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Abstract (250 words max) 
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs 
before they arise, a process called allostasis. In support of allostasis, the brain continually models the 
internal state of the body, a process called interoception. Using published tract-tracing studies in non-
human animals as a guide, we previously identified a large-scale system supporting allostasis and 
interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the 
present study, we replicated and extended this system in humans using 7 Tesla fMRI (N = 91), improving 
the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei 
mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive 
system observed in non-human animal research. We also identified functional connectivity hubs verified 
in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that 
individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive 
awareness, building on construct validity evidence from our earlier paper. Taken together, these results 
strengthen evidence for the existence of a whole-brain system supporting interoception in the service of 
allostasis and we consider the implications for mental and physical health.  
 
 
Significance Statement (120 words max) 
We used ultra-high field 7 Tesla fMRI to replicate and extend a large-scale brain system supporting 
interoception and allostasis, entwined processes crucial to the core brain function of coordinating and 
regulating the internal systems of the body. In particular, we mapped the subcortical extents of this 
system, several of which are small brainstem nuclei only recently delineated at 7 Tesla. Our findings 
suggest that investigations of distributed brain networks should not be restricted to the cerebral cortex. 
We emphasize bodily regulation as a whole-brain phenomenon and highlight its implications for mental 
and physical health.   
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Introduction 
A key function of a brain is to efficiently regulate and coordinate the systems of the body as an 

organism continually interfaces with an ever-changing and only partly predictable world. Various lines of 
research, including tract-tracing studies of non-human animals (e.g., 1, 2), discussions of predictive 
processing (3–6), and research on the central control of autonomic nervous system function (7–9) all 
suggest the existence of a unified, distributed brain system that anticipates the metabolic needs of the 
body and prepares to meet those needs before they arise, a process called allostasis (10; for recent 
reviews, see 11, 12). Allostasis is not a condition or state of the body — it is the process by which the 
brain efficiently maintains energy balance in the service of metabolic regulation (10). Just as 
somatosensory and other exteroceptive sensory signals are processed in the service of skeletomotor 
control, the brain is thought to model the internal sensory state of the body (i.e., the internal milieu) in the 
service of allostasis, a process known as interoception (13–16). In 2017, we identified a distributed 
allostatic-interoceptive system consisting of two overlapping intrinsic networks (Figure 1A), using 
resting state functional magnetic resonance imaging (rs-fMRI) in three samples with over 600 human 
subjects scanned at 3 Tesla (17). Our investigation was guided by the anatomical tracts identified in 
studies of non-human mammals (see Table 2 in (17)). Specifically, we examined the functional 
connectivity of primary interoceptive cortex spanning the dorsal mid and dorsal posterior insula 
(dmIns/dpIns), as well as key allostatic regions that are known to be responsible for controlling the motor 
changes in the viscera (i.e., visceromotor regions), such as the anterior midcingulate cortex (aMCC), 
pregenual anterior cingulate cortex (pACC), subgenual anterior cingulate cortex (sgACC), agranular 
insular cortex (also known as ventral anterior insula, or vaIns, which is also posterior orbitofrontal 
cortex), and dorsal amygdala (dAmy) (Figure 1A). This analysis yielded an integrated system consisting 
of two well-known intrinsic networks, the default mode network and salience networks, overlapping in 
connecting hubs, many of which are key cortical visceromotor allostatic regions that also serve as ‘rich 
club’ hubs, in addition to primary interoceptive cortex. We also probed the system’s connectivity to some 
subcortical regions known to play a role in control of the autonomic nervous system, the immune system, 
and the endocrine system such as the thalamus, hypothalamus, hippocampus, ventral striatum, 
periaqueductal gray (PAG), parabrachial nucleus (PBN) and nucleus tractus solitarius (NTS; e.g., 18–24). 
The allostatic-interoceptive system has become an increasingly important tool for investigating 
interoception and allostasis processes under specific scenarios and in specific populations (e.g., (25–28)). 
In addition, research indicates that regions in this unified allostatic-interoceptive system are also 
important for a wide range of psychological phenomena that span cognitive, emotional, pain, decision-
making and perceptual domains (see Figure 5 in (17); also see (29–31)), suggesting the hypothesis that 
allostatic and interoceptive signals may play a role in shaping brain dynamics and cognition (for 
discussion see (5, 32).    
 In the present study, we replicated and extended evidence for the allostatic-interoceptive system 
(Figure 1B) using ultra-high field (7 Tesla) MRI, which allows data acquisition with higher spatial 
resolution (1.1 mm isotropic), better signal-to-noise-ratio (SNR; Sclocco et al., 2018; Bandettini et al., 
2012; Newton et al., 2012), and increased sensitivity in mapping functional connectivity of brainstem 
nuclei involved in arousal, motor and other vital processes (e.g., autonomic, nociceptive, sensory; 33). We 
tested within-system functional connectivity in 91 human participants (age range = 18-40, mean = 26.9, 
SD = 6.2 years old; 41 females, 50 males) using a fast low-angle excitation echo-planar technique 
(FLEET) sequence, which has been shown to reduce artifacts and improve temporal SNR (Polimeni et al., 
2016; Kragel et al., 2019). This approach allowed a more precise mapping of connectivity for regions 
with known signal issues at 3 Tesla, such as the sgACC (low SNR), amygdala (noise from adjacent veins; 
(34)), columns within the PAG (noise from adjacent aqueduct), and other small structures that could be 
particularly influenced by partial volume effects. We took advantage of recently developed and much 
improved in-vivo brainstem and diencephalic nuclei atlases (35–39) to guide our hypotheses (Table S1), 
which were derived from tract-tracing studies of non-human mammals. Building on (17), we specifically 
examined the connectivity to subcortical nuclei such as the NTS (in the medullary viscero-sensory-motor 
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nuclei complex; VSM), dorsal raphe (DR), substantia nigra (SN), ventral tegmental area (VTA), locus 
coeruleus (LC), superior colliculus (SC), mediodorsal thalamus (mdThal), and lateral geniculate nucleus 
(LGN). While SC and LGN are not traditionally considered directly involved in interoception and 
allostasis, they share anatomical connections with key visceromotor regulation regions in the network (see 
Table S1; (40–45)). SC has been directly implicated in skeletomotor (46, 47) and visceromotor (48, 49) 
actions that facilitate approach or avoidance behaviors. SC is also thought to integrate sensory 
information to generate a representation of the body, which then gives rise to basic, valenced feelings (50, 
51). We also examined connectivity patterns for subregions of the PAG, hippocampus and SC rather than 
as a single ROI as in (16) given their functional heterogeneity (52, 53) and differential involvement in 
allostasis (e.g., (54–56)).  

 

 
Figure 1. Key cortical and subcortical regions involved in interoception and allostasis. (A) Using 3 Tesla 
fMRI resting state connectivity, we showed a unified system consisting of the default mode network (in 
red) and salience network (in blue), which overlapped in connecting hubs (in purple), many of which are 
key cortical visceromotor allostatic regions that also serve as ‘rich club’ hubs, in addition to a portion of 
primary interoceptive cortex (dpIns) (left panel) (17). We reported the system’s connectivity to some 
subcortical regions known to play a role in control of the autonomic nervous system, the immune system, 
and the endocrine system such as the thalamus, hypothalamus, hippocampus, ventral striatum, PAG, PBN 
and NTS (e.g., 18–24) (right panel) (17). Figures are reproduced with permission from (17). (B) 
Expanded set of seed regions used in the present analysis. Abbreviations: aMCC: anterior midcingulate 
cortex; Amy: amygdala; dmIns: dorsal mid insula; dpIns: dorsal posterior insula; DR: dorsal raphe; Hippo: 
hippocampus; Hypothal: hypothalamus; LC: locus coeruleus; LGN: lateral geniculate nucleus; NAcc: nucleus 
accumbens; NTS: nucleus of the solitary tract; pACC: pregenual anterior cingulate cortex; PAG: 
periaqueductal gray; PBN: parabrachial nucleus; SC: superior colliculus; sgACC: subgenual anterior cingulate 
cortex; SN: substantia nigra; Thal: thalamus; vaIns: ventral anterior insula; VTA: ventral tegmental area. 
 
Results 
Following the analytic methods reported in (17), we opted to separate signal from random noise using 
replication according to the mathematics of classical measurement theory (57) rather than stringent 
statistical thresholds that can cause Type II errors (58). We randomly divided the sample into two 
subsamples (Ns = 46 and 45) and identified, for each seed region, BOLD correlations for all voxels in the 
brain that survived a voxel-wise threshold of p < .05 across both subsamples. Each subsample produced a 

Figure 1
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set of discovery maps for each seed region that included both cortical and subcortical connections. The 
maps of each subsample were subjected to k-means clustering analysis to estimate the allostatic-
interoceptive network. This approach allowed us to identify weak but reliable signals that are important 
when examining cortico-subcortical connections in brain-wide analyses. We expected stronger 
connectivity among cortical seeds compared to among subcortical seeds due to noisier time courses and 
more partial volume effects resulting in lower sensitivity in smaller regions.    
 
Cortico-cortical intrinsic connectivity. The two subsamples demonstrated high between-sample reliability 
for cortical connectivity profiles of all cortical seeds (η2 mean = 0.92, s.d. = 0.03) (59). We first examined 
the hypothesized functional connectivity based on documented anatomical connections. As expected, we 
successfully replicated all of the cortico-cortical connections observed with 3 Tesla imaging reported in 
(17). We additionally observed reciprocal connectivity (i.e., connectivity map of one region includes a 
cluster in the other region and vice versa) between lvAIns and pACC, between sgACC and aMCC, and 
between dmIns and portions of cingulate cortex (sgACC, pACC) (subsample 1, Figure 2A; subsample 2, 
Figure S1A), extending the system to include more connections predicted by animal tract-tracing studies 
((60–63)). These observations were confirmed by seed-to-seed connectivity strength calculation 
(subsample 1, Figure 2B; subsample 2, Figure S1B). Combining evidence from the cortical maps and 
seed-to-seed connectivity matrices, we confirmed 100% of the monosynaptic cortico-cortical connections 
predicted from non-human tract-tracing studies. 
 Next, to identify connecting cortical hubs, we binarized the cortical connectivity maps for all 
cortical seeds (p < 0.05) and computed their conjunction (subsample 1, Figure 2C; subsample 2, Figure 
S1C), which allowed for discovery of important regions outside the hypothesized seeds. We replicated all 
the hubs reported at 3 Tesla in (17) with the exception of medial postcentral gyrus, and we newly 
identified the entire anterior cingulate cortex (including subgenual and pregenual extents), posterior 
cingulate cortex (PCC), a greater extent of the insula (including mid insula; mIns), as well as some 
portions of medial superior frontal gyrus (SFG) and middle frontal gyrus (MFG). A k-means clustering 
analysis (k = 2, 1000 iterations) on the cortical maps replicated two clusters that replicated the two-
network system resembling the default mode network (i.e., the dorsomedial prefrontal cortex, PCC, and 
dorsolateral prefrontal cortex) and salience network (i.e., anterior to MCC, anterior insula, supramarginal 
gyrus, supplementary motor area; see details in Figure S2).  
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Figure 2. Cortico-cortical functional connectivity within the allostatic-interoceptive system in subsample 1. (A) Left 
column shows cortical seed locations and right column shows functional connectivity discovery maps depicting all 
voxels whose time course was correlated with that of the seed (ranging from p < .05 in red to p < 10-10 in yellow, 
uncorrected, N = 46, medial and lateral view displayed on the left and right column, respectively). (B) Seed-to-seed 
functional connectivity matrix shows connectivity strength between each pair of the cortical seeds (ranging from p < 
.05 in red to p < 10-10 in yellow, uncorrected; white color indicates correlation =1 and black color indicates 
subthreshold correlations; N = 46). Note that although pACC-dmIns connectivity strength did not meet threshold, a 
pACC cluster was observed in the dmIns-seeded map and a dmIns cluster was observed in the pACC-seeded map, in 
(A). (C) The allostatic-interoceptive system showed overlapping hubs in all the a priori interoceptive and 
visceromotor control regions. Hubs belonging to the ‘rich club’ are shown in yellow. ‘Rich club’ hubs figure 
adapted with permission from (64). To avoid Type II errors, which are enhanced with the use of stringent statistical 
thresholds (58), we opted to separate signal from random noise using replication, according to the mathematics of 
classical measurement theory (57). The above results were replicated in a second subsample, N = 45, indicating that 
they are reliable and cannot be attributed to random error (Figure S1). Abbreviations: aMCC: anterior mid cingulate 
cortex; dpIns: dorsal posterior insula; IFG: inferior frontal gyrus; MFG: middle frontal gyrus; mIns: mid insula; 
pACC: pregenual anterior cingulate cortex; PHG: parahippocampal gyrus; pMCC: posterior mid cingulate cortex; 
PCC: posterior cingulate cortex; sgACC: subgenual anterior cingulate cortex; STS: superior temporal sulcus; vaIns: 
ventral anterior insula.  
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Subcortico-cortical intrinsic connectivity. Using a similar analysis strategy, we assessed subcortico-
cortical connectivity by both visually inspecting cortical discovery maps of the subcortical seeds to 
confirm topography (subsample 1, Figure 3A; subsample 2, Figure S3A) as well as calculating seed-to-
seed connectivity to quantify strength of connection (subsample 1, Figure 3B; subsample 2, Figure S3B). 
The two subsamples demonstrated high between-sample reliability (η2 mean = 0.85, s.d. = 0.06). 
Combining evidence from the cortical maps and seed-to-seed connectivity matrix, we confirmed 98% of 
the monosynaptic subcortico-cortical connections predicted from non-human tract-tracing studies; the one 
exception was we did not observe functional connectivity between PAG and dmIns/dpIns despite known 
anatomical connections (65, 66). Note that in some instances, averaged timecourses between seeds did not 
correlate significantly (i.e., black squares in matrix, e.g., PAG-pACC), but connectivity clusters could 
nonetheless be observed in the maps (e.g., pACC cluster in PAG-seeded map). These discrepancies can 
result from noisy signals within an ROI or specific sub-portions of an ROI showing significant 
connectivity. We also observed one aspect of relative specificity: a region of superior parietal lobule (not 
known for visceromotor function) with tract-tracing-based connections only to the SC (67) showed 
consistent functional connectivity to the SC as well as to two large subcortical hubs (the hippocampus and 
the amygdala) (Table S2). 

Subregions of the PAG delineated with diffusion weighted imaging (Figure S4; see 
Supplementary Information for more details) showed largely similar functional connectivity profiles 
overall, although lPAG and vlPAG showed more robust and more extensive connectivity than dmPAG 
and dlPAG, with stronger connectivity especially with aMCC and mvAIns (Figure S5), mirroring 
previously reported shift in functional organization in the rostrocaudal axis (52, 56). Longitudinal 
functional subdivisions of the hippocampus into head, body, and tail (51; see Supplementary Information 
for more details) also showed largely similar functional connectivity profiles, albeit with a gradient from 
greater connectivity to the default mode network at the anterior end and greater connectivity to the 
salience network at the posterior end (Figure S6), consistent with prior work (68, 69). Both rostrolateral 
and caudomedial subregions of the SC (corresponding to superficial and intermediate/deep layers) 
showed similar connectivity to cortical regions affiliated with the default mode-like portion of the unified 
system, whereas the rostrolateral subregion alone showed stronger connectivity to cortical regions 
affiliated with the salience-like portion of the system (Figure S7, Table S3).  

Next, we conjoined the binarized discovery maps (p < 0.05) to identify the cortical hubs in each 
subsample where subcortical connections overlapped (subsample 1, Figure 3C; subsample 2, Figure 
S3C). This analysis was enabled by newly delineated subcortical seeds (36, 39, 70) and therefore was not 
possible at 3 Tesla (17). Similar to the cortically seeded maps, subcortically seeded maps showed 
connecting hubs in hypothesized cingulate and insular regions as well as some parts of the MFG and 
cuneus. We ran k-means clustering analysis (k = 2) (subsample 1: frequency = 734/1000, adjusted Rand 
index = 0.61; subsample 2: frequency = 897/1000, adjusted Rand index = 0.81) which appeared to 
differentiate maps showing sparse connectivity from those showing more widespread (dense) connectivity 
rather than differentiating spatially distinct connectivity patterns (sparse: Cluster 1 from maps seeded in 
the hypothalamus, PAG, DR, PBN, LC and VSM; dense: Cluster 2 seeded in the mdThal, LGN, 
hippocampus, dAmy, NAcc, SC, SN and VTA; Cluster 2, Figure S8). These two clusters could reflect a 
meaningful functional difference (e.g., central nodes of the network may show widespread connectivity) 
and/or methodological limitations (e.g., poorer SNR in smaller regions may lead to sparse connectivity).  
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Figure 3. Subcortico-cortical intrinsic connectivity within the allostatic-interoceptive system in subsample 1. (A) Left column shows subcortical seed locations 
and right column shows functional connectivity discovery maps depicting all cortical voxels whose time course was correlated with that of the seed (ranging 
from p < .05 in red to p < 10-10 in yellow, uncorrected, N = 46). (B) Seed-to-seed functional connectivity matrix shows connectivity strength between pairs of 
subcortical and cortical seeds (ranging from p < .05 in red to p < 10-10 in yellow, uncorrected; white color indicates correlation =1 and black color indicates 
subthreshold correlations; N = 46). (C) Conjunction map shows the number of binarized maps (p < .05) that overlap at the connecting hubs (ranging from 9 to 
14). The above results were replicated in a second subsample, N = 45, indicating that they were reliable and could not be attributed to random error (Figure S3). 
Abbreviations: dAmy: dorsal amygdala; mdThal: mediodorsal thalamus; LGN: lateral geniculate nucleus; Hypothal: hypothalamus; Hippo: hippocampus; NAcc: 
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nucleus accumbens; PAG: periaqueductal gray; DR: dorsal raphe; SC: superior colliculus; SN: substantia nigra; VTA: ventral tegmental area; PBN: parabrachial 
nucleus; LC: locus coeruleus; VSM: medullary viscero-sensory-motor nuclei complex corresponding to the nucleus tractus solitarius.   
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Subcortico-subcortical intrinsic connectivity. We assessed subcortico-subcortical connectivity by both 
visually inspecting subcortical maps of the subcortical seeds to confirm topography as well as calculating 
functional connectivity between all subcortical seeds to quantify strength of connection (subsample 1, 
Figure 4; subsample 2, Figure S9). Again, this analysis was not possible with 3 Tesla scanning as in 
(18). We confirmed 100% of the monosynaptic subcortico-subcortical connections that were predicted 
from non-human tract-tracing studies. Note that in some instances, averaged timecourses between seeds 
did not correlate significantly (i.e., black squares in matrix, e.g., DR-hypothalamus), but connectivity 
clusters could nonetheless be observed in the maps (e.g., hypothalamus cluster in DR-seeded map). These 
discrepancies can result from noisy signals within an ROI or specific sub-portions of an ROI showing 
significant connectivity. Seed-to-seed connectivity strength between PAG subregions and other 
subcortical ROIs is displayed in Figure S5. Seed-to-seed connectivity strength between hippocampal 
subregions and other subcortical ROIs is displayed in Figure S6. Seed-to-seed connectivity strength 
between SC layers and other subcortical ROIs is displayed in Figure S7. Conjoined binarized subcortical 
discovery maps (p < 0.05) indicated that all but four subcortical seeds showed hub-like connectivity (hubs 
identified in the mdThal, LGN, hippocampus, dAmy, NAcc, PAG, DR, SC, SN and VTA but 
hypothalamus, PBN, LC and VSM showed less widespread and dense connectivity throughout subcortical 
seeds (Table S4). K-means clustering analysis (k = 2) on the subcortical discovery maps from subcortical 
seeds yielded an almost identical solution as their cortical connectivity maps (subsample 1: frequency = 
734/1000, adjusted Rand index = 0.61; subsample 2: frequency = 897/1000, adjusted Rand index = 0.81). 
The only difference was that the hypothalamus switched membership from Cluster 1 to Cluster 2 despite 
it being a major visceromotor structure with evident anatomical connections to all subcortical regions.  
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Figure 4. Subcortico-subcortical intrinsic connectivity within the allostatic-interoceptive system in subsample 1. 
Seed-to-seed functional connectivity matrix showed connectivity strength between each pair of the subcortical seeds 
(ranging from p < .05 in red to p < 10-10 in yellow, uncorrected; white color indicates correlation =1 and black color 
indicates subthreshold correlations; N = 46). Several seeds had functional connectivity with a subset of voxels 
within target ROIs, as shown by binarized maps at p < .05 (target ROI outline is shown in blue). The above results 
were replicated in a second subsample, N = 45, indicating that they were reliable and could not be attributed to 
random error (Figure S9). 
 
The allostastic-interoceptive system. We observed dense interconnectivity between all the seeds included 
in our analysis (subsample 1: Figure 5A; subsample 2: Figure S10A). Combining both cortical and 
subcortical extents, functional connectivity of the seeds converged in the hypothesized allostatic-
interoceptive system (subsample 1: Figure 5B; subsample 2: Figure S10B).  
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Figure 5. Summary of the allostatic-interoceptive system based on 7 Tesla fMRI functional connectivity in 
subsample 1. (A) Circuit diagram indicates dense within-system connectivity between the 21 cortical and subcortical 
seeds. All seeds are shown as spherical nodes located at their respective centers of gravity. Pairwise connectivity 
strengths between ROIs are shown as edges between nodes (ranging from p < .05 in red to p < 10-10 in yellow, 
uncorrected, N = 46). Nodes and edges in the glass brain were visualized using BrainNet Viewer (71) (B) 
Conjunction map shows the number of binarized maps (p < .05) that overlapped at the connecting hubs (ranging 
from 15 to 21, total number of cortical and subcortical seeds = 21). The above results were replicated in a second 
subsample, N = 45, indicating that they were reliable and could not be attributed to random error (Figure S10).   
 
Construct Validity. Finally, we conceptually replicated a previously reported association between 
interoceptive ability and functional connectivity strength between the dpIns (primary interoceptive cortex) 
and aMCC (an a priori visceromotor region and a connector hub, with consistently replicated tract-
tracing connectivity to subcortical allostatic nuclei) (18). To avoid Type II error resulting from multiple 
comparison correction, we computed intrinsic functional connectivity between the same two seeds (i.e., 
dpIns and aMCC) and found that individuals showing stronger intrinsic dpIns-aMCC functional 
connectivity also reported greater self-reported interoceptive awareness (r = 0.24, p < 0.023; Figure S11).  
 
Discussion (1500 words max) 
Ultra-high field 7 Tesla fMRI with 1.1-mm isotropic voxel resolution combined with newly delineated 7 
Tesla brainstem and diencephalic parcellations (35–39) allowed us to replicate and extend both the 
cortical and subcortical components of the allostatic-interoceptive system originally identified in humans 
with 3 Tesla fMRI (17). Our original study involved 10-minute resting state scans in two subsamples of 
270-280 participants each, whereas the present study involved longer, 30-minute resting state scans in two 
subsamples of 45-46 participants each. With seven cortical ROIs and 14 subcortical ROIs, we verified 
over 90% of the anatomical connections identified in published tract-tracing studies in non-human 
mammals using functional connectivity in humans. Our current 7 Tesla findings revealed reciprocal 
connectivity between sgACC/pACC and dmIns/dpIns regions previously unreported in 3 Tesla functional 
connectivity studies of the ACC (72–76) and the insula (77–80). The improvement in sgACC 
connectivity, in particular, was expected at 7 Tesla, as this region is part of the medial/orbital surface that 
is typically susceptible to low SNR, partial volume effects and physiological aliasing; in the current study, 
these effects were mitigated by higher resolution image acquisition at 7 Tesla, minimal smoothing, and 
more precise nuisance regression using signals from individual ventricles. We also expanded observations 
of the subcortical extents of the allostatic-interoceptive system. Several subcortical nodes (i.e., mdThal, 
LGN, hippocampus, dAmy, NAcc, SC, SN and VTA) showed robust connectivity with all cortical nodes 
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whereas the smaller brainstem nuclei (i.e., PAG, DR, PBN, LC and VSM) showed weaker but reliable 
connectivity to these nodes, replicating earlier findings using a subset of the nodes as seeds at 3 Tesla 
(e.g., (81)) and 7 Tesla (e.g., (33, 82)). We also observed reliable connectivity between regions that have 
not yet been documented as having monosynaptic connections in previous tract-tracing studies. For 
example, anatomical evidence shows limited monosynaptic connectivity between the LGN and cortical 
nodes of the system (except pACC), yet we observed reliable functional connectivity between the LGN 
and both the aMCC and mvAIns (as well as the pACC). This finding requires further investigation 
because our estimate of functional connectivity was likely sensitive to polysynaptic connections.   

In addition, the connecting hubs of the allostatic-interoceptive system observed at 7 Tesla covered 
all hypothesized cortical regions of interest, including the extent of primary interoceptive cortex (dpIns, 
dmIns) and visceromotor allostatic regions in the vAIns, sgACC, pACC and aMCC. Several other 
connecting hubs (MCC, PCC, IFG, PHG, STG) were also observed and had confirmed anatomical 
connections to hypothesized allostatic-interoceptive regions in non-human animals (2, 65, e.g., 83–86). 
The remaining connecting hubs (i.e., MFG, SFG, isthmus of the cingulate, cuneus) did not have evident 
monosynaptic anatomical connections to the hypothesized regions – their functional connectivity may 
reflect polysynaptic connections or novel connections in humans (e.g., MFG and SFG do not have 
homologous counterparts in non-human animals). Importantly, most of the additional connecting hubs 
observed at 7 Tesla (i.e., pACC, PCC, isthmus cingulate, SFG, MFG and mIns; except the sgACC) 
belong to the ‘rich club’ (the most densely interconnected regions in the cortex) (64), consistent with the 
hypothesized central role of the allostatic-interoceptive system as a high-capacity backbone for 
integrating information across the entire brain (87).  

We did not map every possible subcortical area that may be involved in allostasis or 
interoception. For example, opportunities for further research include septal nuclei (with direct 
projections to limbic regions such as the hippocampus and implicated in temporal control of neurons that 
make up the allostatic-interoceptive work; (88, 89)), circumventricular organs (e.g., area postrema with 
unique access to peripheral signaling molecules via its permeable blood-brain-barrier; (90, 91)) and motor 
brainstem nuclei (e.g., dorsal motor nucleus of the vagus and nucleus ambiguus whose neurons give rise 
to the efferent vagus nerve; (92, 93)). 

The results of this study have several important functional implications. First, several brain regions 
within the allostatic-interoceptive network may play an important role in coordinating and regulating the 
systems of the body even though they are typically assigned other psychological functions. For example, 
the SC is typically studied for visuomotor functioning in humans but has been shown to be important for 
approach and avoidance behavior as well as the accompanying changes in visceromotor activity in non-
human mammals (e.g., 48, 49, 94) via anatomical connections to ACC (40) and hypothalamus (41). 
Similarly, the hippocampus is usually considered central to memory function, but evidence from non-
human animals indicates that the hippocampus also plays a role in interoceptive processing in feeding 
behaviors and interoception-related reward signals (95–99). There is also circumstantial evidence that 
interoceptive signals, relayed from the vagus nerve to the hippocampus via the NTS and septal nuclei, 
may play a role in event segmentation (100, 101). The LGN is typically considered a part of the visual 
pathway that relays visual information from the retina and the cerebral cortex. However, the current 
functional connectivity findings are consistent with tract-tracing evidence showing LGN’s anatomical 
connections with many visceromotor structures both cortically (e.g., pACC (102)) and subcortically (e.g., 
hypothalamus (103), PAG (42), and PBN (104)), suggesting a role for facilitating communication among 
brain structures implicated in bodily regulation, in addition to its role in integrating interoceptive and 
visual signals (32).   

Second, a more mechanistic understanding of how the default mode and salience networks support 
interoception and allostasis will also reveal insights into the mind–body connections at the root of mental 
and physical illness and their comorbidities. Many psychiatric illnesses (e.g., depression (105, 106), 
schizophrenia (107, 108)), neurodevelopmental illnesses (e.g., sensory processing disorder/autism 
spectrum disorder (109, 110)), neurodegenerative illnesses (e.g., dementia/Alzheimer’s disease (111, 
112), Parkinson’s disease (113, 114)) and physical illnesses (e.g., heart disease (115), chronic pain (116)) 
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present with symptoms related to altered interoception or visceromotor control, and some of these 
symptoms are transdiagnostic (117–119). Interoceptive and visceromotor symptomatology is often 
accompanied by altered neurobiology (e.g., volume, structural connectivity, functional connectivity, 
evoked potential, task activation) in the allostatic-interoceptive system (e.g., depression: (120, 121); 
autism: (122); dementia: (26, 111, 112); chronic pain: (123); transdiagnostic: (124–127)). Accordingly, 
there is evidence showing that psychological therapies targeting interoceptive processes (128) and 
neuromodulations targeting distributed regions within the allostatic-interoceptive system (129, 130) may 
be effective transdiagnostic interventions. A unified cortical and subcortical system provides an 
anatomical and functional framework for integrating studies across psychological and illness domains in a 
manner that will speed discovery, the accumulation of knowledge and, potentially, strategies for more 
effective treatments and prevention. 

Finally, the findings reported here are consistent with the growing body of evidence that subcortical 
and cortical brain regions are both important for the regulation of bodily functions and for so-called 
“higher” cognitive functions, calling into question the notion that there is an anatomical basis for 
segregating the two types of functions (115, 116). That the default mode and salience networks may be 
concurrently coordinating, regulating and representing the internal milieu, while they are routinely 
engaged in a wide range of tasks spanning cognitive, perceptual, emotion and action domains (see Figure 
5 in (17)), all of which involve value-based decision-making and action (31, 133–137) reinforces the 
viability of the hypothesis that, whatever other psychological functions the default mode and salience 
networks are performing during any given brain state, they are simultaneously maintaining or attempting 
to restore allostasis and are integrating sensory representations of the internal milieu with the rest of the 
brain for the purposes of allostasis. Therefore, our results, when situated in the published literature, 
suggest that the default mode and salience networks create a highly connected functional ensemble for 
integrating information across the brain, with interoceptive and allostatic information at its core. 
Regulation of the body has been largely ignored in the neuroscientific study of the mind, in part because 
much of interoception occurs outside of human awareness (16, 118). 

 
Materials and Methods 
Participants and MRI acquisition. We recruited 140 native English-speaking adults, with normal or 
corrected-to-normal vision, and no history of neurological or psychiatric conditions. All participants 
provided written informed consent in accordance with the guidelines set by the institutional review board 
of Massachusetts General Hospital. Nineteen participants withdrew from the study prior to the MRI 
session, 12 withdrew during MRI acquisition, four were excluded due to technical issues during 
acquisition, and 14 were excluded due to poor data quality (assessed by visual inspection) or high motion. 
This resulted in a final sample of 91 participants (26.9 ± 6.2 years old; 41 females, 50 males). MRI data 
were acquired using a 7 Tesla scanner (Magnetom, Siemens Healthineers, Erlangen, Germany) with a 32-
channel phased-array head coil. Participants completed a structural scan, three resting state scans, three 
diffusion-weighted scans, the Kentucky Inventory of Mindfulness Skills (138), as well as other tasks 
unrelated to the current analysis. MRI parameters are detailed in SI. 
 
Preprocessing of fMRI data. The preprocessing pipeline began with reorientation, slice timing correction, 
concatenation of all three resting state runs, coregistration to the structural T1-weighted image, and 
motion correction. We then conducted nuisance regression to remove physiological noise due to motion, 
as well as due to non-BOLD effects evaluated in the white matter, ventricular cerebrospinal fluid, and the 
cerebral aqueduct. We then conducted temporal filtering and normalization. Finally, we performed 
conversion to Freesurfer orientation/dimensions, detrending, spatial smoothing (1.25mm), and resampling 
to cortical surfaces. Preprocessing details are provided in SI. 
 
Functional Connectivity Analysis. Seven cortical and 14 subcortical seeds were defined based on previous 
studies, standard atlases, and group probabilistic map. Subjects were randomly divided into a subsample 1 
(N = 46) and a subsample 2 (N = 45). In each group, for each seed, we estimated cortical connectivity 
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using Freesurfer-based analysis procedure as outlined in (17). This yielded final group maps that showed 
regions whose fluctuations significantly correlated with the seed’s fMRI time series. We also quantified 
seed-to-seed functional connectivity by computing Pearson’s correlation coefficient between all pairs of 
ROIs and applying the Fisher’s r-to-z transform. Significance at the group level was assessed with a two-
tailed one-sample t test.  
 
Reliability Analyses. We used η2 as a reliability index because it shows similarity between maps while 
discounting scaling and offset effects (59). An η2 value of 1 indicates spatially identical maps while an η2 
of 0 indicates no similarity. For each of our seeds, we calculated η2 between the two subsamples using the 
effect size (gamma) maps generated by the group-level general linear model analysis. Then we calculated 
the mean and standard deviation of the η2 across all seeds to index overall similarity between subsamples.  
 
Connecting Hubs and K-Means Cluster Analysis. To visualize the connecting hubs, we conjoined all 
binarized group functional connectivity maps (p < 0.05). To replicate the previously discovered two-
subsystem distinction within the allostatic-interoceptive network, we computed a similarity matrix 
capturing pairwise η2 (59) between the group maps and applied k-means clustering algorithm (kmeans, 
MATLAB) with k = 2. To visualize each subsystem, we binarized the group connectivity maps (p < 0.05) 
and calculated the conjunction between maps within the same cluster.  

 
Behavioral Validation. Participants self-reported on the Kentucky Inventory of Mindfulness Skills (138). 
We correlated the total scores from five interoceptive awareness items with functional connectivity 
strength (Fisher’s z) between the primary interoceptive cortex (dpIns and dmIns) and a representative 
visceromotor region (aMCC). 
 
Data and Code Accessibility. Connectivity maps can be found at: https://osf.io/8w9zp. Custom data 
processing and analysis codes are available upon request. 
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