity for an animal
using prospective WM (Extended Data Fig. 1-1). Moreover, mice
in our datasets showed distinctive behavioral signatures of
prospective WM that cannot be explained by retrospective

WM, such as significantly below-chance
performance on certain S0 trial configura-
tions (Fig. 2A). As such, we suggest that
prospective WM may also explain other
puzzling phenomena that have been
observed in the TUNL literature, such as
differences in response accuracy between
“center” and “noncenter” trials (i.e., worse
performance for trials in which the sam-
ple location is in the center). This phe-
nomenon was first documented by Kim et
al. (2015), who also showed that trials
with a central sample stimulus were more
sensitive to hippocampal dysfunction that
trials with a noncentral sample stimulus.
This result is in line with our proposition
that these trials rely on retrospective WM,
which is in turn more hippocampus-de-
pendent than prospective WM. In line
with this hypothesis, in Dataset 3, we
found that a task design that maximized
the number of “center” trials maximized
animals’ use of retrospective WM (and
decreased their use of prospective WM).

These results have significant implica-
tions for our understanding of the neuro-
computational processes that subserve
WM in mice. TUNL task performance is
often interpreted in terms of the opera-
tion of a hippocampal pattern separation

algorithm (e.g., Talpos et al., 2010; McAllister et al., 2013; Kumar
et al., 2015; Kenton et al., 2018). In hippocampal pattern separa-
tion, the hippocampus is involved in creating distinct memory
representations for stimuli that are otherwise highly similar to
one another; these distinct memory representations are what
allow similar experiences to be discriminated from one another
in memory (see, e.g., Yassa and Stark, 2011). This process has
been posited (e.g., McAllister et al., 2013; Oomen et al., 2013) as
a mechanism that animals rely on for the small-separation trials
of the TUNL task (e.g., S0 and S1 trials), since in these trials the
stimuli to be distinguished (the sample and nonmatching loca-
tions) are spatially very similar to one another. As such, behav-
ior in small-separation trials has been posited as a “behavioral
readout” of pattern separation (Oomen et al., 2013). However,
the interpretation of small-separation trials as a readout of hip-
pocampal pattern separation depends on the assumption that ani-
mals are using retrospective WM, because spatially similar stimuli
will only be similar to one another in WM if what is being
encoded in WM is their spatial location (i.e., a retrospective WM
code). By contrast, our results suggest that performance at low
spatial separations may depend more strongly on prospective WM
processes. Since prospective WM has been linked more strongly
with prefrontal processing in both rodents and humans (Okuda et
al., 1998; Rainer et al., 1999), our results suggest that mouse behav-
ior on the TUNL task may depend more on the PFC than on hip-
pocampal pattern separation at low spatial separations. It is
important to note, however, that this conclusion rests on the
assumption that mice are being trained on the TUNL according to
a standard conditioning protocol (Kim et al., 2015). As we discuss
further below, it is possible that the link between prospective WM
and behavior on low-separation trials might be weakened if an al-
ternative TUNL conditioning and/or testing protocol were used.
More broadly, we note that both the hippocampus and the PFC

Figure 6. Simulated performance under different forgetting rates for prospective and retrospective WM in the best fitting
model for each dataset: A, Trial types and delays as per Dataset 1. B, Trial types and delays as per Dataset 2. C, Trial types and
delays as per Dataset 3. Blue (/pink) regions of each heatmap represent parameter regimens under which more reward can be
acquired using retrospective (/prospective) WM. White regions represent parameter regimens in which retrospective and pro-
spective WM produce equivalent performance on average. Superior performance for prospective WM typically occurs when the
forgetting rate for prospective WM is markedly lower than the forgetting rate for retrospective WM, although comparison of
the three panels indicates that the exact region of superiority depends on the trial types that are tested. Points and error bars
in each dataset represent the mean estimated forgetting rate for each WM type in each dataset6 the 95% credible interval
of the mean. For Datasets 1 and 2, this estimated mean falls within a zone of indifference between prospective and retrospec-
tive WM; whereas for Dataset 3, the estimated mean falls within a region in which retrospective WM produces superior per-
formance. Higher forgetting rates correspond to more rapid loss of information from WM. Equivalent plots for simulated
experiments testing different separation conditions can be found in Extended Data Figure 6-1.
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have been implicated in both human spatial WM and TUNL task
behavior (e.g., Talpos et al., 2010; McAllister et al., 2013), suggest-
ing that the TUNL task may provide a good translational model of
the neural correlates of spatial WM in general.

The distinction between prospective and retrospective WM
has a long history of study in the animal behavior literature (e.g.,
Cook et al., 1985; Kametani and Kesner, 1989; Kesner, 1989;
Rainer et al., 1999). Consistent with the findings that we report
here, Kesner (1989) showed that, depending on task demands,
rats use a mixture of prospective and retrospective WM codes to
solve a radial maze task (Kesner, 1989). Indeed, human partici-
pants also adjust their usage of prospective and retrospective
WM depending on task demands (Nallan et al., 1991). However,
for human spatial memory tasks that, like the TUNL, assay WM
for spatial locations or configurations (e.g., spatial WM tasks,
object location memory tasks, and positional memory tasks) (see
Kessels et al., 2001), humans are thought to primarily encode a
representation of the location or configuration of objects in space
(Postma et al., 2004). In other words, in human tasks that are
conceptually similar to the TUNL, participants are thought pri-
marily to use a retrospective WM code (Kessels et al., 2001;
Postma et al., 2004). As such, for the external validity of the
TUNL task, it is important to consider how TUNL task design
can be optimized to maximize animals’ use of retrospective WM
(see also recent work on a 6-location version of the TUNL task
by Dexter et al., 2022). Our model simulation analyses suggest
that it might be possible to promote the use of retrospective WM
by increasing the proportion of probe-phase trials that test trial
types which can only be solved using retrospective WM. One
way of doing this would be to test only S1c trials (i.e., those in
which either the sample location or the nonmatching location
was in the center): in Dataset 3, which adopted this approach, we
found that animals primarily used retrospective WM. More
broadly, our simulation analyses (see Extended Data Fig. 6-1)
illustrate that testing animals only on S0 trials, or on a combina-
tion of S0 and S1 trials, would be expected to have the same
effect. By contrast, our results suggest that testing primarily S2
and S3 trials would be expected to increase reliance on prospec-
tive WM.

More broadly, it is unclear to what extent the response factor
that we have labeled prospective WM is influenced by me-
diating behavioral strategies (e.g., orienting the body in the
direction of the intended behavioral response). Such “rehearsal
through overt behavior” has been widely documented in the lit-
erature on delayed nonmatch to sample memory tasks (see, e.g.,
Dudchenko and Sarter, 1992). Nevertheless, the TUNL task
includes design features specifically intended (Talpos et al.,
2010; Oomen et al., 2013) to reduce the likelihood of such re-
hearsal behaviors (e.g., requiring a nose-poke at the back of the
testing arena before making a response). Consequently, it is an
open question to what extent the response factor that we have
labeled prospective WM is associated with explicit motor activ-
ity or postural biases. Teasing apart this question is an impor-
tant task for future research, potentially requiring inspection of
camera footage of animals performing the TUNL task.

We also found evidence for two distinct types of animal-spe-
cific response biases: side biases and distal-response biases. Side
biases, which represent animals’ stable and idiosyncratic prefer-
ences for responding in a leftward or rightward direction, have
been consistently observed in the animal behavior literature (e.g.,
Treviño, 2014; Kuwabara et al., 2020; Broschard et al., 2021). By
contrast, there has been less study of distal-response biases, in
which individual animals have stable preferences for responding

either closer to the walls or closer to the center of the testing
chamber. One possibility is that distal-response biases may be
related to the preference for proximity to vertical surfaces that is
thought to reduce predation risk for small mammals in naturalis-
tic contexts (e.g., Jensen et al., 2003). In line with this interpreta-
tion, we observed that mice showed a significant preference for
response options closer to the walls of the chamber in two of the
three datasets that we analyzed. As such, we speculate that distal-
response biases may reflect an anxiety-related phenotype, similar
to that measured in the elevated plus maze (Walf and Frye,
2007).

More broadly, we suggest that these findings are best under-
stood within a resource-rational cognitive framework (Lieder
and Griffiths, 2020), which assumes that animals consider the
cognitive effort costs associated with different behavioral strat-
egies as well as the reward that can be obtained via each strategy.
Accordingly, we suggest that mice completing the TUNL task
might have preferred to adopt the less effortful approach of using
prospective WM, rather than the more effortful approach of ret-
rospective WM, although somewhat more reward could be
obtained via retrospective WM. This explanation can account
both for the surprisingly high usage rates of prospective WM in a
task that was designed to elicit retrospective WM, as well as for
the finding that mice appeared to forget information more rap-
idly from retrospective WM than from prospective WM in our
data. Of course, it is important to note that rate of forgetting is
only one dimension along which animal WM might differ from
human WM. Other dimensions of WM are also pertinent,
such as the number of representations that can be maintained.
Since the TUNL only requires maintenance of a single item in
memory, and WM deficits in disorders, such as schizophrenia,
show reduced capacity to hold multiple items in memory (see,
e.g., Gold et al., 2010), this is a limitation that future rodent
behavioral studies wishing to align rodent models with WM
deficits in schizophrenia should seek to rectify. More broadly,
it may be useful to develop an exact equivalent of the TUNL
task in human participants to truly maximize the comparabil-
ity of behavior across species.

Several limitations of our computational modeling approach
should be noted here. First, the analyses presented here focus
only on behavior in mice, but there also exists a version of the
TUNL task for rats, using a 3� 5 grid of possible response loca-
tions (Oomen et al., 2013; Sbisa et al., 2017) instead of the 1� 5
grid (or 1� 6 grid; see Dexter et al., 2022) tested in mice. It is an
empirical question whether our modeling results also extend to
rat behavior on the TUNL task, and it is likely that more complex
models will be required given the greater complexity of the rat
version of the task and the greater cognitive sophistication of
rats. Second, we fit models to aggregate data across animals; and
as such, our results do not shed light on the trial-by-trial dynam-
ics of WM. One possibility is that animals strategically used pro-
spective WM for some trial types and retrospective WM for
other trial types. An alternative possibility is that, for each ani-
mal, behavior involved a mixture of prospective and retrospec-
tive WM in a consistent way across different trial types. Further
within-trial data (e.g., in vivo neural recordings from hippocam-
pus or PFC) are required to adjudicate between these two possi-
bilities. Finally, because mice were trained using a standard
training protocol in each of the datasets that we analyzed here,
our results do not shed light on the extent to which animals’ use
of prospective WMmight be an artifact produced by the training
protocol itself. The training phase of the TUNL task typically
begins with the easier high-separation trials and only proceeds to
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the more difficult low-separation trials after animals reach crite-
rion on the earlier trials. Because retrospective WM is only ad-
vantageous over prospective WM for low-separation trials, this
training protocol may inadvertently have the effect of increasing
the salience of the prospective WM strategy. An open question is
whether changes in task training, such as those suggested by
Dexter et al. (2022), might alter the overall balance between pro-
spective and retrospective WM. Another important open ques-
tion is the degree to which prospective and retrospective WM is
each susceptible to the effects of proactive interference from the
correct response in the previous trial (compare Dunnett and
Martel, 1990; Dunnett et al., 1990). Understanding this point
may prove important, since pharmacological or other interven-
tions that strengthen WM may have the paradoxical effect of
worsening animals’ performance on subsequent short-delay trials
via proactive interference. Dunnett and Martel (1990) suggest
extended intertrial intervals as one possible work-around for this
issue.

In conclusion, across three distinct datasets, our computa-
tional modeling results provide evidence that the behavior of
mice on the TUNL task is more multifaceted than has often been
appreciated. Specifically, we found that retrospective WM, which
has often been assumed to be the dominant factor underlying
TUNL performance, only accounted for a portion of the variance
in the data. Indeed, in two of the three datasets that we studied,
prospective WMwas a more significant factor in mouse behavior
than retrospective WM. Of course, this result does not entail that
the TUNL task lacks translational validity as an assay of spatial
WM; rather, our results suggest that retrospective (i.e., spatial)
WM is an important component of behavior on the task, and
that it is incumbent on the task design to be optimized for this
purpose to minimize other cognitive strategies. Specifically, our
results suggest a number of factors that might be adjusted in
future research using the TUNL task to maximize its external va-
lidity as a measure of spatial WM: in particular, maximizing the
number of S1-center trials. Where this is not possible, our results
suggest that computational modeling provides a tractable way
for isolating variance in behavior that is uniquely associated with
spatial WM. In addition, future research could also analyze addi-
tional dependent variables that can be readily extracted from
touchscreen behavioral tasks, such as response latencies. Each of
these approaches may prove beneficial in optimizing the utility
of the TUNL task as a translational assay in rodent models of
neurodevelopmental and psychiatric disorders.
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