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Abstract 
Background 
A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA 
gene transcription initiation. These include the general transcription factors (GTFs), which assemble at 
promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of 
cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly 
pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates 
of in vivo RNA synthesis are established and how cofactors and TFs impact them. 
Results 
We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, 
TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived  
(< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes 
with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late 
in the assembly process, had residence times correlated with RNA synthesis rates. 
Conclusions 
The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this 
organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, 
gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that 
shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression. 
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Background 
Transcription is a highly complex biochemical process 
whose exquisite regulation is of fundamental 
importance in determining cell function and fate. A 
tremendous amount of information is available on the 
structure, biochemical functions, and relationships of 
various transcription factors (TFs), co-factors, and 
subunits of the general transcription machinery (1–5). 
This includes structures of the transcription 
preinitiation complex (PIC), which assembles at 
promoters and consists of the general transcription 
factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, 
as well as RNA polymerase II (Pol II) (1–3,6–9). In 
addition, genome-wide analyses have provided global 
snapshots of many factors along the eukaryotic DNA 
template (10–13). These combined studies have led to 
a conceptual framework in which PICs are assembled 

stepwise at promoters. This process begins with 
nucleation by TFIID, a multisubunit complex that 
contains the DNA-binding subunit TATA-binding 
protein (TBP) (14,15), and can be further facilitated by 
binding of TFs and coactivators that physically contact 
GTFs (16). In vitro, following the binding of TBP/TFIID 
to a TATA-containing promoter, TFIIA and TFIIB can 
then associate with the complex, followed by Pol II in 
association with TFIIF, and then TFIIE (17). This multi-
subunit complex provides the substrate for 
recruitment of TFIIH (18), whose activities are 
required in vivo but may be dispensable in vitro using 
naked DNA substrates (19). A key factor contributing 
to PIC assembly in vivo is Mediator, which physically 
contacts multiple GTFs and modulates the activities of 
TFIIH (19–21). Live-cell imaging has documented the 
dynamic behavior of these factors and is generally 
consistent with such an assembly pathway, albeit 
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occurring via highly dynamic and short-lived 
complexes (22). Importantly, the understanding of PIC 
assembly has emerged mainly from studies that have 
focused on the analysis of stable complexes formed in 
vitro or identified in vivo, lacking information about 
the locus-specific dynamics of the process. 
Furthermore, some evidence suggests that the 
canonical in vitro assembly pathway may not apply to 
PICs at all promoters in vivo (23–25). In addition to 
unexplored assembly pathway complexity, it has 
become apparent that in vivo transcription is a highly 
dynamic and stochastic process, with RNA synthesis 
often occurring from individual genes in bursts, and 
with variability occurring among genetically identical 
cells (26,27). Most models of RNA expression based on 
these types of observations do not posit particular 
features of protein-DNA complex behavior as the 
explanation, and relatively few genes have been 
analyzed in depth (28–32). Indeed, live cell imaging 
approaches have revealed that while TFs in general 
display very dynamic interactions with chromatin, the 
functional consequences of their interaction kinetics 
are only beginning to be explored on a mechanistic 
level (22,33,34). 

The premise of this study is that PIC assembly 
dynamics are variable across the genome and that 
identification of kinetic pathways in PIC assembly will 
shed light on mechanisms of regulation that operate 
at the level of transcription initiation. To better 
understand PIC assembly in vivo, we have used an 
approach called competition chromatin 
immunoprecipitation (competition ChIP, ref.(35)) to 
measure the site-specific, genome-scale chromatin 
binding dynamics of five GTFs (TBP, TFIIA, TFIIB, TFIIE, 
and TFIIF) in the budding yeast S. cerevisiae. In 
addition, we compared promoter binding dynamics of 
these factors with RNA synthesis rates to determine 
how chromatin binding of key PIC components relates 
to the production of RNA. To our knowledge, this 
represents the first comprehensive analysis of PIC 
dynamics, provides a global picture of PIC assembly, 
and highlights promoter-specific variation. 
 

Results 
Competition ChIP (CC) is an approach in which cells 
harbor two isoforms of a transcription factor of 
interest with distinguishable epitope tags (Fig. 1a). We 
engineered diploid yeast cells to constitutively express 

one isoform with a Myc tag under control of the 
endogenous promoter and with the second isoform 
tagged with HA and under inducible GAL promoter 
control. In the CC experiments, cells were shifted to 
galactose at time zero to induce expression of the HA-
tagged competitor isoform, followed by cell culture 
sample collection at various time points (Fig. 1b). We 
then measured the relative occupancies of the Myc- 
and HA-tagged species genome-wide at each time 
point (Fig. 1c) and used the relative occupancies as 
input to a model that describes the competition for 
chromatin binding to each site, yielding the site-
specific residence time (Fig. 1d). The principle of the 
assay is outlined in Fig. 1e,f, which illustrate how the 
occupancy ratios of the two isoforms of a particular 
factor would change if the factor has a short or long 
residence time at a particular site. Notably, TFIIA, 
TFIIE, and TFIIF are biochemically composed of more 
than one subunit, and thus, for these factors we 
epitope tagged one subunit and placed one copy of 
each subunit under GAL control in order to induce 
balanced expression when cells were grown in 
galactose (see Methods). 

For each factor, we first measured the levels of 
both isoforms by Western blotting (Fig. 2a-c; 
Additional file 1: Fig. S1, Additional file 2: Table S1). 
The time-dependent accumulation of competitor 
isoforms could be fit to the Hill equation with 
induction half-times of ~43 min and Hill coefficients of 
~4.5 on average (Fig. 2b,c). We estimated residence 
times by fitting the normalized time-dependent 
turnover ratios to a turnover model (36) (see 
Methods), and compared the fits to the HA-tagged 
competitor's synthesis rate. In this way, we were able 
to assign residence times for binding interactions with 
significantly longer (> 1 min) rates of turnover 
compared to the rate of competitor synthesis, and for 
reliable fits that were not significantly different from 
the rate of competitor induction, we were able to 
classify the chromatin binding residence times as < 1 
min (see Methods). Overall, we were able to estimate 
residence times for each GTF binding to ~3000 or more 
promoters (Fig. 2d; Additional file 3: Table S2). This 
represents roughly half of the Pol II promoters in the 
S. cerevisiae genome. Representative fits are shown in 
Fig. 2e; Additional file 1: Fig. S2. Note that the HA/Myc 
ratios at sites with rapid turnover closely mimic the 
time course of competitor induction, whereas more  
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Fig. 1. Competition ChIP overview. 
(a) A Myc-tagged isoform of a TF is expressed constitutively using the endogenous promoter, while an HA-isoform is expressed under 
control of a galactose-inducible promoter. (b) Illustration showing protein induction upon adding galactose. The HA/Myc ratio 
increases over time until it reaches saturation. (c) Once a given TF unbinds DNA, the two isoforms compete for binding to the available 
site. (d) Simplified illustration of residence time estimation based on the lag of the normalized HA/Myc ChIP signal ratio relative to the 
competitor protein induction curve, as further illustrated in (e) for sites with fast turnover and (f) for sites with slow turnover.  
In (e,f) the icons in the top row indicate relative levels of constitutive (red) and competitor (green) isoforms.  

long-lived complexes have turnover ratios that are 
notably displaced to the right of the competitor 
induction curves. The distributions of turnover times 
are shown in Fig. 2f. We identified different numbers 
of sites for each TF for which we were able to assign 
residence times; this is indicative of differences in the 
number of sites for which we were able to obtain 
reliable fits of the kinetic data, as well as likely 
differences in the efficiency of formaldehyde capture 
of short-lived complexes. It is notable that the 
majority of TBP, TFIIA, TFIIB, and TFIIF chromatin 
interactions were short-lived (i.e. < 1-2 min) whereas 
the majority of TFIIE complexes displayed residence 
times in the several minutes range. It was also notable 
that TFIIF residence times were bimodal, with most 
estimates being short-lived (~2 min or less) and the 
rest in the 5-10 min range (Fig. 2f; discussed below). 

To determine the relationship between GTF 
promoter residence time and the rate of RNA 
synthesis from the corresponding genes, we measured 
newly synthesized RNA under these same conditions 
(Additional file 1: Fig. S3a; Additional file 4: Table S3). 
Replicate samples (n=2) were acquired at 20 and 60 
minutes post galactose induction. There was excellent 
agreement between the replicates and between the 
two time points (Fig. 3a; Additional file 1: Fig. S3b-d). 
Dynamic transcriptome analysis (DTA, ref. (37)) was 
applied to estimate RNA synthesis rates (Additional 
file 1: Fig. S3e), which were in reasonable concordance 
with earlier data from cells grown in galactose 
(Additional file 1: Fig. S3f, ref. (38)). We divided the 
mRNA synthesis rates into quartiles and compared 
them to GTF residence times (Fig. 3b,c). Residence 
times for TFIIA and TFIIB were on average modestly 
shorter for highly expressed genes compared to genes  
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Fig. 2. GTF residence times. 
(a) TFIIE Western blots showing the isoform levels of the TFIIE subunit over the indicated time course. Galactose was added at t = 0 
min. (b) Quantified Western blots from (a). Shown are normalized HA/Myc ratios with error bars representing standard deviation (n = 
3). The induction curve was fitted with a Hill coefficient (n) and induction half-time (t1/2ind) as indicated. (c) Induction curves as in (b) 
for all targeted TFs with fit parameters indicated on the right. (d) Bar plot showing the number of sites (y-axis) categorized based on 
estimated residence time for each TF (x-axis). (e) Examples of sites with fast (<1 min), moderate (1-10 min) and slow (>10 min) turnover 
for TFIIF and TFIIE. Black dashed curves represent protein induction curves from (c), in color are shown the normalized HA/Myc ChIP 
signals (mapped reads) along with the fitted model. Gene target names along with the estimated residence times are included. (f) 
Distribution of estimated residence times for all GTFs. Values for reliably fast sites (<1 min) were randomly generated for plotting 
purposes and are separated by dashed lines. 

with lower expression levels, which may suggest a 
kinetic bottleneck in PIC assembly for poorly 
expressed genes that occurs after the binding of these 
two factors (see Discussion). Strikingly, the average 
TFIIE residence time increased with gene expression 
level across these four groups of genes (Fig. 3c), 

suggesting that the TFIIE residence time is an indicator 
of gene expression level. To relate residence time to 
RNA synthesis more directly, we calculated the ratio of 
mRNA molecules made per GTF binding event, which 
we previously defined as transcription efficiency (TE, 
ref. (36)). TE was on average < 1 mRNA synthesized per  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.25.550532doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550532
http://creativecommons.org/licenses/by/4.0/


 5 

 
Fig. 3. Relationship between residence GTF residence times and synthesis rates. 
(a) PCA plot showing low-dimensional representation of dynamic transcriptome analysis (DTA) samples without negative control. (b) 
Distribution of mRNA synthesis rate values separated into synthesis quartiles. (c) Box plots showing residence time distributions (y-
axis) for all GTFs (x-axis) within the indicated synthesis quartile. Values for reliably fast sites (<1 min) were randomly generated for 
plotting purposes and are highlighted by the grey area. The middle line represents the median, the lower and upper edges of the boxes 
represent the first and third quartiles, and the whiskers represent 1.5 * interquartile range. (d) Violin plots showing the distributions 
of log2 transformed transcription efficiency (TE, y-axis) for each GTF (x-axis). TE indicates the number of mRNA molecules synthesized 
during one binding event. The points show the medians of the log2 transformed TE values. Mean and median TE values are shown 
above the plots. (e) PCA plot showing low-dimensional representation of gene targets based on GTF residence times. Each grey point 
is a gene, color map shows the mean synthesis rate of genes under a given area. (f) Pearson’s correlation coefficients (y-axis) between 
the indicated PCs (panel title) and GTF (x-axis) residence times. (g) Pearson’s correlation coefficients (y-axis) between PCs (x-axis) and 
synthesis rates. In the PCA plots, the percentage within the axis labels indicates the percentage of variance explained by a given PC. 

binding event for TBP, TFIIA, TFIIB, and TFIIF (Fig. 3d), 
suggesting that binding events by these factors do not 
efficiently give rise to the synthesis of mRNA. In 
addition, the TE values increased gradually and 
progressively for these factors with TBP having the 
lowest TEs and TFIIE the highest, in line with the in 
vitro assembly pathway in which TBP binds to 
promoters first, followed by TFIIA and TFIIB, which 
provide a platform for binding of TFIIF in association 

with Pol II (17). Notably, the median TE for TFIIE was 
close to one, suggesting that binding of TFIIE to 
promoters was associated with the production of one 
mRNA molecule on average. The results suggest that 
PIC formation is an increasingly efficient process along 
a pathway from TBP to TFIIE, and that the assembly of 
a TFIIE-containing PIC is associated with the 
production of a single molecule of mRNA. Using all of 
the GTF residence time data for Principal Component 
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Analysis (PCA) revealed a correlation between GTF 
binding dynamics and RNA synthesis along the first 
principal component, PC1 (Fig. 3e; Additional file 1: 
Fig. S4), which was driven mainly by the positive 
correlations between TFIIE/TFIIF and RNA synthesis 
rate (Fig. 3f,g). This conclusion was further supported 
by linear modeling of the GTF residence time 
contributions to transcription rates (Additional file 1: 
Fig. S5a,b).  

We next looked for pairwise relationships 
between the chromatin binding residence times of 
each GTF, and highlighted each gene by transcription 
rate (Fig. 4). TBP was less informative as most TBP 
binding events measured were short-lived and not 
well correlated with transcription rate (Additional file 
1: Fig. S5c). In fact, the residence times of TFIIA, TFIIB, 

and TFIIF were not correlated with transcription rate 
either. This was in contrast to the positive correlation 
that was observed between TFIIE residence time and 
transcription rate (Additional file 1: Fig. S5). 
Interestingly, we observed a cluster of highly 
expressed genes whose promoters had long-lived 
TFIIE along with long-lived TFIIF.  

Next, we clustered all the genes for which we 
obtained residence time measurements for four 
factors (TFIIA, TFIIB, TFIIE, and TFIIF (n = 1417)). We 
omitted TBP from this analysis due to the reduced 
number of sites with reliable estimated residence 
times > 1 min.  We identified ten clusters spanning the 
full range of transcription rates (Fig. 5a,b; Additional 
file 5: Table S4).

 
Fig. 4. Relationships among GTF residence times and to mRNA synthesis rates. 
Each panel shows a comparison of residence times of pairs of GTFs as indicated in the panel titles. Each point is a shared gene target. 
The color map shows the mean synthesis rates of the genes under the given area.  
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Fig. 5. Gene classes based on GTF residence times combinations. 
(a) Heatmap showing z-score normalized residence times of the indicated GTFs (columns) across gene targets (rows) with the available 
residence time estimations from all four GTFs (n = 1417). Colored panels on the right side show the mean synthesis rates of genes 
belonging to the ten clusters. (b) Bar plots showing median TE (x-axis) within clusters (y-axis) from (a) and color-coded based on mean 
TE. (c-e) Functional annotation of genes from clusters in (a). Cluster number is indicated in the panel titles. (c) Pathway enrichment. 
Padj < 0.05. (d) Yeast Epigenome database DBF enrichment excluding subunits of GTFs and Pol II. P < 0.05. (e) TRANSFAC enrichment. 
Padj < 0.05. Colored bars were identified as significantly enriched (FDR < 0.05) in the Yeast Epigenome database.  

Consistent with the results presented above, the most 
highly expressed genes had longer-lived TFIIE and/or 
TFIIF, whereas poorly expressed genes had promoters 

with longer-lived TFIIA.  Longer residence times of 
TFIIB were associated with genes in several clusters, 
including in particular genes that were poorly 
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expressed (cluster 8; Fig. 5a,b). Notably, the relatively 
long residence times of both TFIIE and TFIIF at cluster 
1 promoters were associated with the production of 
multiple mRNAs, suggesting the formation of stable 
(sub)complexes that promote transcriptional bursting. 

In support of the biological significance of the 
observed residence time differences, genes within 
clusters 1-7 were functionally related (Fig. 5c). Cluster 
1 genes include ribosomal protein genes and genes 
involved in RNA binding and translation. Additionally, 
cluster 2 genes are involved in biosynthetic processes; 
cluster 3 genes include those involved in Golgi 
organization; cluster 4 genes are involved in 
localization, transport, and the proteasome; cluster 5 
genes are involved in proteasome degradation; cluster 
6 genes have roles in nucleocytoplasmic transport; 
and cluster 7 genes are involved in proteasome and 
protein-lipid complex organization. The longer GTF 
residence times (as well as higher gene expression 
rates) at ribosomal protein genes in cluster 1 
compared to the GTF residence times at other genes 
are statistically highly significant (Additional file 1: Fig. 
S6a-c). Moreover, expression of genes in most of these 
clusters is controlled by particular TFs (or sets of TFs; 
Fig. 5d,e, Additional file 1: Fig. S7), suggesting a 
mechanistic relationship between particular TFs and 
PIC assembly dynamics. Modest but significant 
increases in TFIIA and TFIIE residence times were 
observed at promoters with strong TATA elements 
versus those without such an element (39); these 
changes were consistent with a significant increase in 
RNA synthesis rate driven by TATA-containing 
promoters versus those without strong TATA elements 
(Additional file 1: Fig. S8a- c). 

An unexpected observation was the above 
mentioned bimodal distribution of TFIIF residence 
times (Fig. 2f, Fig. 4). We observed functional 
enrichment of the genes in each of these two classes, 
with promoters in both classes associated with 
different subsets of genes involved in 
translation/ribosome. Genes with short-lived TFIIF 
were further associated with other biosynthetic 
processes (Additional file 1: Fig. S9a,b). Consistent 
with this, the genes in the long-lived and short-lived 
TFIIF classes were associated with particular enriched 
TFs, some of which were shared (Additional file 1: Fig. 
S9c-f). Among the TFs associated with genes in the 
long- and short-lived TFIIF classes, Rap1 was of 

particular interest as competition ChIP data were 
available for Rap1 from a prior study (40). Although 
Rap1 residence times were not correlated with 
residence times for TBP or TFIIB, there was a moderate 
correlation between Rap1 residences times and the 
residence times for TFIIA and TFIIE (Pearson’s 
correlation coefficients ~ 0.37 and 0.3, respectively), 
and Rap1 residence times were significantly longer at 
genes with long-lived TFIIF compared to genes with 
short-lived TFIIF (Additional file 1: Fig. S10a,b).  
 

Discussion  
The computational approach employed here for 
extraction of kinetic parameters from CC data is well 
supported by comparison with previous work. The TBP 
residence times obtained by analysis of CC data in this 
study were correlated with the residence times 
obtained from an older study using microarray data 
(Additional file 1: Fig. S10c; (41)) and are also broadly 
consistent with kinetic results for TBP in human cells 
(42). This includes the rank ordering in which tRNA 
genes had much longer residence times than mRNA 
genes. Previously, we used a formaldehyde 
crosslinking kinetic approach, called CLK, to measure 
chromatin binding dynamics (43). While the CLK 
method is technically challenging as well as locus-
specific (44), we observed a rough agreement 
between the kinetic parameters obtained by the two 
methods for the handful of loci for which 
complementary measurements are available 
(Additional file 1: Fig. S10d). 

Live cell imaging has revealed that the majority of 
TF-chromatin interactions studied are short-lived, 
with residence times on the order of seconds (22,45–
51). This includes TFIIB (22,52,53), for which CC results 
are reported here. The observation of highly dynamic 
binding by TFs has led to the view that such dynamics 
enable temporally responsive regulation of gene 
expression, and that TF residence times are associated 
with the duration of bursts in which more than one 
RNA molecule is synthesized during the TF period of 
occupancy on the promoter (30,54–56). Consistent 
with the observation of frequent short-lived 
chromatin interactions for TFs, we observed that the 
majority of the interactions between TBP, TFIIA, TFIIB, 
or TFIIF and chromatin had residence times of less 
than one minute (Fig. 2f). It was not possible to reliably 
estimate the residence times of these short-lived 
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interactions using CC, but they must last long enough 
to be captured by crosslinking. It is likely that other 
very short-lived interactions were not detectable by 
our method because of their inability to be 
crosslinked. Conversely, it is possible that long-lived 
chromatin interactions such as those we report here 
would be difficult to detect with live cell imaging 
particularly if they occur infrequently, although 
evidence is emerging for TF-chromatin binding 
residence times on the minutes time scale using live 
cell imaging (57). 

The biological significance of the residence times 
reported here is supported by the functional 
enrichment of genes in each of the clusters (Fig. 5c). 
This argues strongly that GTF residence time dynamics 
are tuned to facilitate expression levels that ensure 
that cells function and respond in physiologically 
appropriate ways. Since these gene sets are controlled 
by specific sets of TFs (Fig. 5d,e), it is reasonable to 
suggest that GTF dynamics are influenced in 
predictable ways by the TFs that control expression of 
the associated genes. It is understood that TFs exert 
context-specific effects on gene expression, and such 
effects have been generally described in terms of 
effects mediated by co-regulatory interactions with 
other TFs as well as epigenetic control, including DNA 
methylation (58–60). In future work, it could be 
interesting to explore how GTF residence times are 
impacted by manipulation of such regulators. We 
suggest that RNA output resulting from the interplay 
of these variables is at least partly a consequence of 
the capacity to catalyze the formation of functional 
PICs by overcoming kinetic bottlenecks in PIC 
assembly that are also related to the underlying DNA 
sequence and chromatin environment. 

A striking observation from the results of this 
study is that the residence time of TFIIE is correlated 
with the mRNA synthesis rate, and the ratio of mRNA 
molecules produced to the TFIIE residence time 
suggests that one TFIIE binding event is associated 
with the production of one mRNA molecule (Fig. 3d). 
This is in contrast to the other GTFs for which one 
binding event was associated with less than one mRNA 
molecule produced. We were not able to measure Pol 
II directly using CC because we do not have a system 
for inducing the expression of all of the Pol II subunits 
to generate a competitor isoform of Pol II. However, 
TFIIF can serve as a proxy for Pol II itself as biochemical 

and structural data support a model in which TFIIF 
enters the PIC in association with Pol II (3,61–64). The 
combined results suggest that the formation of a PIC 
is an inefficient process in vivo, with most interactions 
of GTFs leading to subcomplexes that decay rather 
than leading to formation of a PIC capable of 
producing mRNA. This general view of transcription 
initiation inefficiency is consistent with live cell 
imaging data obtained by analysis of a gene array in a 
mouse cell line (65). Moreover, this pattern is broadly 
consistent with a PIC assembly pathway derived from 
in vitro studies in which TBP/TFIID initially interacts 
with DNA directly, followed by the binding of TFIIA and 
TFIIB, which provide a platform for the binding of Pol 
II and TFIIF, and subsequently TFIIE (Fig. 6; (24)). We 
infer the existence of stable TFIIB complexes on the 
basis of slow turnover at a relatively small number of 
genes; it appears that most TFIIB-containing 
complexes are unstable and that assembly of TFIIB in 
the PIC requires Pol II (22). Despite the dispensability 
of some GTFs in vitro under certain conditions, our 
results are also consistent with depletion experiments 
showing that all of the GTFs are required for all Pol II-
mediated transcription in vivo, and that stable, 
partially assembled PICs are not detectable (66). Of 
note, however, we did observe a small number of 
relatively long-lived complexes containing TFIIA or 
TFIIB (Fig. 2d,f; Table S1). Such long-lived complexes 
could be consistent with the formation of a 
subcomplex of GTFs that is durably bound to 
promoters and promotes reinitiation (67). The 
formation of long-lived scaffolds of GTFs at some 
promoters is also suggested by the residence times of 
TFIIE and TFIIF at Cluster 1 genes, which were 
associated with the production of multiple mRNAs 
(Fig. 5b). Lastly, our analysis includes the minimal set 
of GTFs required for in vitro transcription using a 
naked DNA template (68–70). In future work and using 
methods suitable for analysis of multi-subunit 
complexes, it will be interesting to investigate the 
dynamics of TFIIH (71,72), Mediator and Pol II itself 
(73,74). Other important questions that could be 
addressed by performing kinetic measurements in 
suitably perturbed cells include probing the roles of 
promoter chromatin structure, and particularly the 
function of the first nucleosome (66). Taken together, 
we feel that the results presented here provide a 
foundation for future work to understand how TFs, co- 
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Fig. 6. Model.  
The results presented here suggest that for the majority of genes, 
PICs are unstable until TFIIE binding which leads to functional PIC 
assembly, the initiation of RNA synthesis and release of Pol II and 
PIC disassembly. At a relatively small subset of genes e.g., genes 
coding for ribosomal subunits, relatively stable PICs are formed 
upon TFIIF binding (note lighter color for disassociation) and 
further stabilized by TFIIE binding, followed by the initiation of 
RNA synthesis. Upon Pol II release, stable PICs may be 
disassembled or at certain promoters may be stable and lead to 
transcriptional bursting. The formation of more stable PICs is 
likely associated with promoter-specific features and cofactors. 
The figure is meant to be illustrative and does not represent 
accurate sizes or molecular shapes of the factors of interest. 

factors, and the native chromatin environment 
contribute mechanistically to the establishment of the 
rates of transcription initiation observed in vivo. 
 

Conclusions 
The results reported here provide a wealth of kinetic 
information describing the chromatin binding 
dynamics of five key GTFs at the majority of promoters 
in budding yeast. In general agreement with live cell 
imaging results, we find that many interactions are too 
short-lived to be measured by CC. However, there are 
many interactions with residence times in the several 
minutes range, and importantly, promoters with 
shared GTF kinetics are functionally related. This 
supports a model in which the rates of RNA synthesis 

in vivo are influenced or perhaps controlled by rates of 
PIC assembly, which themselves result from the 
combination of promoter sequence, chromatin 
environment and the TFs and cofactors that impact 
them. Overall, the kinetic behavior is consistent with 
the stepwise PIC assembly pathway established using 
purified components in vitro and in which the RNA 
synthesis rate is closely correlated with the residence 
time of TFIIE. These results suggest that at most 
promoters, relatively unstable GTF subcomplexes give 
rise to more stable fully assembled PICs and that the 
initiation of RNA synthesis is accompanied by PIC 
dissolution. At certain promoters, GTF binding events 
are associated with the production of multiple mRNAs, 
suggesting the formation of stable PIC subcomplexes 
that facilitate transcription reinitiation. 
 

Methods 
Yeast strains 
The parental diploid strain W303 (75) was used to 
generate all of the competition ChIP strains. For each 
GTF, one allele was N-terminally tagged with 3xHA and 
placed under the control of an inducible GAL1 
promoter. The other allele was N-terminally tagged 
with 9xMyc and remained under the control of the 
endogenous promoter (76). 

For construction of the GAL1-induced alleles, the 
plasmid pFA6-His3MX6-PGAL1-3HA 
(RRID:Addgene_41610, ref. (76)) was used to obtain 
the His3MX6-PGAL1-3HA cassette by PCR 
amplification (see Additional file 6: Table S5 for 
primers) and was integrated into the genome using 
standard yeast molecular biology techniques. For the 
GTFs TFIIA, TFIIE, and TFIIF, which consist of two 
subunits, one copy of each subunit was placed under 
GAL1 control to ensure balanced expression of the 
competitor isoform. Following integration of the HIS3-
GAL1-3HA cassette at one gene subunit, the strain was 
transformed with the TRP1-GAL1 cassette from pFA6-
TRP1-PGAL1 (RRID:Addgene_41606, ref. (76)), placing 
the second subunit under GAL1 control but without an 
epitope tag. The 9xMyc tag was integrated into the 
genome of another isolate of W303 using the 
integration and Cre-recombinase knockout method 
and reagents developed by Gauss et al (77). The 9xMyc 
tag and loxP-flanked KanMX6 marker were PCR 
amplified from pOM20 and integrated into the yeast 
genome using standard methods as above. The 
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KanMX6 marker was then then deleted using the GAL-
inducible Cre recombinase carried on the plasmid 
pSH47 (78). The Myc-tagged strains were then 
transformed with pRS319 (RRID:Addgene_35459, ref. 
(79)) to introduce a LEU3 marker for selection. In 
subsequent steps, diploid strains with HA- or Myc-
tagged alleles were sporulated and haploid segregants 
were mated to yield the competition ChIP (CC) strains 
with different tags on each of the alleles for the GTF of 
interest. Proper integration and function of the 
targeted alleles were confirmed for all strains by PCR 
(Additional file 6: Table S5 for primers), Western 
blotting using anti-HA or anti-Myc antibodies, and 
targeted DNA sequencing of the modified loci. 

Western blotting 
To measure the time course of synthesis of the GAL1-
induced alleles, CC strains were grown in 175 ml 
YEP+2% raffinose. At OD600 of 0.6, a 20 ml aliquot of 
the culture was collected for the 0 min time point and 
11 ml of 30% galactose was added to the remaining 
culture. 20 ml aliquots were removed at 10, 20, 25, 30, 
40, 60, 90 and 120 minutes after galactose addition, 
and whole cell extracts were prepared from them as 
described previously (44). Whole cell extract protein 
was resolved on 10-12% SDS-Page gels (depending on 
the size of the tagged protein). The protein was 
transferred overnight to 0.22µ PVDF membranes and 
probed using either anti-HA (Abcam Cat# ab9110, 
RRID:AB_307019) or anti-Myc (Abcam Cat# ab32, 
RRID:AB_303599) antibodies followed by detection 
using either the HRP-conjugated goat anti-mouse 
secondary antibody, (for Myc; Thermo Fisher Scientific 
Cat# 31430, RRID:AB_228307) or goat anti-rabbit 
secondary antibody (for HA; Thermo Fisher Scientific 
Cat# 31460, RRID:AB_228341) and ECL substrate 
(Thermo Fisher Scientific Cat# 32106). 

CC time course experiments and ChIP-seq library 
preparation 
Each CC strain was inoculated in 100 ml YEP+2% 
raffinose at 30° C and incubated overnight. These 
starter cultures were then used the next day to 
inoculate 2,250 ml cultures of YEP+2% raffinose at an 
initial OD600 of 0.05. When an OD of 0.6 was reached, 
for the 0 minute timepoint 250 ml of the culture was 
crosslinked by adding 6.75 ml formaldehyde (Thermo 
Fisher Scientific Cat# F79-500) to achieve a final 
concentration of 1% for 20 minutes. The reaction was 

then quenched by adding 15 ml of 2.5 M glycine for 5 
minutes and the cells were collected by centrifugation. 
To the rest of the 2,000 ml culture, 142.8 ml of 30% 
galactose was added to yield a final concentration of 
2%. At 10, 20, 25, 30, 40, 60, 90, and 120 minute time 
points, 250 ml of the culture was collected, 
crosslinked, and quenched the same way as the 0 min 
time point. Cell pellets were washed 3 times with TBS 
buffer (40 mM Tris-HCl, pH 7.5 plus 300 mM NaCl) and 
ChIP was performed as described (80). The HA and 
Myc antibodies used for ChIP were the same as those 
used for western blotting described above. Successful 
ChIP was confirmed by RT-PCR using primers to detect 
binding to the URA3 promoter (5’-
AAGATGCCCATCACCAAAA-3’ and 5’-
AAGAATACCGGTTCCCGATG-3’). ChIP-seq libraries 
were prepared following the manufacturer’s 
instructions using the Illumina TruSeq ChIP library 
prep kit set A and B (Cat# IP-202-1012 and IP-202-
1024). Successful amplification was confirmed by RT-
PCR using the URA3 promoter primers. Library quality 
was assessed using an Agilent Bioanalyzer 2100 and 
the Agilent-1000 DNA kit (Agilent Cat# 5067-1504), 
and libraries were quantified using the Qubit dsDNA 
Quantitation, High Sensitivity kit (Cat# Q32851). A 
5nM pool of each library was sequenced on by the 
UVA Genome Analysis and Technology Core 
(RRID:SCR_018883) using Illumina NextSeq500 and 
NextSeq2000 instruments. 

Nascent RNA labelling 
Nascent RNA labelling was performed as previously 
described (81). Briefly, W303 cells were grown as for 
competition ChIP and induced with 2% galactose for 
20 or 60 minutes. An 800 ml culture in YEP +2% 
raffinose was grown at 30° C to an OD600 of 0.6, then 
57ml of 30% galactose was added. Twenty minutes 
after galactose addition, 400 ml of the culture was 
divided into 200 ml aliquots and 500 µl of 2M 4-
thiouracil (4-sU, Sigma-Aldrich Cat# 440736-1G) was 
added to one of the flasks with vigorous mixing and 
returned to the shaking incubator for 6 minutes. Cells 
with and without 4-sU were pelleted and washed with 
TBS. At the 60 minute time point the remaining 400 ml 
culture was split and treated as described for the 20 
minute timepoint culture. Two biological replicates 
were obtained for each condition. 
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S. pombe strain SY78 cells were used as a spike-in 
normalization control. 100 ml of S. pombe cells were 
grown in YE media (0.5% yeast extract plus 3% 
glucose) to an OD600 of 0.6 and labelled by adding 125 
µl of 2M 4-sU for 6 minutes and collected by 
centrifugation. 

The S. cerevisiae W303 cells and S. pombe SY78 
cells were mixed in an 8:1 ratio for each condition and 
RNA was isolated using the Ribopure Yeast Kit 
(Ambion Cat# AM1924). 40 µg of RNA was biotinylated 
with 4 µg of MTSEA Biotin XX (Biotium Cat# 90066). 
The biotinylated RNA was isolated by binding to 80 µl 
of a Dynabeads MyOne Streptavidin C1 bead 
suspension (Invitrogen Cat# 65001) by rotating the 
tube for 15 minutes, and the unbound supernatant 
was saved. The bound RNA was eluted in 50 µl of 
streptavidin elution buffer. The eluted RNA and the 
RNA in the flowthrough were purified and 
concentrated using RNeasy columns (Qiagen Cat# 
74104). 

RNA-seq 
Ribosomal RNA was depleted using the Ribo Minus 
Yeast module (Thermo Fisher Scientific Cat# 45-7013) 
and libraries were constructed using the Ultra 
Directional RNA Library Prep Kit (NEBNext Cat# 
E74205) and Multiplex Oligos (NEBNext Cat# E73355). 
Sequencing was performed by Novogene using the 
Illumina NovaSeq 6000 platform. 

Preprocessing of high throughput DNA sequencing 
data 
Libraries prepared from each time point for a given 
GTF and for either HA- or Myc-tagged samples were 
sequenced in a single multiplexed run. Raw read 
quality was assessed using FASTQC (v0.11.5) (82). 
Fastq files from individual flow cells were merged and 
reads were mapped to the sacSer3 reference genome 
using Bowtie2 (v2.2.6) (83) with default settings. 
Overall read mapping was typically in the 90+% range, 
yielding ~20-30M reads per time point on average. The 
resulting SAM files were converted to BAM format, 
unmapped reads were removed and the BAM files 
were sorted and indexed using SAMtools (v0.1.19-
44428cd) (84). The landscape of read mapping was 
inspected using the Integrated Genomics Viewer (IGV) 
(85) and peaks of enrichment were identified using 
MACS2 (v2.1.0.20151222) (86) applied to each of 
several early time point Myc datasets with an input 

dataset as control and options --nomodel --extsize 
147. Peaks from individual MACS2 runs were browsed 
in IGV, then concatenated and merged using the 
bedtools (v2.18.2) merge function (87). Count tables 
were then generated by associating reads with the 
peak intervals using bedtools multicov. Read counts 
were normalized in a three-step process. First, read 
counts in each peak and for each time point were 
normalized to the overall read depth. Next, read 
counts for the HA samples were normalized to the 
average relative levels of the factor of interest using 
the average values obtained from three independent 
western blots. Lastly, the normalized HA read count 
matrix was divided by the normalized Myc count 
matrix to yield the ratio count tables for mathematical 
modeling as described below. Importantly, this 
normalization approach was validated by comparison 
with earlier results: residence times derived from 
normalized TBP CC data were strikingly well correlated 
with TBP CC data obtained many years earlier and 
using arrays rather than sequencing (Additional file 1: 
Fig. S10c). 

Deriving residence times from competition ChIP-seq 
ratio data using a mass action kinetics turnover 
model.  
We adapted the approach of Zaidi et al. (36) originally 
developed for TBP competition ChIP-chip data, to fit a 
differential equation based turnover model at every 
GTF site using normalized competition ChIP-seq data 
from multiple GTFs. We used normalized count tables 
(see previous section of Methods) with HA/Myc ratios 
for every GTF site, 𝑅(𝑡), for every timepoint, 𝑡. We 
ultimately estimate the ratio of fractional occupancies 
of HA- over Myc-tagged GTF, 𝜃!(𝑡) 𝜃"(𝑡)⁄  with 𝐵 and 
𝐴 representing HA- and Myc-tagged proteins, 
respectively, from 𝑅(𝑡) at every timepoint. We then fit 
a mass action kinetic turnover model to the estimated 
ratio of fractional occupancies at every promoter site 
where a peak was identified. More specifically, we first 
fit the normalized ratio of HA- over Myc-tagged 
relative protein levels as estimated by Western 
blotting versus induction time, which we denote 
𝑐!(𝑡)/𝑐"with 𝐵 and 𝐴 representing HA- and Myc-
tagged protein, respectively, to a Hill model  
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𝑐!(𝑡) 𝑐"+ = 𝑋# .
/𝑡 𝑡$/&'()+ 0

(

/1 + /𝑡 𝑡$/&'()+ 0
(
0

3 4. 

   (1) 
 

In Additional file 7: Table S6, we show the 
resulting fitted parameters (𝑋#, 𝑡$/&'()) and statistics 
associated with the significance of each parameter’s 
contribution to the fit for every GTF. In this case, we 
fixed the Hill coefficient, 𝑛, to be an integer and 
selected the value that maximized the adjusted 𝑅&. In 
order to satisfy the 𝑡 = 0 and 𝑡 → ∞ boundary 
condition of the mass action kinetic turnover model 
shown below in Eqs. (2) and (3), which are 
𝜃!(0) 𝜃"(0) = 0⁄  and lim

*→,
𝜃!(𝑡) 𝜃"(𝑡)⁄ = 𝑋#, we 

subtract the residual background and scale the 
normalized competition ChIP-seq ratio data at every 
site where peaks were called as follows. We fit the 
data to a Hill model with the form shown in Eq. (1) with 
the same 𝑛 and an added background variable 𝐵 at 
every site. This yields an amplitude, 𝑋-- , a half time 
rise, 𝑡$/&-- , and background 𝐵 for every site. We 
estimate the ratio of HA- over Myc-tagged GTF 
occupancy, 𝜃!(𝑡) 𝜃"(𝑡)⁄ , at every site for every 
timepoint, 𝑡, by subtracting the residual background 𝐵 
from the normalized ChIP signal ratio data, 𝑅(𝑡), and 
scaling the result: 𝜃!(𝑡) 𝜃"(𝑡) = 	 (𝑋# 𝑋--⁄ )⁄ (𝑅(𝑡) −
𝐵). We then effectively solve the following coupled 
differential equations, which model each GTF’s 
turnover at every site which we assume follows mass 
action kinetics, where 𝑘. and 𝑘)  are the molecular on- 
and off-rate respectively: 
 
)/!(*)
)*

= (𝑘.𝑐")
2!(*)
2"

(1 − 𝜃"(𝑡) − 𝜃!(𝑡)) − 𝑘)𝜃!(𝑡)
   (2) 

         
)/"(*)
)*

= (𝑘.𝑐")(1 − 𝜃"(𝑡) − 𝜃!(𝑡)) − 𝑘)𝜃"(𝑡) 
   (3) 

 
We assume that these rates are the same for both 

HA- and Myc-tagged GTFs. These coupled equations 
cannot be solved analytically. Thus, we effectively 
solve them and fit the resulting ratio of occupancies, 
𝜃!(𝑡) 𝜃"(𝑡)⁄ , to the background subtracted, scaled 
competition ChIP-seq data using Mathematica. Briefly, 
we use the function ParametricNDSolveValue twice to 

return an effective, numerical solution of Eqs. (2) and 
(3) as a function of the parameters 𝑘.𝑐" and 𝑘): 
𝜃!(𝑡; 𝑘.𝑐", 𝑘)) and 𝜃"(𝑡; 𝑘.𝑐", 𝑘)). We then take the 
ratio of the outputs of ParametricNDSolveValue, 
𝜃!(𝑡; 𝑘.𝑐", 𝑘))/𝜃"(𝑡; 𝑘.𝑐", 𝑘)), and input it into 
NonlinearModelFit which then fits this ratio to the 
background subtracted, scaled competition ChIP-seq 
data. We and others formally show the ratio of 
fractional occupancies is relatively insensitive to the 
on-rate, 𝑘.𝑐", while being highly sensitive to the off-
rate, 𝑘). We derive the physical residence time for 
every GTF at every site using 𝑡$/& = ln 2 /𝑘). Finally, 
we make use of an observation made in (36) to make 
precise starting estimates of the residence time for 
non-linear model fitting using NonlinearModelFit. 
Specifically, the residence time is well approximated 
by a relatively simple linear or quadratic function of 
𝑡$/&-- − 𝑡$/&'()  derived by fitting a Hill model to the 
normalized competition ChIP-seq ratio data at every 
site and the ratio of GTF protein levels as a function of 
time. We start with an initial guess that works well for 
most GTFs: 𝑡$/&3 = 0.6(𝑡$/&-- − 𝑡$/&'()) + 0.1 (Fig. 
1d), perform the fit of the actual turnover model to the 
scaled, background subtracted competition ChIP-seq 
data, derive estimates of 𝑡$/&, fit 𝑡$/& to linear or 
quadratic functions of 𝑡$/&-- − 𝑡$/&'(), use this more 
precise relationship of initial estimate of residence 
time, 𝑡$/&3 , and refit the turnover model to the 
competition ChIP data. In Additional file 8: Table S7, 
we show the initialization formulas used for the final 
turnover model fit to the competition ChIP-seq data 
used to derive the final estimates of residence times 
for every GTF. Finally, NonlinerModelFit returns a 
number of statistics associated with the fit at every 
site. This includes an error estimate of the off-rate, 
∆𝑘), and the adjusted 𝑅&. Sites that yielded a relative 
error ∆𝑘)/𝑘) < 3 and adjusted 𝑅& > 0.7 were used 
in downstream analysis involving residence time 
estimates.  

Fitting additional reliably fast sites 
After initial fitting, additional reliably fast sites were 
added to the estimated residence times. These were 
identified through fitting Hill equation Eq. (1) with the 
R nls function to the normalized HA/Myc count ratios 
which were further normalized to range between zero 
and one. Hill coefficients were provided from protein 
induction curve fits (Fig. 2c, Additional file 1: Fig. S1e). 
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Initial estimates for fitting the Hill model using the nls 
function were set with parameter start = list(t1/2CC=40, 
XCC = 1), and parameter control was set to nlc. For each 
GTF, sites without estimated residence times from the 
turnover model whose ∆𝑡$/& = 𝑡$/&-- − 𝑡$/&'()  (Fig. 
1d) were less than 2 min were classified as reliably fast 
(< 1 min). All residence time estimates are available in 
Additional file 3: Table S2. 

For plotting purposes, the residence times for the 
reliably fast sites were generated with the R runif 
function with min=0, max=1. At the beginning of each 
script, the function set.seed was used with parameter 
42 for reproducibility. In each plot, the randomly 
generated values are highlighted either by their 
separation by dashed line or shaded area. 

Gene assignment and filtering 
Individual regions were assigned to the nearest genes 
with calcFeatureDist_aY function (available from 
https://github.com/AubleLab/annotateYeast) with 
default parameters. Only regions within -250 to 100 bp 
from transcription start sites (TSSs) were kept. If 
multiple regions were assigned to one gene, only the 
closest one was kept. Regions assigned to tRNAs were 
removed from the analysis.  

Nascent RNA-seq analysis 
Raw paired-end FASTQ files were mapped to the S. 
cerevisiae genome 
(http://daehwankimlab.github.io/hisat2/download/#
s-cerevisiae, R64-1-1) with HISAT2 (2.0.4) (88) with 
parameter --rna-strandness RF and converted to BAM 
files using SAMtools (0.1.19-44428cd) (84) view 
function with parameters -S -b. SAMtools sort and 
index functions with default parameters were used to 
sort and index the BAM alignment files. 

To create alignment indexes for S. pombe (used 
for normalization), the S. pombe FASTA file 
(ASM294v2) was obtained from Ensembl (89) and 
converted to an index files with the hisat2-build 
function with default parameters. The paired-end 
FASTQ files were then mapped against the created 
index files and further processed analogously to S. 
cerevisiae. 

The quality of both FASTQ and BAM files was 
assessed with FastQC (0.11.5) (82) in combination with 
multiQC (v1.11) (90) and BAM files were further 
visually inspected with IGV (2.7.2) (85). 

The aligned reads were quantified over S. 
cerevisiae genes using Rsubread (2.4.3) (91) 
featureCounts function with parameters 
GTF.featureType=”gene”, GTF.attrType=”gene_id”, 
countMultiMappingReads=TRUE, strandSpecific=2, 
isPairedEnd=TRUE. The GTF and FASTA files provided 
to the function were obtained from Ensembl (89), 
genome assembly R64-1-1. To normalize the data, 
normalization factors for each sample were calculated 
as the total number of reads mapped to S. pombe 
divided by 2,000,000. The normalized counts were 
obtained by dividing the raw counts by each sample’s 
corresponding normalization factor. Genes with 0 
counts in more than half of the samples were filtered 
out.  

Principal component analysis (PCA) was 
performed by first creating a DESeq object from the 
raw count table (with low count genes filtered out) 
with the DESeq2 (1.30.1) (92) 
DESeqDataSetFromMatrix function followed by S. 
pombe normalization with DESeq2 
normalizationFactors and regularized log 
transformation with DESeq2 rlog function with 
parameter blind=TRUE. The resulting object was 
passed to R prcomp function. 

DESeq2 was used to identify any differences in 
gene expression between samples grown for 20 or 60 
minutes in galactose. Raw counts from samples with 
thiouracil addition were passed to 
DESeqDataSetFromMatrix function with design 
parameter set to time in galactose. S. pombe 
normalization factors were set with 
normalizationFactors. Genes with adjusted p-value 
(padj) < 0.05 were considered differentially expressed 
between the two conditions.  

Synthesis rates were estimated with DTA (2.36.0) 
(93) DTA.estimate function. S. pombe-normalized 
counts from samples with thiouracil addition were 
used for the analysis. All genes with 0 count in any of 
the samples were filtered out and the final matrix 
passed to the function. All genes from the final filtered 
matrix were passed to the parameter reliable. Further 
parameters were set to: tnumber=Sc.tnumber, 
check=TRUE, ccl = 150, mRNAs=60000, 
condition="real_data", ratiomethod="bias", and time 
in the phenomat object was set to 6. Final synthesis 
rates in mRNA per cell per minute were obtained by 
dividing the synthesis rates output from the 
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DTA.estimate function by 150 (length of the cell cycle 
in minutes). The final synthesis rates are available in 
Additional file 4: Table S3. Comparison of synthesis 
rates between samples grown for 20 vs. 60 minutes in 
galactose was performed using DTA.dynamic.estimate 
function similarly as described above with additional 
columns timeframe and timecourse in the phenomat 
object specifying 20 vs. 60 minute conditions. The 
correlation between the synthesis rates of the two 
time courses was calculated using the R cor function 
with method=”pearson”. 

Comparison with other data 
TBP residence time estimates were obtained from 
Zaidi et al, 2017 (36), TBP and TFIIE residence time 
estimates from Zaidi, Hoffman et al, 2017 (44), 
transcription rates from Garcıá-Martıńez et al, 2004 
(38), and Rap1 residence times from Lickwar et al, 
2012 (40). Correlations were calculated with R cor 
function. For residence time correlations, where we 
do not have exact time estimates for fast sites, 
Pearson’s correlation was used, while for synthesis 
rates, Spearman’s rank correlation was used.  

Model plotting 
Examples of model fits were obtained by extracting 
Hill equation coefficients, as described in “Fitting 
additional reliably fast sites” section of Methods. 
Output model values and the measured competition 
ChIP (CC) values were both scaled to range between 
zero and one to create comparable plots by dividing 
the values by the estimated Xcc parameter.  

Visual inspection with genome browser 
To view the normalized HA/Myc ratios in the genome 
browser, BAM alignment files were first converted to 
bigWig files using the deepTools (3.3.1) (94) 
bamCoverage function. The parameter scaleFactor 
was set to per million mapped reads scaling factor for 
the Myc samples and to per million mapped reads 
multiplied by HA/Myc protein induction ratio for the 
HA samples. The final log2 transformed ratios of 
HA/Myc were obtained by passing the generated 
bigWig files to the deepTools bigwigCompare function 
with parameter operation set to log2. 

Residence time vs. synthesis rate 
To explore the residence times of each analyzed GTF 
in relationship to synthesis rates, synthesis rates were 
first divided into quartiles using the R ntile function 

with the parameter ngroups set to 4. Residence times 
within each synthesis quartile were plotted as 
boxplots with ggplot2 (3.3.6) (95) geom_boxplot 
function, where the middle line represents the 
median, the lower and upper hinge represent the first 
and third quartiles, and the whiskers represent 1.5 * 
interquartile range of the values.  

The correlations between synthesis rates and 
residence times were calculated with R cor function 
with method set to “pearson”. 

Linear models between synthesis rates were built 
with R lm function either as linear models between 
synthesis rate and residence times of individual GTFs 
or as a linear model between synthesis rates and a 
linear combination of residence times of all factors in 
one model.  

Transcription efficiency 
Transcription efficiency (TE) was obtained by 
multiplying the synthesis rate by residence time of a 
given TF. The log2 transformed values were plotted 
with ggplot2 geom_violin function to better represent 
the efficiency of a binding event to produce an RNA 
molecule (values below zero represent multiple 
binding events for RNA molecule synthesis). Medians 
of the log2 transformed TE values for each TF were 
added to the violin plots with the tidyverse (1.3.1) (96) 
stat_summary function with parameter fun=median. 

PCA 
To represent genes or GTFs using their corresponding 
high dimensional data in low dimensional space, we 
performed PCA on the residence times with or without 
exclusion of the reliably fast sites. Since the residence 
time estimates for all TFs were not available for all 
genes the missing values were imputed with the 
missMDA (1.18) package (97). The table containing the 
reliable residence times was first passed to the 
estim_ncpPCA function with parameter method.cv set 
to "Kfold". The residence time table was then passed 
to the imputePCA function along with the ncp object 
outputted from the estim_ncpPCA function. The 
completeObs object from the outputted list was then 
passed to the prcomp function with parameter 
scale.=TRUE to obtain the principal components. 
Depending on the orientation of the input matrix 
passed to the prcomp function, principal components 
representing genes or GTFs were obtained. To color-
code the PCA plot with mean synthesis rates, the 
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tidyverse (1.3.1) (96) function stat_summary_2d was 
used with parameter z set to the synthesis rates and 
parameter color set to “transparent”. Viridis (0.6.2) 
(98) color scale “B” was used for coloring. The first two 
principal components from the “gene-oriented” PCA 
matrices were then correlated with the residence 
times of each TF and with the synthesis rates using the 
R function cor with method=”pearson”. 

Residence time and synthesis rate comparison 
between gene classes 
The list of genes with TATA-containing promoters was 
obtained From Rhee and Pugh, 2012 (99). Genes were 
classified as ribosomal subunit if their systematic 
name started with “RPL”. To compare the residence 
times and synthesis rates between classes, a two-
tailed t-test was carried out with results plotted using 
the ggpubr (0.4.0) (100) stat_compare_means 
function with parameters set to method = "t.test", 
label = "p.signif". The symbols indicate the following: 
n.s. p > 0.05, * p <= 0.05, ** p <= 0.01, *** p <= 0.001, 
and **** p <= 0.0001. To compare residence times 
across synthesis quartiles, synthesis rates were 
separated into the four quartiles based on synthesis 
rates within each group (e.g. TATA-containing and 
TATA-less). Box plots were created using ggplot2 
(3.3.6) (95) geom_boxplot function, where the middle 
line represents the median, the lower and upper hinge 
represent the first and third quartiles, and the 
whiskers represent 1.5 * interquartile range of the 
values.  

Heatmap 
Only genes for which residence times were available 
across all GTFs (except for excluded TBP, whose 
residence times are mostly <1 minute and would 
therefore present mostly randomly generated values) 
were included in the heatmap (n = 1417). Reliable fast 
residence times were replaced by randomly generated 
values between zero and one (function runif: min=0, 
max=1; set.seed(42)). Prior to plotting, residence 
times for each factor were z-score normalized using 
the R function scale with default settings. A final 
heatmap was created with the ComplexHeatmap 
(2.6.2) (101) function Heatmap with parameters set to 
clustering_method_rows="ward.D", row_split=10. 
Genes belonging to each of the 10 clusters (Additional 
file 5: Table S4) were extracted from the heatmap 

object and mean synthesis rates for each cluster were 
calculated.  

Functional annotation 
Genes belonging to each heatmap cluster were passed 
to g:Profiler (102) for pathway enrichment. In 
g:Profiler, S. cerevisiae S88C was selected as organism 
and data sources were set to GO molecular function 
(GO:MF), GO biological process (GO:BP), KEGG, 
WikiPathways (WP), and TRANSFAC. Additionally, 
genes from the clusters were tested for enrichment 
within genes associated with DNA-binding factors 
(DBFs) from Rossi et al, 2021 (13), here referred to as 
Yeast Epigenome database (see section “Yeast DBF 
database (Yeast Epigenime)” of the Methods for 
information about data accessions and curation). 
Enrichment was established by performing Fisher’s 
exact test (R function fisher.test, parameter 
alternative=”greater”), where the universe was set to 
the union of all genes involved in the heatmap and all 
genes associated with a given factor. Final p-values 
were corrected for multiple testing with false 
discovery rate (FDR, R function p.adjust: 
method=”fdr”). Results with FDR padj < 0.05 or p < 
0.05 were considered significant. 

Yeast DBF database (Yeast Epigenome) 
BED files from Rossi et al, 2021 (13) were obtained 
from Gene Expression Omnibus under accession 
number GSE147927. Replicates were merged with the 
bedtools (v2.29.2) (87) merge function after they were 
sorted with the base Linux sort function with 
parameters -k1,1 -k2,2n. Regions were then assigned 
to genes analogously to assignment of the CC regions 
(see “Gene assignment and filtering” section of 
Methods). The output consists of gene lists for 
individual DBFs within promoter regions. 

Additional tools used 
Tidyverse (1.3.1) package (96) was used for data 
processing in R, ggplot2 (3.3.6) (95) was used for 
plotting. Illustrations were made with Biorender 
(https://biorender.com/). Figures were assembled 
with Inkscape (1.0.2, https://inkscape.org/).  
 
Abbreviations 
CC  Competition ChIP 
DBF  DNA binding factor 
DTA  dynamic transcriptome analysis 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.25.550532doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550532
http://creativecommons.org/licenses/by/4.0/


 17 

FDR  false discovery rate 
GTF  general transcription factor 
GO:BP  gene ontology biological process 
GO:MF  gene ontology molecular function 
GTF  general transcription factor 
padj  adjusted p-value 
PC1  first principal component 
PC2  second principal component 
PCA  principal component analysis 
PIC  preinitiation complex 
Pol II  RNA polymerase II 
TBP  TATA-binding protein 
TE  transcription efficiency 
TF  transcription factor 
TSS  transcription start site 
WP  WikiPathways 
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