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Abstract 
  

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can 

help to decipher gene regulation and to interpret the function of disease-associated non-coding 

variants. However, current chromosome conformation capture (3C) technologies are unable to 

resolve interactions at this resolution when only small numbers of cells are available as input. We 

therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory 

interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses 

pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted 

CTCF motif tracks as input features and employs a lightweight architecture to enable training on 

standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, 

ChromaFold can accurately predict both the 3D contact map and peak-level interactions across 

diverse human and mouse test cell types. In benchmarking against a recent deep learning method 
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that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific 

predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq 

data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired 

scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across 

cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and 

regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-

type-specific interactions in settings where 3C-based assays are infeasible. 

  

  

Main 
  

Genome-wide chromosome conformation capture techniques such as Hi-C, HiChIP, and ChIA-

PET1–3 provide powerful tools for mapping cell-type-specific regulatory interactions that can link 

enhancers to genes and enable the interpretation of non-coding disease-associated variants4,5—at 

least when there is sufficient input material to generate high-complexity libraries and allow for 

very deep sequencing. Indeed, the use of these assays is often impeded by their substantial costs, 

time requirements, and technical difficulty, especially when studying rare cell populations where 

obtaining a sufficient number of cells for a high-quality contact map becomes impractical6,7. On 

the other hand, single-cell chromosome conformation mapping technologies, such as single-cell 

Hi-C or ChIA-Drop, although exciting, are experimentally challenging and produce sparse data 

sets that are typically analyzed at 100kb-1Mb resolution8–11. By contrast, single-cell chromatin 

accessibility (scATAC-seq) datasets can be readily generated from small amounts of input material 

due to the availability of commercial kits12. Genome-wide chromatin accessibility profiles reflect 

the extent to which nuclear molecules, including transcription factors, chromatin remodelers, 

histones and other chromatin-associated proteins, can physically interact with chromatinized DNA, 

and single-cell chromatin accessibility contains subtle information about pairs of interacting loci 

that are jointly associated with DNA-bound factors13. This raises the question of whether one can 

predict chromatin interactions and connect regulatory elements to their target genes using 

scATAC-seq data alone. 

  

Several models have been proposed to predict chromatin interactions from genomic sequence and 

easier-to-obtain bulk or single-cell epigenomic data14–19. For instance, Cicero was the first method 

to leverage the co-accessibility structure between accessible elements (‘peaks’) in scATAC-seq 

data to infer chromatin interactions in an unsupervised fashion18. DeepC19, Akita14 and Orca15 are 

supervised deep neural network-based models that predict chromatin contact maps from genomic 

DNA sequence. Epiphany, a model we introduced recently for cell-type-specific contact map 

prediction, uses a collection of bulk 1D epigenomic input tracks to enable generalization to novel 

cell types17. Another recent model, C.Origami, is also capable of making cell-type-specific 

predictions using DNA sequence together with bulk ATAC-seq and CTCF ChIP-seq in the target 

cell type16. However, these existing models for chromatin interaction prediction have practical 

limitations. Unsupervised models like Cicero offer modest accuracy, whereas sequence-based 

models such as DeepC, Akita and Orca fail to generalize effectively to new cell types and indeed 

tend to predict similar contact maps across training cell types14,16. Meanwhile, C.Origami and 

Epiphany both require multiple input data modalities, which are not always available, and 

C.Origami in particular employs a more complex model that may be susceptible to overfitting20. 
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In this study, we introduce ChromaFold, a supervised deep learning model that predicts the 3D 

contact map from scATAC-seq data and CTCF motif tracks as input features. Given the linkage 

between the accessibility landscape of regulatory elements and 3D genome organization, our 

underlying hypothesis is that we can leverage the covariation in accessibility stemming from 

asynchronous chromatin looping events across single cells. This assumption is further 

substantiated by prior studies showing that pairs of genomic bins with high co-accessibility are 

enriched for chromatin looping events18,21.  Additionally, given the crucial role of the CTCF 

protein in shaping 3D chromatin structure, inclusion of CTCF-associated signals is expected to 

enhance the model's predictive power22–24. For wider adaptability, we do not require CTCF ChIP-

seq as an input and offer two versions of ChromaFold. ChromaFold +CTCF motif uses CTCF 

motif score, a measure of the likelihood that a genomic region contains a binding site for the CTCF 

protein, as a proxy for CTCF binding25. ChromaFold +CTCF ChIP uses the actual CTCF ChIP-

seq track as input (unless otherwise noted, ChromaFold refers to ChromaFold +CTCF motif). 

  

The key advantages of ChromaFold include its requirement of only scATAC-seq data as 

experimental input data, its ability to make cell-type-specific predictions in new cell types, and its 

lightweight architecture, making it compatible with standard GPUs. Importantly, ChromaFold can 

also be employed to deconvolve bulk chromatin interaction data across constituent cell types—

resolving the cell-type-specificity of chromatin interactions—by fine-tuning on bulk Hi-C and 

scATAC-seq data from the same complex tissue. 

  

We evaluated ChromaFold on five human and three mouse test cell types and tissues. ChromaFold 

was able to make accurate cell-type-specific predictions of 3D contact maps (as evaluated by 

distance stratified Pearson correlation) and peak-level interactions (as evaluated by receiver 

operating characteristic and precision-recall analysis) in new cell types and species. In particular, 

ChromaFold predictions at important lineage-defining loci in murine germinal center B cells 

(GCBs), regulatory T (Treg) cells, and hematopoietic stem cells (HSCs) recovered correct cell-

type-specific regulatory interactions. Interestingly, despite its smaller model and reduced 

information requirements, ChromaFold's performance was comparable to C.Origami when using 

predicted CTCF motif information as input and outperformed C.Origami when using CTCF ChIP-

seq track as input on new cell types. Finally, using paired Hi-C and scATAC-seq in human 

pancreatic islets, ChromaFold successfully deconvolved chromatin interactions into those specific 

to alpha cells and beta cells. 

  

Overall, ChromaFold achieves state-of-the-art generalization to novel cell types while requiring 

only a single input modality to enable accurate contact map and regulatory interaction prediction 

in any setting where scATAC-seq can be generated. 

Results 

 

ChromaFold is a deep learning model that predicts 3D contact maps from scATAC-seq data 

To enable fast and accurate prediction of chromatin contacts from scATAC-seq data alone, we 

developed ChromaFold, a lightweight convolutional neural network-based model that makes cell-

type-specific predictions. ChromaFold is trained on paired scATAC-seq and Hi-C data from a 

panel of training cell types. ChromaFold takes three input tracks—pseudobulk chromatin 

accessibility and correlation structures in accessibility (co-accessibility) profiles across cells, both 
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computed from scATAC-seq, and predicted CTCF motif scores—all processed for a 4.01Mb 

genomic region (Fig. 1a). These processed inputs are passed through two feature extractors in the 

ChromaFold architecture. The first feature extractor takes the pseudobulk accessibility and CTCF 

motif score tracks as input, while the second takes the co-accessibility as input. For memory 

efficiency, we only compute the co-accessibility between the genomic bins in the center 10kb 

region with the rest of the bins in the 4.01Mb region as input. These extractors produce a latent 

representation of the genomic region, which is then passed through the linear predictor to predict 

the chromatin interactions between the center genomic bin and its neighboring bins within a 2Mb 

distance (V-stripe) at 10kb resolution, using the HiC-DC+ Z-score26 normalized Hi-C contact map 

for the corresponding region and cell type as the target (Fig. 1b, Supplementary Fig. 1a). 

  

To process the input data, the CTCF motif score track is generated by scanning a set of CTCF 

position weight matrices27,28 (Supplementary Fig. 1b) across the DNA sequence. The pseudobulk 

chromatin accessibility is obtained by aggregating the accessibility profile across single cells in a 

population. The co-accessibility is derived by first generating metacells to combat sparsity, then 

calculating the Jaccard similarity29 between binarized accessibility profiles across metacells. 

During training, we randomly subsample single cells and metacells from the population per 

iteration to generate pseudobulk accessibility and co-accessibility input data, respectively. This 

data augmentation step is critical for improving model generalizability to data sets of varying 

quality and size30–32. As a sanity check, we observed an enrichment of CTCF occupancy as 

measured by ChIP-seq in genomic bins with high CTCF motif score (Supplementary Fig. 1c), 

and an enrichment of chromatin interactions as measured by Hi-C in co-accessible genomic bins 

for datasets with greater variability (Supplementary Fig. 1d). These results suggest that our input 

tracks provide valuable information for predicting chromatin contacts that can be harnessed by 

ChromaFold when trained across sufficiently diverse training cell types. 

  

We trained ChromaFold on three human cell types (IMR-90, GM12878, and HUVEC) to improve 

model generalizability to novel test cell types. Fifteen chromosomes were used for training, two 

for validation, and four held-out for testing and evaluating model performance. We held out three 

other human cell types (K562, hESC and activated CD4+ T cells) to test how well ChromaFold 

can generalize to new cell types. The full contact map was obtained by combining the V-stripe 

predictions along the chromosome (Methods). To evaluate ChromaFold’s performance, we 

assessed both the chromosome-wide contact map and significant interaction prediction (based on 

HiC-DC+ top-scoring interactions) on held-out chromosomes for both training and held-out cell 

types (Fig. 2a,b). ChromaFold achieved an average distance-stratified Pearson correlation of 0.55-

0.60 and 0.45-0.47 and average area under the ROC curve (AUROC) of 0.84-0.85 and 0.77-0.79 

in training and held-out cell types, respectively. These results demonstrate ChromaFold’s ability 

to effectively predict the 3D contact map in unseen data and capture significant interactions. 

  

  

Co-accessibility and CTCF information improve contact map and peak-level interaction 

prediction 

A key goal of ChromaFold is to predict chromatin interactions that connect regulatory elements to 

their target genes. To this end, we examined the interactions between accessible peaks by 

associating ATAC-seq peaks with the overlapping genomic bin and calling peak-level interactions 

based on the experimental/predicted bin-level contact map (Fig. 2c, Methods). On held-out 
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chromosomes, ChromaFold achieves an average area under the precision-recall curve (AUPRC) 

of 0.65-0.7 and 0.45-0.75 and an average AUROC of 0.87-0.89 and 0.81-0.89 in training and 

testing cell types, respectively (Fig. 2d). It should be noted that the diminished performance in 

K562 is likely attributable to the inferior quality of the Hi-C contact map used for evaluation. 

  

We also compared ChromaFold against Cicero, an unsupervised model that first introduced the 

idea of using co-accessibility to infer chromatin interactions between accessible peaks18. Cicero 

identifies co-accessible pairs of genomic regions based on their correlation in accessibility across 

metacells, then uses a graphical lasso regularization to predict a sparser contact map. While peaks 

with high Cicero co-accessibility are indeed enriched for chromatin interactions compared to peaks 

with co-accessibility < 0, the unsupervised nature of Cicero limits the accuracy of the model, 

resulting in low precision and recall (Fig. 2c,d). Spurious interaction calls are frequently made, 

since pairs of genomic regions can be correlated in accessibility without representing true 3D 

interactions (Fig. 2c). On the other hand, we also observed numerous examples where interacting 

regions are uncorrelated across metacells, leading to false negative predictions (Supplementary 

Fig. 2c,d). Additionally, Cicero does not take into account the pseudobulk accessibility profile of 

peaks and relies solely on correlation structures over metacells, which are heavily influenced by 

the level of variability in the scATAC-seq dataset (Supplementary Fig. 1d). Nevertheless, we did 

observe a significant improvement in both 3D contact map and peak-level interaction prediction 

when we incorporated co-accessibility as an input to ChromaFold (Fig. 2b,d), suggesting that the 

supervised model can extract useful information from the co-accessibility signal. 

  

We next compared ChromaFold’s performance when using different types of CTCF information. 

A qualitative examination of the predicted contact maps in hESC revealed that CTCF 

information—either predicted binding tracks via motif scores or occupancy from ChIP-seq—is 

crucial for accurate prediction the contact map (Supplementary Fig. 2a). A quantitative analysis 

of the predicted Hi-C maps and peak-level interactions confirmed this observation, as there was a 

significant decline in performance when ChromaFold operated without any CTCF information 

across all tested cell types. The most pronounced performance degradation occurred in hESC, 

which suggests a potential differential mapping between accessibility, CTCF binding, and 

chromatin interactions in this cell type. As expected, in the majority of cell types examined, 

ChromaFold performed optimally when it utilized cell-type-specific CTCF ChIP-seq data in the 

majority of cell types examined. It should be noted, however, that supplying ChromaFold with 

predicted CTCF motif information alone was sufficient to significantly enhance its accuracy in 

predicting both the contact map and significant interactions (Supplementary Fig. 2b,c). 

  

As a final method comparison, we benchmarked ChromaFold against C.Origami, a recent model 

that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq as inputs to predict the 3D contact 

map16. To ensure a fair comparison, we re-trained ChromaFold and C.Origami on the same cell 

type, IMR-90, with HiC-DC+ Z-score normalized Hi-C contact maps as the target and used the 

same chromosomes for training, validation (Chr10) and testing (Chr15). While ChromaFold and 

C.Origami achieved similar performance on the held-out chromosome in the training cell type 

(Supplementary Fig. 3a-c), ChromaFold models outperformed C.Origami on a new cell type, 

GM12878 (Fig. 3). Further expanding our comparison to include two additional cell types used in 

C.Origami's cross-cell-type prediction evaluation, K562 and hESC, we found that the ChromaFold 

model consistently surpassed C.Origami across all metrics when CTCF ChIP-seq data was 
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provided, and achieve comparable performance when using CTCF motif information. Given that 

HiC-DC+ normalization employs negative binomial regression to control for genomic distance as 

well as other covariates such as GC content and mappability to identify statistically significant 

interactions, we propose that this normalization makes contact map prediction more challenging 

than other normalization methods, such as ICE33. Consequently, more heavily parameterized 

models, like C.Origami, may be more susceptible to overfitting, thereby compromising 

generalizability. 

  

  

ChromaFold can generalize across species and make cell type-specific predictions 

Having shown that ChromaFold can generalize to new human cell types, we proceeded to test 

whether the model could generalize to a different mammalian genome, since we expect 

evolutionarily conserved rules governing the mapping between chromatin accessibility and 3D 

interactions. We therefore directly applied ChromaFold, trained on three human cell types/tissues, 

to mouse germinal center B cells (GCBs), hematopoietic stem cells (HSCs) and regulatory T (Treg) 

cells, and evaluated both the predicted contact maps and peak-level interactions. We observed 

performance comparable to that in human cell types, despite evaluating in a different genome and 

against lower quality ground-truth Hi-C contact maps in mouse cell types (Fig. 4c,d, 

Supplementary Fig. 4a,b). Similar to observations in human test cell types, ChromaFold 

predictions in mouse are compromised when we ablate the co-accessibility or CTCF motif score 

input (Supplementary Fig. 4a). Notably, we achieve good performance on GCBs with only ~1500 

cells in the scATAC-seq dataset, whereas the smallest training cell type contains ~3300 cells. 

These findings suggest that ChromaFold, trained on human data, can generalize to mouse and 

potentially to other mammalian genomes. 

  

Next, we sought to confirm ChromaFold’s ability to make cell-type-specific predictions at loci of 

interest. Although the predicted CTCF motif score is not cell-type-specific, we expected that the 

accessibility inputs would confer cell-type-specificity. To illustrate this, we zoomed in on two 

genes of interest in these cell types: B cell lymphoma 6 (Bcl6) and Helios (Ikzf2). The Bcl6 gene 

encodes a transcription factor that is critical for GCB development34,35. Upon comparing the 3D 

contact maps at the Bcl6 locus in GCBs and in HSCs, we observed various conformation changes 

upstream of the Bcl6 gene. These differences were accurately captured by ChromaFold-predicted 

contact maps and insulation scores (Fig. 4a). The Ikzf2 gene is a transcription factor that is essential 

for the development and function of thymically-derived Treg cells36,37. ChromaFold can predict 

the presence of chromatin interactions or lack thereof near the Ikzf2 locus in Treg cells and GCBs, 

respectively (Fig. 4b). Taken together, we conclude that ChromaFold is able to leverage cell-type-

specific single-cell chromatin accessibility data and make cell-type-specific contact map 

predictions. 

  

  

ChromaFold can deconvolve chromatin interactions in complex tissue 

The ability to study chromatin interactions in fine-grained cell populations can help dissect cell-

type-specific gene regulatory programs and contribute to elucidating the pathogenesis of complex 

genetic diseases. However, the application of experimental techniques such as Hi-C is challenging 

in rare cell populations due to the difficulty of acquiring sufficient cells for the assay. Although 

single-cell Hi-C sequencing has made significant advances, the associated experiments remain 
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difficult and expensive, and the sparse contact maps produced are typically analyzed at coarse 

resolution (100kb-1Mb bins)11,38. 

  

We therefore sought to use ChromaFold to deconvolve chromatin interactions in complex tissues. 

In scenarios where we possess scATAC-seq and a bulk Hi-C contact map of a tissue or cell 

population with diverse cell types/states, we decided to fine-tune the pretrained ChromaFold model 

using input and output data from the mixed population to adapt to the data set. We then applied 

the fine-tuned model to individual cell populations (clusters) to predict cluster-specific contact 

maps and thus achieve bulk Hi-C deconvolution. 

  

To evaluate this approach, we applied ChromaFold to deconvolve chromatin interactions in alpha 

and beta cells within pancreatic islet cell populations using scATAC and bulk Hi-C from non-

diabetic islet donors21. The predictions were validated against an independent data set containing 

Hi-C in sorted alpha and beta cells39. Our results show that ChromaFold can accurately deconvolve 

chromatin interactions in the held-out chromosomes (Fig. 5). Further, we visualized the predicted 

interactions at alpha and beta cell marker genes glucagon (GCG) and insulin (INS). Notably, we 

predicted a large number of contacts between the GCG gene and distal chromatin regions in the 

alpha cells but not the beta cells, consistent with ground truth data in sorted populations (Fig. 5a). 

On the other hand, we predicted an increased number of contacts between the INS gene and both 

the upstream and downstream chromatin regions in beta cells compared to alpha cells, again 

matching ground truth contact maps (Fig. 5b). 

  

Discussion 
  

Our study demonstrates the utility and potential of ChromaFold for predicting chromatin contacts 

and mapping putative regulatory elements to their target genes. ChromaFold’s performance, as 

validated across several metrics and cell types, surpasses previous models such as Cicero and 

C.Origami, confirming its robustness and versatility. We also found that ChromaFold accurately 

generalized across species by making cell-type-specific predictions at important loci in diverse 

mouse cell types from scATAC-seq alone. These findings underscore the shared rules governing 

the mapping from chromatin accessibility to 3D interaction in mammalian genomes. Furthermore, 

the ability of ChromaFold to operate on scATAC-seq data sets with ~1000 cells and the application 

of ChromaFold for deconvolving bulk contact maps in complex tissues enables the study of 

chromatin interactions in fine-grained cell populations, providing a novel window into cell-type-

specific gene regulatory programs and the dysregulation of these programs in complex genetic 

diseases. 

 

Our analyses point to several still-unresolved questions for prediction of the 3D contact map: what 

epigenomic data is most useful for achieving good generalization in new cell types, and what 

information is captured by DNA sequence models beyond CTCF motif information? Ablation 

experiments with ChromaFold demonstrated that co-accessibility from scATAC-seq gave a 

significant performance improvement over pseudobulk accessibility alone. While a number of 

models including EPCOT40 and C.Origami have relied on bulk ATAC-seq as an input signal to 

help generalization across cell types, our results suggest that covariation in scATAC-seq provides 

additional information that can be leveraged for contact map prediction. ChromaFold prediction 

accuracy improved when cell-type-specific CTCF ChIP-seq data was provided as an input. 
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However, using predicted CTCF motif tracks in place of CTCF ChIP-seq data performed 

comparably to C.Origami, a state-of-the-art model that uses both a full DNA sequence model as 

well as ATAC-seq and CTCF ChIP-seq. This result suggests that an improved method for 

predicting cell-type-specific CTCF ChIP-seq occupancy—in place of the fixed CTCF motif tracks 

currently used as input—could increase ChromaFold’s accuracy. However, it remains unclear what 

biological information is captured by introducing a full deep sequence model for contact map 

prediction, or whether overfitting to spurious sequence signals may be masking relevant 

information beyond CTCF-associated binding motifs. These questions may be addressed in the 

coming years through advances in deep learning model interpretation and through ongoing 

modeling efforts in regulatory genomics. For now, ChromaFold provides a highly favorable trade-

off between model complexity, performance, and ease of use, through a lightweight deep learning 

model that achieves state-of-the-art chromatin map and regulatory interaction prediction from 

scATAC-seq alone. 

  

  

Code availability 

Source code is available at: https://github.com/viannegao/ChromaFold/tree/main 

  

  

Data availability 

Hi-C and scATAC-seq data will be available in GEO. 
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Methods 

  

Pre-processing of Hi-C and Micro-C data 

We used 9 human and 3 mouse datasets (Supp. Table 1). For datasets provided in this study and 

those where a processed .hic file is not available online, Hi-C FASTQ files were aligned to hg38, 

hg19 or mm10 genomes and reads that are duplicates or invalid ligation products were filtered out 

using the HiC-Pro41 pipeline (v3.1.0) with default settings. Hi-C contact matrices were binned at 

10 kb resolution and normalized using the following approaches. ICE normalized contact maps 

were calculated using the HiCExplorer42 package. The counts were log2 normalized using a 

pseudo-count of 1.  Z-score normalization was calculated by the HiC-DC+26 package. Specifically, 

HiC-DC+ models observed raw counts for interaction bins using negative binomial regression to 

estimate the expected count based on genomic distance, GC content, mappability, and effective 

bin size based on RE sites in the corresponding pair of genomic intervals.  

  

Pre-processing of scATAC-seq data 

For datasets provided in this study and those where the processed scATAC-seq fragment file was 

not available online, scATAC-seq FASTQ files were aligned to hg38, hg19 or mm10 and counted 

by Cell Ranger ATAC v1.2.043 with default parameters. Arrow files were created from the 

scATAC-seq fragments using ArchR v1.0.144. Specifically, we binarized sparse accessibility 

matrices binned into 500bp tiles across the genome. Cells with fewer than 1,000 fragments and 

TSS < 4 were filtered out. Latent Semantic Indexing (LSI) was performed on the 25,000 top 

variable tiles identified after two iterations of ‘IterativeLSI’ by ArchR. Tiles from non-standard 

chromosomes, chrM, and chrY were not included. Cells were clustered (method=Seurat, 

k.param = 30, resolution = 1) and visualized with UMAP45 (nNeighbors = 30) using 30 LSI 

components. For datasets with multiple cell types, we annotated and extracted the cell type of 

interest by computing the mean gene score of marker genes per cluster. This was cross-checked 

with cell type annotations provided by the original sources, if available. 

  

Peak calling 

For peak calling of the scATAC-seq data, filtered fragments for cells in each dataset/cell 

population were aggregated and used as input to the MACS246 peak caller (parameters -f BED, -g 

2.7e9, -no-model, -shift -75, -extsize 150, -q 0.05). Peaks were filtered using an IDR47 cutoff of 

0.05. Peaks within 500bp of each other were merged. A peak-by-cell count matrix was then created 

by ArchR. 

  

Bulk ATAC-seq data processing 

Bulk ATAC-seq data were obtained from ENCODE48 in the form of bam files. Bam files from 

replicates were merged using samtools49, binned at 1bp resolution for C.Origami, and RPKM 

normalized using the bamCoverage function in deepTools50 to generate bigwig files. 

  

CTCF ChIP-seq and motif score data processing 

We obtained the CTCF motif scores from the CTCF R package27, an AnnotationHub resource that 

represents genomic coordinates of FIMO-predicted CTCF binding sites for human and mouse 

genomes. Specifically, CTCF motif scores were generated by scanning for all three JASPAR28 

CTCF PWMs in genomic DNA sequence using FIMO25. CTCF ChIP-seq data were obtained from 

ENCODE in the form of bam files. Bam files from replicates were merged using samtools, binned 
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at 50bp resolution for ChromaFold and 1bp resolution for C.Origami, and RPKM normalized using 

the bamCoverage function in deepTools to generate bigwig files. The log2 fold change from the 

control ChIP-seq in the corresponding cell types were computed using the bigwigCompare 

function in deepTools. 

  

ChromaFold input data processing 

ChromaFold takes three inputs: pseudobulk chromatin accessibility, co-accessibility profiles 

across cells, and predicted CTCF motif score/CTCF ChIP-seq. The pseudobulk chromatin 

accessibility is obtained by aggregating the accessibility profile across single cells in a population 

binned at 50bp, library-size normalizing and log transforming with a pseudocount of 1. The co-

accessibility is derived by first generating metacells to combat sparsity in scATAC-seq datasets, 

then calculating the Jaccard similarity between binarized accessibility profiles across metacells, 

binned at 500bp. Metacells are generated using the same algorithm used by Cicero18. The CTCF 

motif score for each 50bp bin in the genome is defined as the maximum score assigned to any 

genomic region that overlaps at least 10bp with the 50bp bin. 

  

ChromaFold model architecture 

The ChromaFold model consists of two feature extractors and a linear predictor module. The first 

feature extractor takes the pseudobulk accessibility and the CTCF motif score or ChIP-seq signal 

as two channels. This feature extractor consists of fifteen 1D convolutional layers followed by 

batch normalization and ReLU activation. Next, we perform outer-concatenation where the model 

transforms the resulting L x C matrix, where L is the length of the output vector and C is the 

number of channels, into a L x L x 2C by performing point-wise concatenation of the output 

features. This operation allows the information from pairs of genomic bins to be joined together. 

We implement a skip connection with the input layer by average-pooling the input and 

transforming into a 3D tensor via outer-concatenation. After concatenation, the data is passed 

through three 2D convolutional layers followed by a linear layer to consolidate the extracted 

features, producing a latent representation of the two input tracks. 

  

The second feature extractor takes the co-accessibility data as input. For memory efficiency, we 

only compute the co-accessibility between the bins in the center 10kb region with the rest of the 

bins in the 4.01Mb region as input. We use three 1D convolutional layers followed by two residual 

blocks and three additional 1D convolutional layers. Finally, a linear layer consolidates the 

extracted features and produces a latent representation of the co-accessibility input. These latent 

representations of the genomic region are concatenated and passed through a final linear layer to 

predict the contact between genomic bin t and its neighboring bins within a 2Mb distance, which 

corresponds to a V-shaped stripe (V-stripe) in the contact map centered at t. 

  

ChromaFold model training 

We trained ChromaFold using data pooled from three cell types, IMR-90, Gm12878 and HUVEC. 

Chromosomes 3 and 15 were used for validation, chromosomes 5, 18, 20, 21 were held out for 

testing and evaluating model performance, and the rest were used for training. For each V-stripe 

prediction centered at genomic bin t, the input is the 4.01Mb region centered at t. During training, 

we randomly subsampled 500-5000 single cells and 400-1000 metacells from the population per 

iteration for pseudobulk accessibility and co-accessibility computation, respectively. This data-

augmentation step was critical for improving model generalizability to datasets of varying quality 
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and size. We injected additional variation into the input by randomly shifting by -50 or 50 bp. 

Since neither our input nor output data contain directionality information, we further reduce 

redundancies in our model by predicting only one side of the V-stripe, and we simply reversed the 

input to predict the other side (shared model weights). To improve model stability, we used a two-

step approach and first train ChromaFold’s feature extractor 1 to predict the target contact map by 

appending a dummy linear predictor at the end. After convergence, we froze the weights for this 

part of the network while training feature extractor 2 and the final linear module. Genomic regions 

with low mappability were masked from training based on the total signal for each bin in the 

contact map. We took the training window to start and end 4 and 5 Mb after the chromosome 

starting location and before the ending location, respectively, to create buffer regions since 

ChromaFold requires 4.01Mb windows as inputs. The prediction target is the HiC-DC+ 

normalized Z-score, with outlier target values clipped to lie between -16 and 16 to avoid training 

bias. We optimized the MSE loss using stochastic gradient descent. We trained the model for 30 

epochs and implemented early stopping with a patience of 10 epochs, learning rate of 1e-6 and 

weight decay 1e-3. The model was trained on a single NVIDIA Tesla V40 GPU for ~5 hours when 

using one training cell type and ~14 hours when using 3 training cell types. 

  

De novo contact map prediction in a new cell type 

The ChromaFold model trained on IMR-90, Gm12878 and HUVEC can be directly applied to 

other cell types and species without retraining. To perform de novo contact map prediction, we 

supplied scATAC-seq data of the new cell type and predicted CTCF motif scores in the 

corresponding genome to ChromaFold. If CTCF ChIP-seq data was available for the test cell type, 

we could alternatively use the ChromaFold +CTCF ChIP-seq model. 

  

ChromaFold Hi-C contact map prediction 

To generate the complete predicted contact map for each chromosome, we first performed 

inference and predicted the interaction between each genomic bin t and all its neighboring bins 

within a 2Mb distance, producing a V-stripe. Since the input region is 4.01Mb centered at the bin 

t, we zero-padded the input vectors if they extended beyond the chromosome edges. We combined 

the predicted V-stripes and averaged the two predictions for each genomic bin. Contact map 

prediction for one full chromosome took on average ~1.5 minutes on a standard GPU like NVIDIA 

Tesla V40. 

  

Distance-stratified correlation 

To evaluate the overall performance of genome-wide chromatin contact map prediction, we 

computed the distance-stratified correlation between the experimental and predicted contact maps. 

The rationale for distance-stratification is to remove any remaining genomic distance effect and 

avoid inflating the correlation. Specifically, we computed the Pearson correlation for all 

interactions with genomic distance d for d from 0 to 2Mb, for each chromosome. We then used a 

paired t-test51 to compare the performance between models. In the boxplot visualizations, each 

point represents the Pearson correlation averaged across genomic distance, per chromosome. 

  

Topologically associated domain (TAD) annotations 

We called TADs at 10 kb resolution using TopDom52 (v0.0.2) using w=30 on normalized Hi-C 

contact maps and predicted contact maps and used the insulation scores to evaluate ChromaFold’s 

ability to predict TAD structures. 
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Significant interactions 

We defined significant interactions at the genomic bin level as interactions with the top 10% HiC-

DC+ Z-scores per chromosome. For each chromosome and at each genomic distance 

(incrementing by 10kb), we used AUROC and AUPRC to evaluate how well significant interaction 

are captured by ChromaFold’s predicted contact map. We used a paired t-test to compare the 

performance between models. In the boxplot visualizations, each point represents the 

corresponding metric averaged across genomic distance, per chromosome. To define significant 

peak-level interactions, we first mapped each peak to the overlapping genomic bin(s) at 10kb 

resolution. If a peak overlapped two bins, it was assigned to both. Next, we labeled pairs of peaks 

as significantly interacting if the corresponding HiC-DC+ FDR-corrected p-value is less than 0.25. 

The distance-stratified AUROC and AUPRC were computed in a similar fashion as described 

above. 

  

Benchmarking against Cicero 

We used Cicero to calculate co-accessibility for pairs of peaks. The same metacell groupings used 

for ChromaFold training/inference were used for running Cicero. We then used Cicero to calculate 

co-accessibility using a window size of 1 Mb and a distance constraint of 500 kb. We evaluated 

the performance of peak-level significant interaction prediction using Cicero co-accessibility at 

various cutoffs and compare with that using ChromaFold-predicted contact maps. All evaluations 

of peak-level significant interactions were distance-constrained to 500kb for comparison with 

Cicero. 

  

Benchmarking against C.Origami 

To ensure a fair comparison, we re-trained ChromaFold (with CTCF motif score or with CTCF 

ChIP-seq) and C.Origami on the same cell type, IMR-90, towards HiC-DC+ normalized Hi-C 

contact maps and used the same chromosomes for training, validation (Chr10) and testing (Chr15) 

as specified in C.Origami16. The training procedure for ChromaFold was the same as described 

above, and that for C.Origami was the same as described in the original paper. C.Origami 

converged after training for 45 epochs. After training, we evaluated the performance of both 

models on the test chromosome in IMR-90, as well as in three held-out cell types GM12878, K562 

and hES. For held-out cell types, we used the IMR-90-trained models but used 

GM12878/K562/hESC inputs to make de novo contact map predictions. For both models, we 

merged predictions into a chromosome-wide Hi-C contact map and evaluated the following 

metrics: 1) distance-stratified Pearson correlation, 2) distance-stratified bin-level significant 

interaction prediction and 3) peak-level significant interaction prediction. 

Deconvolution of chromatin interactions in alpha and beta cells in the pancreatic islet 

ChromaFold can be used for deconvoluting chromatin interactions in complex tissues.  Using the 

scATAC-seq and bulk 3D contact map for pancreatic islet cells, we fine-tuned the pretrained 

ChromaFold model for 1 epoch on the training chromosomes to better adapt the model predictions 

to the dataset. We then applied the fine-tuned model to alpha and beta cell populations to achieve 

deconvolution. Specifically, we extracted the alpha and beta cell clusters from the scATAC-seq to 

use as input to ChromaFold to generate deconvolved contact map predictions. Next, we used the 

deconvolved contact maps to generate peak-level interaction predictions as described in the section 

above. We evaluated the deconvolved chromatin interaction predictions using an independent 

dataset with Hi-C of sorted human alpha and beta cell populations. For peak-level interaction 
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visualization, we restricted to only interactions involving peaks that lie within 10Kb of the TSS of 

the highlighted genes. The overall contact map prediction quality was evaluated using distance 

stratified Pearson correlation. Significant bin- and peak-level interaction predictions were 

evaluated using distance-stratified AUROC and AUPRC. 

 

 

Single-cell ATAC sequencing data collection 

Human embryonic stem cells were harvested for single-cell multiome analysis with targeted 

collection of ~7000 cells. Nuclei were isolated with Demonstrated Protocol Nuclei Isolation for 

Single Cell Multiome ATAC+Gene Expression Sequencing_RevA. 500K cells underwent lysis in 

500μl lysis buffer in ice for 3 mins then were subjected to the standard protocol for wash and 

counting. Single-cell Multiome libraries were generated with the 10x Genomics Chromium Next 

GEM Single Cell Multiome ATAC + Gene Expression Kit following the manufacturer’s 

guidelines. The libraries were sequenced on the NovaSeq 6000 platform following the 

manufacturer’s guidelines.  

 

To collect scATAC-seq data in mouse hematopoietic stem cells (Lin-Kit+ cells), bone marrow 

cells were harvested from total n=3 C57BL6 wildtype mice and subjected to red blood cell lysis. 

Bone marrow cells were then incubated with MACS beads (CD117, Miltenyi Biotec, 130-091-

224). Then enriched c-Kit+ cells were collected by running AutoMACS (Miltenyi Biotec) 

according to the manufacturer’s instructions. The cells were then stained with cocktail: Lineage 

marker (CD3, CD8, Gr1, B220, CD19 and Ter119)- PE-Cy5, cKit-APC-Cy7 and DAPI. Live Lin-

cKit+ cells were sorted on BD Aria machine. Freshly sorted cells were then resuspended in 

PBS+0.04% BSA at around 300k/250ul followed by scATACseq protocol. 

 

Hi-C data collection 

Isolation of murine regulatory T cells was conducted as previously described53. Cell suspension 

was made from pooled secondary lymphoid organs (spleen; peripheral and mesenteric lymph 

nodes) of Foxp3-GFP mice54 and CD4 T cells were enriched using the Dynabeads Flowcomp 

Mouse CD4 Kit (ThermoFisher, 11461D) according to manufacturer’s instructions. The resulting 

cells were stained with antibodies, washed extensively, resuspended in isolation buffer (PBS w/ 

2% FBS, 10 mM HEPES buffer, 1% L-glutamine, and 2 mM EDTA) containing 0.01% SYTOX 

Blue dead cell stain (ThermoFisher, S34857) to facilitate dead cell exclusion, and sorted on a 

FACSAria (BD) instrument. Treg cells (TCRβ+CD4+Foxp3-GFP+) and naïve conventional CD4 

T cells (TCRβ+CD4+Foxp3-GFP−CD44loCD62Lhi) were sorted by gating on the respective 

populations. Hi-C was performed as previously described55. Briefly, sorted T cell populations 

(approximately 1x105) were cross-linked in 1% formaldehyde for 10 minutes and quenched in 

125mM glycine. Cross-linked cells were lysed and chromatin was restriction enzyme digested 

using the Arima HiC+ kit (Arima Genomics, San Diego, CA) with manufacturer recommended 

protocol adaptations for low cell input. Digested and reverse crosslinked DNA was eluted in 100uL 

and fragmented to 350 bps using a Covaris E220 sonicator (Covaris, Woburn, MA). Sheared 

genomic material was enriched for biotinylated DNA using streptavidin beads followed by library 

preparation using Arima protocol modifications for Accel-NGS 2S DNA plus library kit (IDT, 

Coralville, IA). After end repair and ligation, libraries were quantified using the KAPA library 

quantification kit (Roche, Indianapolis, IN) and PCR amplified for the number of cycles required 
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to generate >4nM per library. Hi-C libraries were sequenced on an Illumina NovoSeq and raw 

sequencing data in the Fastq format were obtained. 

 

Germinal Center B cell centrocytes and centroblasts cells were sorted from the spleens of mice 

immunized with SRBCs for 8 days. Briefly, single-cell suspensions were stained with anti-B220, 

anti-CD95/Fas and anti-GL7. Centrocytes (Live B220+CD95/Fas+GL7+CXCR4–CD86+) and 

centroblasts  (Live B220+CD95/Fas+GL7+CXCR4+CD86–) were stained with anti-B220, anti-

CD95/Fas, anti-GL7, anti-CXCR4 and anti-CD86. DAPI was used for the exclusion of dead cells. 

Cell sorting was performed in a BD Influx cell sorter in the Weill Cornell Medicine Flow 

Cytometry Core Facility. Flow-sorted CB and CC were fixed in 1% formaldehyde for 10 min. 

Fixation was quenched by the addition of 0.125 M glycine for 10 min. In situ Hi-C was performed 

as described (Rao et al. Cell 2014). Nuclei were permeabilized, and DNA was digested overnight 

with 100 U DpnII (New England BioLabs). The ends of the restriction fragments were labeled 

using biotin-14-dATP and ligated in a 1-ml final volume. After reversal of cross-links, ligated 

DNA was purified and sheared to a length of ~400 bp, at which point ligation junctions were pulled 

down with streptavidin beads, DNA fragments were repaired and dA-tailed and Illumina adaptors 

were ligated. The library was produced by 6–10 cycles of PCR amplification. Sequencing (paired-

end, 50 bp) was performed in a HiSeq 2500 Illumina sequencer in the Weill Cornell Medicine 

Epigenomics Core. 
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Figures 

 

 
  

Figure 1. ChromaFold predicts the 3D contact map from scATAC-seq alone. ChromaFold is 

a deep learning model that enables prediction of 3D contact maps solely from scATAC-seq data, 

using pseudobulk chromatin accessibility and co-accessibility from scATAC-seq as well as 

predicted CTCF motif tracks as input features. a. Schematic of the ChromaFold input data 

processing framework. b. ChromaFold model architecture. The model consists of two feature 

extractors: feature extractor 1 for the aggregated accessibility and CTCF motif score tracks, and 

feature extractor 2 for the co-accessibility extracted from a V-stripe region. The feature extractors 

produce a latent representation of the 4Mb genomic region. The Z-score predictor then takes this 

latent representation and predicts the chromatin interactions between the center genomic tile and 

its neighboring bins within a 2Mb distance, annotated by the V-shaped black box. Each genomic 

tile is 10Kb in length. 
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Supplementary Figure 1. ChromaFold model choices and input analysis. a. ChromaFold’s 

prediction scheme for the chromatin interaction map. Each diamond t_i:t_j represents the 

interaction between genomic bins t_i and t_j. For each input centered around tile t, ChromaFold 

predicts the interaction between tile t and its neighboring bins within 2Mb. b. CTCF motif PWMs 

used for CTCF motif scoring. c. Histogram shows the distribution of CTCF ChIP-seq signal in 

genomic bins with top 0.1% CTCF motif score (yellow) and in all genomic bins (blue). d. Analysis 

of the extent of overlap between Hi-C interaction and Jaccard similarity in training cell types. (Top) 

Histogram show the distribution of Jaccard similarity between interacting bin pairs (top 10% HiC-

DC+ Zscore; orange) and all tile pairs within a 2Mb distance (blue). The embedded histogram 

shows the variability of ATAC-seq accessibility across cells. (Middle) The line plot shows the 

percentage of interacting bin pairs with high Jaccard similarity (top 10%) at each genomic distance. 

(Bottom) The line plot shows the percentage of bins with high Jaccard similarity that are 

interacting at each genomic distance. 
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Figure 2. Co-accessibility information improves contact map prediction in new cell types. a. 

Visualization of real vs. ChromaFold-predicted Hi-C contact map, insulation scores, epigenetic 

tracks, and co-accessibility on held-out chromosome 5 in HUVEC. b. Quantitative evaluation of 

Hi-C map prediction performance by ChromaFold, with and without the co-accessibility input, 

across training and held-out human cell types/tissues. Box plots show (top) the averaged distance-

stratified Pearson correlation between the experimental and predicted contact map and (bottom) 

the averaged distance-stratified AUROC of significant interactions (top 10% in Z-score), per held-

out chromosome. Paired t-test is performed on the distance-stratified person correlation across test 

chromosomes (P-value: *: <0.05, **: < 0.01, ***: < 0.001). c. Visualization of ChromaFold-

predicted Hi-C contact map and significant peak-level interactions and Cicero-predicted peak-

level interactions in held-out cell type K562 on held-out chromosome 5. d. Quantitative evaluation 

of significant peak-level prediction performance by ChromaFold and Cicero. Box plots show the 

AUPRC (top) and AUROC (bottom) of significant peak-level interaction prediction per held-out 

chromosome. Statistical test is the same as above. The paired t-test P-value for both ChromaFold 

models vs. Cicero are < 0.0001. 
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Supplementary Figure 2. CTCF information is crucial for accurate prediction of Hi-C 

interactions.  a. Visualization of Hi-C contact maps, insulation scores and peak-level interactions 

predicted by ChromaFold using no CTCF information, CTCF motif score and CTCF ChIP-seq 

data as input in held-out cell type hESC on held-out chromosome 5. b. Box plots show (top) the 

averaged distance-stratified Pearson correlation between the experimental and predicted contact 

C
h

ro
m

a
Fo

ld

 (
n

o
 C

TC
F

 in
fo

)
C

ic
e

ro
 

E
xp

e
ri

m
e

n
ta

l

 H
i-

C
C

h
ro

m
a

Fo
ld

 

(+
C

TC
F

 m
o

ti
f)

C
h

ro
m

a
Fo

ld
 

(+
C

TC
F

 C
h

IP
)

Chr5

hES (held-out cell type)

Chr5 (held-out chromosome)

Chr5

K562 (held-out cell type)

Chr5 (held-out chromosome)
d

E
xp

e
ri

m
e

n
ta

l H
i-

C
C

ic
e

ro
C

h
ro

m
a

Fo
ld

 

E
xp

e
ri

m
e

n
ta

l H
i-

C

H
iC

-D
C

+
 Z

sc
o

re
Ja

cc
a

rd
 S

im
ila

ri
ty

C
h

ro
m

a
Fo

ld
-

P
re

d
ic

te
d

 H
i-

C

P
e

a
k-

le
ve

l I
n

te
ra

ct
io

n
s

E
xp

e
ri

m
e

n
ta

l H
i-

C
C

ic
e

ro
C

h
ro

m
a

Fo
ld

 

E
xp

e
ri

m
e

n
ta

l H
i-

C

H
iC

-D
C

+
 Z

sc
o

re
Ja

cc
a

rd
 S

im
ila

ri
ty

C
h

ro
m

a
Fo

ld
-

P
re

d
ic

te
d

 H
i-

C

P
e

a
k-

le
ve

l I
n

te
ra

ct
io

n
s

e

P
e

a
k-

le
ve

l I
n

te
ra

ct
io

n
s

Mb
2.0

Mb
2.0

Mb
2.0

Mb
2.0

Mb
2.0

Chr5

Mb
2.0

2.0

2.0

0

0

0

Mb
1.0

0

1.0

0

1.0

0

A
TA

C
-s

e
q

(+
C

TC
F

 C
h

IP
)

3

-1

3

-1

0.3

0

3

-1

3

-1

0.3

0

 4.5

-0.5

 4.5

-0.5

 4.5

-0.5

4.5

-0.5

0.3

0

b

Peak-level Interaction Prediction

Hi-C Map Prediction

c

A
U

R
O

C
A

U
P

R
C

***
*** ***

***
*** ***

**
***

***
*** ***

***
*** ***

***
*** ***

***
*** ***

***
*** ***

**
***

***

***
*** ***

***
***  *

***
*** ***

***
*** ***

***
 *  **

***
*** ***

***
***

***
*** ***

***
*** ***

***
 ***  **

a
P

re
d

ic
te

d
P

re
d

ic
te

d
P

re
d

ic
te

d

C
o

-a
cc

e
ss

ib
ili

ty
Ja

cc
a

rd
 S

im
ila

ri
ty

C
o

-a
cc

e
ss

ib
ili

ty

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.27.550836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550836
http://creativecommons.org/licenses/by/4.0/


map and (bottom) the averaged distance-stratified AUROC of significant interactions (top 10% in 

Z-score), per held-out chromosome. Paired t-test is performed on the distance-stratified person 

correlation across test chromosomes (P-value *: <0.05, **: < 0.01, ***: < 0.001). c. Box plots 

show the AUPRC (top) and AUROC (bottom) of significant peak-level interaction prediction per 

held-out chromosome. Statistical test is the same as above. d, e. Additional visualization of 

ChromaFold-predicted Hi-C contact map and significant peak-level interactions and Cicero-

predicted peak-level interactions in held-out cell type K562 on held-out chromosomes. 
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Figure 3. ChromaFold achieves state-of-the-art performance for predicting significant Hi-C 

interactions in new cell types. C.Origami and ChromaFold were trained using the same 

training/test chromosomes on IMR-90 to predict contact maps normalized by HiC-DC+ Z-score. 

a. Visualization of C.Origami and ChromaFold-predicted Hi-C contact maps and peak-level 

interactions in held-out cell type GM12878. b. Line plots show distance stratified (top) Pearson 

correlation between the experimental and predicted contact map, (middle) AUROC and (bottom) 

AUPRC of significant interactions (top 10% in Z-score) for ChromaFold and C.Origami on held-

out chromosome 15. c. Line plots show (top) PR curves and (bottom) ROC curves for peak-level 

interaction prediction on held-out chromosome 15. 
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Supplementary Figure 3. ChromaFold outperforms C.Origami at prediction of HiC-DC+ 

normalized contact maps in held-out cell types. Visualization of C.Origami and ChromaFold 

predictions in training cell type IMR-90 (a, b, c), held-out cell type K562 (d, e, f) and hESC (g, h, 

i): HiC-DC+ normalized Hi-C contact maps (a, d, g); distance-stratified Pearson correlation for 

Hi-C contact map prediction, distance-stratified AUPRC and AUROC of significant interactions 

(top 10% in Z-score) (b, e, h); and PR and ROC curve for peak-level interaction prediction (c, f, 

i). 
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Figure 4. ChromaFold accurately generalizes across cell types and species. a, b. Comparison 

of experimental vs. ChromaFold-predicted Hi-C contact map and peak-level interactions at 

different loci in the mouse genome across different murine cell types: the Bcl6 gene locus in mouse 

germinal center B cells (a, top) and in mHSC (a, bottom) and the Ikzf2 gene locus in regulatory T 

cells (b, top) and germinal center B cells (b, bottom). c. Box plots show (top) the averaged 

distance-stratified Pearson correlation and AUROC of significant interactions (bottom; top 10% 

in Z-score), per held-out chromosome across mouse cell types. d. Box plots show the AUPRC (top) 

and AUROC (bottom) of significant peak-level interaction prediction per held-out chromosome 

across mouse cell types. 
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Supplementary Figure 4. Quantitative evaluation and mode comparison in mouse cell types. 

a. Comparison between ChromaFold model performance in the absence of CTCF motif score 

information and co-accessibility information. Box plots show the averaged distance-stratified 

Pearson correlation between the experimental and predicted contact map and the averaged 

distance-stratified AUPRC and AUROC of significant interactions (top 10% in Z-score), per 

chromosome. Paired t-test is performed on the distance-stratified person correlation across test 

chromosomes (P-value *: <0.05, **: < 0.01, ***: < 0.001). b. Comparison between ChromaFold 

and Cicero. Box plots show the AUPRC (top) and AUROC (bottom) of significant peak-level 

interaction prediction per held-out chromosome. Statistical test is the same as above. 
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Figure 5. ChromaFold enables deconvolution of Hi-C interactions in pancreatic islet cells. 

a, b. Visualization of peak-level interactions derived from experimental Hi-C data and 

ChromaFold-predicted Hi-C map in alpha cells and beta cells near the TSS of (a) glucagon (GCG) 

and (b) insulin (INS). c. Box plots show (top) the averaged distance-stratified Pearson correlation 

and AUROC of significant interactions (top 10% in Z-score), per held-out chromosome in alpha 

and beta cells. d. Box plots show the AUPRC (top) and AUROC (bottom) of significant peak-level 

interaction prediction per held-out chromosome in alpha and beta cells. 
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Supplementary Figure 5. Deconvolution of pancreatic islet cell contact maps at additional 

loci. a. Schematic of ChromaFold applied to the task of deconvoluting chromatin interactions in a 

complex tissue. b, c. Visualization of deconvolved contact maps (top) and peak-level interactions 

(bottom) in alpha cells and beta cells near the TSS of (b) glucagon (GCG), and (c) insulin (INS). 
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Supplementary Information 
  

Table S1: Summary of data sources for all cell types used in this study. 
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