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BACKGROUND Type 2 diabetes mellitus (T2D) confers a two- to three-fold increased risk of 

cardiovascular disease (CVD). However, the mechanisms underlying increased CVD risk 

among people with T2D are only partially understood. We hypothesized that a genetic 

association study among people with T2D at risk for developing incident cardiovascular 

complications could provide insights into molecular genetic aspects underlying CVD. 

METHODS From 16 studies of the Cohorts for Heart & Aging Research in Genomic 

Epidemiology (CHARGE) Consortium, we conducted a multi-ancestry time-to-event genome-

wide association study (GWAS) for incident CVD among people with T2D using Cox 

proportional hazards models. Incident CVD was defined based on a composite of coronary 

artery disease (CAD), stroke, and cardiovascular death that occurred at least one year after the 

diagnosis of T2D. Cohort-level estimated effect sizes were combined using inverse variance 

weighted fixed effects meta-analysis. We also tested 204 known CAD variants for association 

with incident CVD among patients with T2D.  

RESULTS A total of 49,230 participants with T2D were included in the analyses (31,118 

European ancestries and 18,112 non-European ancestries) which consisted of 8,956 incident 

CVD cases over a range of mean follow-up duration between 3.2 and 33.7 years (event rate 

18.2%). We identified three novel, distinct genetic loci for incident CVD among individuals with 

T2D that reached the threshold for genome-wide significance (P<5.0×10-8): rs147138607 

(intergenic variant between CACNA1E and ZNF648) with a hazard ratio (HR) 1.23, 95% 

confidence interval (CI) 1.15 – 1.32, P=3.6×10-9, rs11444867 (intergenic variant near HS3ST1) 

with HR 1.89, 95% CI 1.52 – 2.35, P=9.9×10-9, and rs335407 (intergenic variant between 

TFB1M and NOX3) HR 1.25, 95% CI 1.16 – 1.35, P=1.5×10-8. Among 204 known CAD loci, 32 

were associated with incident CVD in people with T2D with P<0.05, and 5 were significant after 

Bonferroni correction (P<0.00024, 0.05/204). A polygenic score of these 204 variants was 

significantly associated with incident CVD with HR 1.14 (95% CI 1.12 – 1.16) per 1 standard 

deviation increase (P=1.0×10-16).  
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CONCLUSIONS The data point to novel and known genomic regions associated with incident 

CVD among individuals with T2D. 

 

 

CLINICAL PERSPECTIVE 

What is new? 

• We conducted a large-scale multi-ancestry time-to-event GWAS to identify genetic 

variants associated with CVD among people with T2D.  

• Three variants were significantly associated with incident CVD in people with T2D: 

rs147138607 (intergenic variant between CACNA1E and ZNF648), rs11444867 

(intergenic variant near HS3ST1), and rs335407 (intergenic variant between TFB1M and 

NOX3). 

•  A polygenic score composed of known CAD variants identified in the general population 

was significantly associated with the risk of CVD in people with T2D. 

What are the clinical implications? 

• There are genetic risk factors specific to T2D that could at least partially explain the 

excess risk of CVD in people with T2D. 

• In addition, we show that people with T2D have enrichment of known CAD association 

signals which could also explain the excess risk of CVD. 
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INTRODUCTION 

Type 2 diabetes mellitus (T2D) is a significant risk factor for cardiovascular disease (CVD), 

leading in a two- to three-fold higher likelihood of developing CVD. CVD is the leading cause of 

morbidity and mortality in people with diabetes1, 2 and previous studies suggest that life 

expectancy is reduced by up to eight years in people with T2D3. Although CVD mortality rates 

have declined substantially in the general population in recent decades, this improvement has 

been less substantial in people with T2D4. Various modifiable factors have been extensively 

investigated, with high blood pressure, hypercholesterolemia, smoking, and diabetes being well-

validated risk factors of CVD that are used to estimate the 10-year risk of incident events5. 

However, diabetes itself may explain as much as 75 to 90% of the excess risk of coronary 

disease in people with T2D6, 7. 

There are distinct clinical characteristics of CVD in people with T2D that result in less 

favorable outcomes. People with T2D have an earlier onset of extensive CVD that tends to 

progress more rapidly than among those without T2D. There is a greater number of 

atherosclerotic vessels involved and longer diseased vessel segments in people with T2D 

compared to those without8, even after accounting for standard CVD risk factors. The mortality 

risk at 30 days and one year after acute coronary syndrome was higher in people with T2D than 

those without T2D9. These features, as well as excess CVD risk in people with T2D not solely 

attributable to more aggregated risk factors, suggest there could be additional risk factors for 

CVD that are specific to T2D.  

Other than traditional risk factors, recent genome-wide association studies (GWASs) have 

identified at least 204 genetic loci associated with CVD in the general population. These studies 

have been mostly conducted among European ancestry participants,10 which calls for ancestry-

diverse studies. So far, identified CVD variants implicate pathways involved in cholesterol 

metabolism, insulin resistance, thrombosis, inflammation, endothelial function, and vascular 

remodeling11. Genetic risk factors of CVD in the general population are mostly thought to be 
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relevant to people with T2D12, leading to the suggestion that genetic predisposition to CVD 

involves additional loci and/or stronger associations in this group. There are shared genetic loci 

between T2D and CVD, which include chromosome 9p21.3, IRS1, TCF7L2, HNF1A, and 

APOE13, 14.  In addition, there is a significant genetic correlation between T2D and CVD15. Still, 

genetic risk factors for CVD in people with T2D have not been thoroughly investigated. Most 

studies have been underpowered given the stringent significance threshold required for a 

GWAS and were cross-sectional13, 16, 17. To identify genetic risk factors for incident CVD 

specifically in people with T2D, it is crucial to investigate T2D cases longitudinally and in follow-

up studies where diabetes clearly precedes CVD.  

We hypothesize that individuals with T2D share an increased CVD genetic burden and that a 

multi-ancestry GWAS for incident CVD among people with T2D could help identify these signals 

and infer biological mechanisms underlying the increased CVD risk among people with T2D. To 

test these hypotheses, we performed a time-to-event GWAS of incident CVD in a large, multi-

ancestry sample of people with T2D ensuring that the occurrence of T2D preceded any CVD 

event.  
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METHODS 

Study Design and Participating Cohorts 

This is a meta-analysis of ancestry-specific cohort-level time-to-event GWAS for incident 

CVD in people with T2D, majority of which were from the Cohorts for Heart & Aging Research in 

Genomic Epidemiology (CHARGE) Consortium18. We studied 49,230 participants with T2D from 

16 cohorts and of multiple ancestries. In the case of multi-ancestry cohorts, participants were 

grouped into major ancestries, resulting in 28 ancestry-specific cohort subgroups. Detailed 

information, including study design, study period, and a brief description of the participants of 

each cohort, is shown in Table S1. All human research was conducted according to the 

Declaration of Helsinki, and each cohort acquired institutional review board approval. Each 

participant provided written informed consent. 

Definition of T2D 

T2D was defined in each cohort by having one or more of the American Diabetes Association 

criteria19 (Table S2). T2D was defined as having at least one of the following conditions: fasting 

blood glucose (FBG) ≥ 126 mg/dL, hemoglobin A1c (HbA1c) ≥ 6.5%, 2-h glucose by 75-g oral 

glucose tolerance test ≥ 200 mg/dL, physician-diagnosed diabetes, or use of glucose-lowering 

medications. Participants with known type 1 diabetes mellitus (T1D) or other specific types of 

diabetes were excluded. To minimize contamination of T1D, we excluded people with age at 

diabetes diagnosis of diabetes below 40.   

Definition of Cardiovascular Disease 

CVD was defined as a composite of 1) coronary artery disease (CAD), 2) cerebrovascular 

disease, and 3) death from a cardiovascular cause. CAD included myocardial infarction, stable 

or unstable angina, percutaneous coronary intervention, coronary artery bypass grafting, and 

other cohort-defined events (Table S3). Cerebrovascular disease included ischemic stroke, 

hemorrhagic stroke, transient ischemic attack, carotid stenting, endarterectomy, and other 

cohort-defined events. Death from cardiovascular causes included death from myocardial 
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infarction, stroke, unexpected death presumed to be from ischemic CVD, and other cohort-

defined events. An incident CVD event was defined as the first CVD event occurring at least 

one year after T2D diagnosis. Participants with any CVD event prior to diagnosis of T2D or 

within one year after diagnosis of T2D were excluded from incident CVD analysis. If a 

participant had multiple CVD events, only the first event was considered. The source of CVD 

information varied by each cohort, which included a self-report of the participant, doctor’s notes, 

cohort visit examinations, linkage to primary care registers and secondary care registers, 

hospital admissions, and mortality data. 

Cox Proportional Hazards Models 

We applied Cox proportional hazards modeling for the time-to-event GWAS. Each single 

nucleotide variation (SNV) or short insertion-deletion was tested for its association with incident 

CVD considering observation time and adjusting for covariates. Observation time was defined 

as years between the age at diagnosis of T2D and age at incident CVD for cases or age at last 

follow-up for control participants who did not experience CVD event. Before running the Cox 

proportional hazards model, the model which did not include genotype information was 

evaluated to determine whether it met the proportional hazard assumption using the cox.zph() 

function in the ‘Survival’ R package20. If a variable violated the assumption, this was resolved 

either by including an interaction term or by stratifying the variables into 3 to 5 subgroups. Time-

to-event GWAS was performed in each ancestry-specific cohort subgroup using either 

‘GWASTools’ R package21 or ‘gwasurvivr’ R package22 (Table S4). The primary analysis 

included age at diagnosis of T2D and sex as covariates, and significant principal components 

(PCs) were used to adjust for population stratification (basic model). In the full model, body 

mass index (BMI), current smoking status, treatment for hypertension, systolic blood pressure, 

total cholesterol, and high-density lipoprotein (HDL) cholesterol level, all of which are used in 

10-year risk estimation of CVD, were added to the basic model.  

Cohort-level Analysis 
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Participants were genotyped using GWAS SNV genotyping arrays (Table S5). Each cohort 

had its specific pre-imputation genotype quality control criteria for call rate, minor allele 

frequency (MAF), and deviation from Hardy-Weinberg equilibrium. Genotype imputation was 

performed using either TOPMed reference panel (GRCh38), Haplotype Reference Consortium 

reference panel (GRCh37), 1,000 Genomes phase 3 reference panel (GRCh37), or population-

specific reference panel. All the genotypes aligned on the positive strand of the reference 

genome. SNVs with poor imputation quality were removed from the analysis in each cohort 

(INFO score < 0.4 or R2 score < 0.3). Within each cohort, analysis was performed separately for 

four major ancestries: African American (AFR), East Asian (EAS), European (EUR), and 

Hispanic (HIS). Time-to-event GWAS for incident CVD was performed under the additive 

genetic model. Familial relationships were handled either by excluding related individuals or by 

using a robust estimate of variance when relationships were known for the family-based cohort. 

Cohort-level summary statistics were collected for meta-analysis. 

Meta-Analysis 

Summary statistics of the cohort level results underwent standard quality control procedures 

using EasyQC software23. First, the genetic coordinates of GRCh38 were converted to 

GRCh37/hg19 using LiftOver24 software. Then variants with unreliably large effect size (β≥10) or 

large standard error (≥10) were excluded in each cohort. Variants with minor allele count ≤ 6, or 

variants with a frequency difference > 0.20 compared to the corresponding ancestry in the 1,000 

Genomes phase 3 data were also removed. Allele coding and marker names were harmonized. 

Meta-analysis of cohort-level summary statistics was conducted using an inverse-variance-

weighted fixed-effect method as implemented in METAL25. Genomic control was applied at the 

cohort level to control for possible inflation in the type I error due to residual population 

stratification. Both overall meta-analysis and ancestry-level meta-analysis were performed.  A 

genome-wide significance threshold was set as P < 5.0 × 10-8.    
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Approximate Conditional Analysis 

Approximate conditional analysis using summary statistics was carried out using GCTA-

Cojo26 (version 1.93.2).  Variants within a 120 kilobase (Kb) region (+/- 60 Kb) of the lead 

signal from the meta-analysis were selected to be included in the conditional analysis.  

Conditional analyses were approximated using ancestry-specific summary statistics from our 

association models and then meta-analyzed using a fixed-effect, inverse variance weighted 

approach, excluding lead variants that only occurred in one ancestry. Linkage disequilibrium 

was estimated using GCTA by providing the 1000-Genomes reference panel using super 

populations ‘AFR’ to represent our African ancestry, ‘EUR’ to represent our European ancestry, 

‘EAS’ to represent our East Asian ancestry, and the union of ‘AMR’, ‘CEU’ and ‘YRI’ populations 

to represent our Hispanic ancestry individuals.  We applied a multiple testing threshold at each 

locus when considering variants for distinct secondary signals by dividing 0.05 by the number of 

variants in the 120 Kb region.  

Fine-Mapping of Distinct Association Signals to Identify 95% Credible Sets 

To fine-map distinct association signals, we computed credible sets with 95% confidence. 

For each variant within +/- 90 Kb of a lead variant with a minor allele count greater than 40, i.e., 

the most associated variants in a region, we computed ancestry-specific Bayes factors in favor 

of association using estimated allelic effect sizes and standard errors from each available 

ancestry-specific meta-analysis. For example, a variant present only in AFR and EUR 

ancestries would have two Bayes factors corresponding to the AFR and EUR ancestry-specific 

analyses. To find the Bayes factor (𝛬௝) for the jth variant in a particular ancestry, we considered  

𝛬௝ = ට ௏ೕ௏ೕାఠ exp ቈ ఠఉ𝑗22𝑉𝑗൫𝑉𝑗+𝜔൯቉ 
where 𝛽௝ and 𝑉௝ represent the effect estimate and variance, respectively, from the ancestry-

specific meta-analysis. The constant 𝜔 describes the prior variance in allelic effects, which we 

set to 0.0462. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.25.23293180doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.25.23293180
http://creativecommons.org/licenses/by-nc-nd/4.0/


After computing the Bayes factors, we then calculated the posterior probability that the jth 

variant drives the association signal in a particular ancestry (𝜋௝) using  

𝜋௝ = 𝛬௝∑ 𝛬௞௡௞ୀଵ  

where n denotes the total number of variants within +/- 90 kilobases of the lead variant. This 

was repeated for all variants in each region. 

Finally, ancestry-specific 95% credible sets for each locus were constructed by sorting the 

variants in a particular locus and ancestry in descending order of probability and finding the 

smallest subset of the top variants whose sum of probabilities exceeded 0.95.  

Functional Annotations 

A genome-wide map of 18 distinct human umbilical vein endothelial cell (HUVEC) chromatin 

state annotations was retrieved from the Common Metabolic Diseases Genome Atlas (CMDGA, 

https://cmdga.org/). These chromatin states were characterized from ENCODE27 ChIP-seq data 

using ChromHMM28 v1.18. Each variant in each ancestry-specific credible set was matched to 

its corresponding chromatin state annotation.  

Colocalization of GWAS and eQTL 

To estimate the posterior probability of our genome-wide significant variants and eQTL 

sharing the identical causal variants, we performed a Bayesian colocalization method as 

implemented in R package ‘coloc’29 (cran.r-project.org/web/packages/coloc). eQTL data were 

obtained from the eQTLGen Consortium30 (31,684 whole blood samples), and GWAS variants 

were extracted from the summary statistics for variants located within one megabase (Mb) of 

the lead GWAS variants. We defined the variants as colocalized when the posterior probability 

of a colocalized signal (PP4) was >0.8 as generally recommended. 

Phenome-Wide Association Analysis 

For the genome-wide significant variants, we performed additional analyses to gain further 

insight into how these variants are linked to the pathophysiology of CVD using phenome-wide 
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association analysis. The Common Metabolic Disease Knowledge Portal was used to 

investigate phenome-wide association (https://hugeamp.org/). As there were 388 phenotypic 

traits (some of which are interrelated) included in the portal, the significance threshold was 

conservatively set as P < 1.2×10-4 (0.05/388).  

Association of known 204 CAD variants 

We tested previously reported 204 CAD variants identified in the general population for 

association with incident CVD in people with T2D10, 12. These variants represent genetic risk 

factors for prevalent CAD in the general population. Adjusting for the multiple comparisons, the 

association's significance threshold was set as P < 0.00024 (0.05/204). The summary statistics, 

including effect size (odds ratio) and the P value of these variants, were reported previously12. In 

addition, a weighted polygenic score based on these 204 known CAD variants was constructed 

as previously described12 and tested for its association with incident CVD in people with T2D.  

 

 

RESULTS 

Study Overview 

A total of 49,230 people with T2D who did not have CVD at diagnosis of T2D or within one 

year of diagnosis were included in the analysis (Table 1). There were 16 participating cohorts 

which were divided into 28 ancestry-specific cohort subgroups (EUR: 14 cohorts, AFR: 8 

cohorts, HIS: 3 cohorts, EAS: 3 cohorts). Participants with European ancestry consisted of 

about 63.2% (N=31,118) of the participants, and the remaining 36.8% (N=18,112) consisted of 

participants with non-European ancestry (AFR 22.6%, 11,124; HIS 8.8%, 4,325; EAS 5.4%, 

2,663). UK Biobank was the largest cohort, representing about 31.8% (N=15,643) of the 

participants. Among 49,230 participants with T2D, 8,956 developed an incident CVD (event rate 

18.2%) over a range of mean follow-up duration between 3.2 and 33.7 years. The CVD event 

rate by ancestry group was highest in those of African ancestry (25.6%). The detailed clinical 
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characteristics of the participants for each cohort, including mean age at diagnosis of T2D, BMI, 

smoking status, blood pressure, lipid level, are shown in Table S6. In general, and in UK 

Biobank, those who developed incident CVD had an earlier age at diagnosis of T2D, higher BMI, 

higher rate of smoking and dyslipidemia (Table S6).  

Loci for Incident CVD in People with T2D 

After genotype level quality control, we tested 15,471,776 variants with overall MAF ≥ 1% for 

association with incident CVD. A plot of expected-by-observed association statistics showed 

minimal inflation (λGC = 1.093 for variants with MAF ≥ 1%, λGC = 1.058 for variants with MAF ≥ 

5%) (Figure 1A). An association plot of variants with CVD in T2D by chromosomal location 

identified three variants associated with incident CVD in people with T2D in genome-wide 

significance (P < 5.0×10-8) (Figure 1B, Table 2). The variant rs147138607 

(chr1:181855562:G>C, MAF 10.7%) had an HR for incident CVD in T2D of 1.23 (95% CI 1.15 – 

1.32, P = 3.6×10-9) and resides in an intergenic region between the genes CACNA1E and 

ZNF648 (Figure 2A). This variant was most significant in those of African ancestry and was at 

least nominally significant in the three other ancestry groups (Table 2). The second most 

significant variant rs77142250 (chr4:11444867:T>C, MAF 1.3%) was present at low frequency 

(1.3%) only in those of African ancestry, had an HR 1.89 (95% CI 1.52 – 2.35, P = 9.9×10-9), 

and resides near the gene HS3ST1 (Figure 2B). The third variant rs335407 

(chr6:155665441:C>T, MAF 5.5%) had an HR of 1.25 (95% CI 1.16 – 1.35, P = 1.58×10-8), 

resides in an intergenic region between the genes TFB1M and NOX3 (Figure 2C). This variant 

was significantly associated with increased risk of CVD in those of European or African ancestry 

and showed a consistent direction of effects across all ancestry groups. An approximate 

conditional analysis of these three index variants at each of the three regions of interest showed 

no evidence of secondary signals (Figure S1). 

In the fully adjusted model, where covariates of cardiovascular risk factors were included, the 

statistical significance of the above three variants decreased, which was expected because of 
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the reduced  sample size. However, the effect size remained similar. We found two additional 

genome-wide significant variants that were significant in the full model (Table S7). One was an 

insertion/deletion variant, rs140159474 (chr1:181836968:T>TA, MAF 11.5%) which had an HR 

1.23 (95% CI 1.14 – 1.33, P = 5.0×10-8). This variant was in linkage disequilibrium with the 

rs147138607 variant, which was significant in the basic model. The second variant was 

rs76919663 (chr12:61625023:A>G) and was present only in those of African ancestry or 

Hispanic ancestry, had  an HR 1.48 (95% CI 1.30 – 1.67, P = 9.8×10-10). The nearest gene to 

this variant was TAFA2.   

Insights from Downstream Analysis 

We performed fine-mapping analysis for each of the three regions to narrow the number of 

potentially causal variants using credible set analysis31. We constructed a total of nine credible 

sets: four for the region on chromosome 1, one for chromosome 4, and four for chromosome 6. 

Each credible set accounted for ≥ 95% of the posterior probability of association with T2D in 

CVD in its corresponding ancestry-specific analysis. The median credible set size (i.e., number 

of variants included) for the chromosome 1 locus was 468, with a minimum size of 28 (AFR), 

and a maximum size of 816 (HIS). Likewise, the median size for the chromosome 6 locus was 

637, with a minimum size of 42 (EUR), and a maximum size of 867 (AFR). However, the 

chromosome 4 credible set only contained 4 variants: rs77142250, rs114281229, rs7677123, 

and rs77129258. Small credible sets like this are favorable for prioritizing variants for functional 

follow-up.  

Functional interrogation for the three loci included chromatin state annotations from HUVEC 

cell lines, a system relevant to endothelial function, atherosclerosis, and CVD (Figure S2). The 

chromosome 4 locus contained narrow bands of transcription and enhancer annotations near 

HS3ST1 and wider bands dispersed upstream. One of the four variants in the credible set, 

rs114281229, falls within a region containing an active enhancer annotation. Additionally, 

rs77129258 resides in a region of weak transcription. Given their proximity, rs114281229 and 
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rs77129258 may affect expression of HS3ST1, but further investigation is required to 

substantiate this. The chromosome 6 locus contained a wide region of active annotations near 

TFB1M and a few smaller regions near NOX3, but the size of each credible set in this region 

was too large to make meaningful functional prioritizations. The chromosome 1 locus contained 

mostly inaccessible quiescent annotations, with narrow regions of zinc finger protein (ZNF) 

annotations dispersed throughout. 

We used colocalization with expression QTL data from the eQTLGen Consortium to further 

characterize the three new loci29. We found chromosome 6 rs335407 to be a significant eQTL 

for TIAM2 in peripheral leukocytes P = 7.71×10-238. TIAM2 is essential for endothelial barrier 

and cell-cell contact maintenance32. However, posterior probabilities from colocalization analysis 

did not support rs335407 as causal for both incident CVD and expression of TIAM2. Using a 

phenome-wide association analysis, we surveyed other phenotypes associated with the three 

novel loci by interrogating the Common Metabolic Disease Knowledge Portal. Metabolic 

phenotypes nominally (P < 0.05) associated included, for chromosome 1 rs147138607, small 

artery occlusion and stroke; for chromosome 4 rs7714225, sleep with oxyhemoglobin saturation 

under 90% and BMI; and for chromosome 6 rs335407, BMI and snoring (Table S8). 

 
Role of Known CAD Variants in People with T2D 
 

We investigated 204 variants of CAD identified in the general population CAD10, 12 for its 

association with CAD in people with T2D (Table S9). Among these variants, we observed 

nominally significant associations with CAD in people with T2D for 38 variants, which included 

five that were significant after Bonferroni correction (Figure 3A). These include rs9349379 at 

PHACTR1 locus, rs2891168 at CDKN2A/2B locus, rs111245230 at SVEP1 locus,  rs11057830 

at SCARB1 locus, and rs11838776 at COL4A1/A2. Among the nominally significant 38 variants, 

35 had consistent dirrection of association for CAD in people with T2D and in the general 

population (binomial P=3.1×10-8). For the 204 variants, we further observed consistency in the 
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direction of association for risk of CVD between the general population and people with T2D 

with Spearman coefficient 0.51, P=7.2×10-15 (Figure 3B). Next, we modeled a polygenic score 

composed of these 204 CAD variants and used this in a model for incident CVD in T2D (Table 

3). The CAD polygenic score was associated with increased CVD in people with T2D, with an 

estimated HR of 1.14 (95% CI 1.12 – 1.16) per 1 SD increase. We showed that the association 

between the CAD polygenic score and CVD differed by ancestry groups (non-significant in East 

Asians if European derived summary statistics was used). Overall, one standard deviation 

increase in polygenic score was associated with a 14% increased risk (HR 1.14, 95% CI 1.12 – 

1.16) of CVD in people with T2D. 

 

DISCUSSION 
 

In this study, we sought to identify novel genetic loci associated with incident CVD in people 

with T2D by performing a time-to-event GWAS. We discovered three distinct variants that 

reached genome-wide significance: rs147138607 on chromosome 1 between CACNA1E and 

ZNF648, rs77142250 on chromosome 4 near HS3ST1, and rs335407 on chromosome 6 

between TFB1M and NOX3. All were significant in African ancestry while rs147138607 and 

rs335407 were also at least nominally significant in European ancestry. None of these variants 

were significantly associated with CVD in the general population. We found that most CAD 

variants already known from cross-sectional GWAS in the general population were also 

associated with incident CVD events in people with T2D, and that a polygenic score composed 

of 204 CAD variants was associated with incident CVD. To the best of our knowledge, this is the 

first large-scale genetic association study to investigate genetic risk factors of incident CVD 

specifically in people with T2D. 

The main objective of this study was to identify genetic variants that could explain the excess 

risk of CVD in people with T2D. We show that people with T2D are enriched with genetic risk 
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factors of CAD observed in the general population: 1) there was an excess number of common 

single variants known to be associated with CAD in people with T2D, and 2) polygenic score 

composed of these variants were significantly associated with incident CVD in people with T2D. 

Furthermore, we identified genetic loci associated with incident CVD, specifically in people with 

T2D. These variants were not identified as genetic risk factors of CVD in the general population. 

Taken together, we show that the excess CVD risk in people with T2D is conferred at least in 

part by excess of known CAD variants and variants that specifically exert their effect in T2D. 

The locus on chromosome 1 contained narrow regions of ZNF annotations in a largely 

quiescent region of inaccessible chromatin. This region has previously been shown to contain a 

SNP (rs10911021, 226 Kb distal to rs181855562 with R2 0.015) with significant gene-by-

diabetes synergism on CVD risk33 and all-cause mortality in people with T2D34. Located 

between ZNF648 and GLUL, the rs10911021 variant has been characterized by decreased 

expression of the GLUL gene in human endothelial cells and lower pyroglutamic-to-glutamic 

acid ratio compared to the protective allele homozygotes, suggesting a mechanistic link 

between glutamic acid metabolism and CVD risk among people with diabetes35. By contrast, not 

much is known about the role of ZNF648 itself on T2D and CVD risk, although it has been 

shown to be a highly conserved gene across species and is essential for erythroid and 

megakaryocyte differentiation36. Further studies are needed to provide mechanistic insights on 

the potential link between this locus and CVD risk in T2D.   

On the chromosome 4 locus, we identified two variants (rs114281229 and rs77129258) in 95% 

credible set that may play a role in the expression of HS3ST1 (Heparan Sulfate-Glucosamine 3-

Sulfotransferase 1), a sulfated glycosaminoglycan involved in mediating the activities of 

leukocytes during inflammation through cellular differentiation, proliferation, and homeostasis37. 

HS3ST1 plays a significant role in the insulin secretory pathway through its effects on 

membrane depolarization of pancreatic β-cells38. An intronic SNP of HS3ST1 (rs16881446) has 

previously been implicated in CAD severity and CV events in a candidate gene analysis37. One 
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of the variants included in the credible set in our study, rs114281229, fell within a region 

containing an active enhancer annotation, while the other variant, rs77129258, fell within a 

region of weak transcription. These findings increase the likelihood that these variants play an 

important role in the expression of HS3ST1, which would need to be verified with functional 

assays and in vivo models of T2D. 

Although the size of the credible sets near the TFB1M and NOX3 genes on chromosome 6 

was too large to identify specific variants or make functional prioritizations, the rs335407 SNP 

identified in our study is a known significant eQTL for the TIAM2 gene in peripheral leukocytes30. 

TIAM2 (T-cell lymphoma invasion and metastasis 2) is a RAC1 guanine nucleotide exchange 

factor essential for endothelial barrier and cell-cell contact maintenance32. Given its importance 

in maintaining endothelial cell integrity, TIAM2 may play an important role in mediating the 

effects of CVD risk in T2D. Additional studies are needed to validate these findings.  

The strengths of this study include the use of time-to-event GWAS for incident CVD rather 

than performing conventional case-control analysis. This allows us to dissect the temporal 

relationship between T2D and CVD and assures that T2D qualifies as an exposure variable for 

CVD and capture CVD events that occur specifically after T2D diagnosis. As far as we are 

aware of, we have gathered the largest number of T2D samples (N=49,230) with information on 

incident CVD events (overall event rate 18.2%, N=8,956). We leveraged large-scale biobanks 

and used age at diagnosis of T2D and CVD event to construct Cox proportional hazards models 

with observation time defined as years between age at diagnosis of T2D and CVD or last follow-

up. This study also benefits from the fact that we included samples from different ancestries and 

performed a multi-ancestry meta-analysis. As many as 36.8% of the participants were from non-

European ancestry. Multi-ancestry meta-analysis is known to increase power where association 

signal is shared across ancestry groups and improves fine-mapping resolution39.   

There are certain limitations in this study. First, although we compiled a large number of T2D 

cases with information on incident CVD, the sample size was still modest. We had limited 
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statistical power compared to the latest GWAS with a case-control design that included more 

than one million participants40. Beyond the three robust association signals we identified, there 

are likely to be variants lying below the significance threshold. The summary results of our study, 

which are publicly available on the Common Metabolic Disease Knowledge Portal 

(https://hugeamp.org), provide a useful resource for further validation and replication. Second, 

we excluded participants having CVD prior to or within one year of T2D diagnosis. Participants 

with early onset CVD might have been excluded, and the role of genetic risk factors of CVD 

discovered in the general population would have been underestimated. However, our focus was 

to identify genetic risk factors that are specific in people with T2D which could explain the 

excess risk of CVD, which is the main cause of morbidity and mortality. Finally, there were 

limitations in performing downstream analysis with our multi-ancestry GWAS results. Most of the 

publicly available resources, such as GTEx, were developed from the genetic information from 

European samples, and many of the low-frequency variants in African Americans were absent. 

In addition, statistical methods for fine mapping, eQTL analysis, and colocalization were not 

optimized to account for the different LD patterns in multi-ancestry analysis.  

In conclusion, we conducted a time-to-event GWAS to identify genetic risk factors of CVD in 

people with T2D using multi-ancestry cohorts and biobanks. We discovered three loci that are 

robustly associated with incident CVD and show that known CAD variants identified in the 

general population are also enriched in people with T2D. These genetic findings might partially 

explain the excess risk of CVD in people with T2D. Even though the three loci warrant further 

replication and validation, they point to novel targets for early prevention and treatment of CVD 

in people with T2D. 

 
 
 
FIGURE LEGENDS 
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Figure 1. QQ plot and Manhattan plot of the time-to-event GWAS for incident CVD in 
people with T2D.  A, QQ plot showing the distribution of the observed P values from the meta-
analysis of GWAS result against the expected distribution under the null hypothesis. The gray 
zone indicates the 95% CI. λGC was 1.093 for variants with MAF ≥ 1% and λGC was 1.058 for 
variants with MAF ≥ 5%. B, Manhattan plot depicting the significance of all the variants after 
meta-analysis of GWAS results. SNP locations are plotted on the x-axis according to their 
chromosomal position. The negative log10 of P values of time-to-event analysis based on Cox 
proportional hazard model under the additive model are plotted on the y-axis. Dark dots 
highlight the significance of association for the previously known 204 CAD variants identified in 
the general population. 
 
Figure 2. Regional association plots for the three genome-wide significant variants.  A, 
rs147138607 near CACNA1E and ZNF648. B, rs77142250 near HS3ST1. C, rs335407 near 
TFB1M and NOX3. The hash marks above the panel represent the position of each SNP that 
was genotyped or imputed. The negative log10 of P values from the Cox regression are shown in 
the y-axis. Estimated recombination rates are plotted to reflect recombination hot spots. The 
SNPs in LD with the most significant SNP are color coded to represent their strength of LD 
based on Europeans for A, and C, and Africans for B.  
 
Figure 3. Association of previously identified 204 CAD variants with incident CVD in 
people with T2D.  A, QQ plot showing the distribution of the observed P values for the 204 
CAD variants with risk of incident CVD in people with T2D against the expected distribution 
under the null hypothesis. The red dots highlight five variants that were significantly associated 
with incident CVD after Bonferroni correction. B, Comparison of the effect size of known 204 
CAD variants in the general population and incident CVD in people with T2D. Effect size of the 
known 204 CAD variants for prevalent CAD in the general population (x-axis, β-coefficient from 
logistic regression analysis) and incident CVD in people with T2D (y-axis, β-coefficient from Cox 
regression analysis) are plotted. There was a significant correlation between the effect sizes 
(Spearman coefficient 0.509, P=7.2x10-15). The red dots highlight 32 variants that were 
nominally (P<0.05) associated with incident CVD and had same direction of association in the 
general population. 
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Data Availability 
Gentoype data and phenotypes for the participating cohorts of the CHARGE consortium are 

available via the database of Genotypes and Phenotypes (dbGAP) and the corresponding 
author upon reasonable request. Summary statistics of the study results will be available on the 
Common Metabolic Disease Knowledge Portal (https://hugeamp.org). 
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Table 1. Sample size and event rate according to ancestry and cohort. 

Ancestry Cohort Total (N) Event (N) Event Rate (%) 

European/European 
American 

ARIC 2,184 543 24.9 
BIOME 851 160 18.8 
CHS 379 225 59.4 
FHS 547 185 33.8 
MESA 392 64 16.3 
MGB 1,161 389 33.5 
PMBB 603 244 40.5 
PROSPER 452 39 8.6 
REGARDS 303 195 64.4 
ROTTERDAM 611 98 16 
SANFORD 2,062 174 8.4 
UKBB 15,643 1,499 9.6 
WGHS 2,043 105 5.1 
WHI 3,887 998 25.7 
Subtotal 31,118 (63.2%) 4,918 (54.9%) 15.8 

African American 

ARIC 1,142 310 27.1 
BIOME 1,764 467 26.5 
CHS 130 76 58.5 
JHS 726 92 12.7 
MESA 508 85 16.7 
PMBB 1,242 388 31.2 
REGARDS 2,483 733 29.5 
WHI 3,129 693 22.1 
Subtotal 11,124 (22.6%) 2,844 (31.8%) 25.6 

Hispanic/Latino 

BIOME 2,681 668 24.9 
MESA 482 89 18.5 
WHI 1,162 177 15.2 
Subtotal 4,325 (8.8%) 934 (10.4%) 21.6 

East Asian 

KOGES 2,317 185 8.0 
MESA 194 42 21.6 
WHI 152 33 21.7 
Subtotal 2,663 (5.4%) 260 (2.9%) 9.8 

Total 49,230 8,956 18.2 
A total of 49,230 participants with T2D from 16 cohorts and of multiple ancestries were included 
in this study: 31,118 (63.2%) of European, 11,124 (22.6%) of African American, 4,325 (8.8%) of 
Hispanic/Latino, and 2,663 (5.4%) of East Asian ancestry. The total incident CVD event rate 
was 18.2% with those of African ancestry having the highest event rate of 25.6%. ARIC, 
Atherosclerosis Risk in Communities Study; BIOME, BioMe BioBank; CHS, Cardiovascular 
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Health Study; FHS, Framingham Heart Study; JHS, Jackson Heart Study; KOGES, Korean 
Genome and Epidemiology Study; MESA, Multi-Ethnic Study of Atherosclerosis; MGB, Mass 
General Brigham Biobank ; PMBB, Penn Medicine BioBank; PROSPER, Prospective Study of 
Pravastatin in the Elderly at Risk; REGARDS, Reasons for Geographic and Racial Differences 
in Stroke Study; ROTTERDAM, Rotterdam Study; SANFORD, Sanford Health; UKBB, UK 
Biobank; WGHS, Women's Genome Health Study; and WHI, Women's Health Initiative. 
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Table 2. Genetic variants significantly associated with incident CVD in people with T2D in basic model. 

CHR POS (rsID) Effect 
Allele Ancestry Frequency HR (95% CI) P Het P Sample 

Size 

1 181855562 
(rs147138607) G>C 

European/European American 0.018 1.20 (1.00-1.44) 0.047 0.756 24,457 

African American 0.127 1.22 (1.12-1.33) 2.3x10-6 0.381 8,929 

Hispanic/Latinx 0.065 1.26 (1.03-1.55) 0.027 0.198 3,163 

East Asian 0.050 1.55 (1.07-2.25) 0.021 0.469 2,511 

Combined 0.107 1.23 (1.15-1.32) 3.6x10-9 0.713 39,060 

4 11444867 
(rs77142250) T>C African American 0.013 1.89 (1.52-2.35) 9.9x10-9 0.363 9,748 

6 155665441 
(rs335407) C>T 

European/European American 0.027 1.33 (1.19-1.50) 1.4x10-3 0.664 29,910 

African American 0.084 1.18 (1.05-1.31) 3.8x10-3 0.891 7,765 

Hispanic/Latinx 0.033 1.34 (0.99-1.81) 0.055 0.596 3,163 

East Asian 0.026 0.92 (0.45-1.88) 0.810 0.541 2,511 

Combined 0.055 1.25 (1.16-1.35) 1.5x10-8 0.859 43,349 
Three distinct genetic loci increased risk of incident CVD among individuals with T2D with genome-wide significance in time-to-event 
analysis (P<5.0x10-8). CHR, chromosome; CI, confidence interval; Het P, significance of heterogeneity; HR, hazard ratio; POS, 
position in GRCh37/hg19; rsID, reference SNP id.  
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Table 3. Association of polygenic score of 204 known CAD variants and incident CVD in 
people with T2D. 

Ancestry HR 95% CI Het P P 

European/European 
American 1.18 1.14 - 1.21 0.010 <1.0x10-16 

African American 1.10 1.05 - 1.15 0.255 8.3x10-5 

Hispanic/Latinx 1.10 1.03 - 1.18 0.474 0.0031 

East Asian 0.99 0.88 - 1.13 0.586 0.982 

Overall 1.14 1.12 - 1.16 0.002 <1.0x10-16 

Polygenic score of 204 CAD variants discovered from the general population was associated 
with increased risk of incident CVD in people with T2D. CI, confidence interval; Het P, 
significance of heterogeneity; HR, hazard ratio.  
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