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Abstract

An accurate and cost-efficient methodology for the estimation of the enthalpies of formation for 

closed-shell compounds composed of C, H, O, and N atoms is presented and validated against 

critically-evaluated experimental data. The computational efficiency is achieved through the use 

of the Resolution-of-Identity (RI) and Domain-Based Local Pair-Natural Orbital Coupled Cluster 

(DLPNO-CCSD(T)) approximations, which results in drastic reduction in both the computational 

cost and the number of necessary steps for a composite quantum chemical method. The expanded 

uncertainty for the proposed methodology evaluated using a data set of 45 thoroughly vetted 

experimental values for molecules containing up to 12 heavy atoms is about 3 kJ·mol−1, 

competitive with those of typical calorimetric measurements. For the compounds within the stated 

scope, the methodology is shown to be superior to a representative, more general, and widely-used 

composite quantum chemical method, G4.

Graphical Abstract

Introduction

The importance of reliable and readily-accessible values for the gas-phase enthalpies of 

formation (ΔfH○) of organic compounds is well recognized. Reliable experimental data 

are available only for a limited number of cases, resulting in a long history of estimation 

yauheni.paulechka@nist.gov; andrei.kazakov@nist.gov. 

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
J Phys Chem A. 2017 June 08; 121(22): 4379–4387. doi:10.1021/acs.jpca.7b03195.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript



method development. The oldest and most widely used approach is the application of 

empirical group-contribution schemes.1–3 Group-contribution methods are very accessible 

as they require almost no computational effort. However, they are limited both in scope 

(group value availability) and in accuracy (additivity approximation within the chosen 

group decomposition scheme). The alternative is the use of quantum chemical methods 

which are free of these limitations. Unlike the group-contribution approaches, quantum 

chemical methods do not yield ΔfH○ directly; it is derived from either the enthalpy of 

atomization or the enthalpy of suitable, preferably isodesmic, reaction (subject to availability 

of reliable experimental enthalpies of formation for all participants except for the one 

under consideration). The former approach can be formally viewed as a direct method, 

given tabulated experimental and precomputed data for all atoms involved. However, strong 

multireference nature of atomic configurations necessitates advanced quantum chemical 

calculations to obtain atomization enthalpies of acceptable accuracy. Practical application 

of quantum chemistry for prediction of ΔfH○ requires at least two steps: one needs 

(1) to obtain the optimized model geometry and its electronic energy (E) and (2) to 

compute vibrational frequencies needed for evaluation of zero-point vibrational energy 

(ZPVE) and the enthalpy change from 0 K to the reference temperature of 298.15 K 

(Δ0
TH). These two calculations are very computationally-expensive and one has to use 

relatively low levels of theory and small basis sets even for moderately-sized compounds. 

Consequently, the energies obtained after optimization are rarely of acceptable accuracy 

and additional steps, in the form of single-point energy calculations at higher levels of 

theory and with larger basis sets, need to be taken. As using both at the same time is often 

also computationally-prohibitive, several multiple-step procedures were proposed, including 

Gaussian (Gn, n=1,2,3,4),4–7 Complete Basis Set (CBS),8–11 HEAT,12,13 ATOMIC,14,15 

and Weizmann (Wn, n=1,2,3,4)16–18 protocols; more sophisticated schemes are under 

active development.19,20 Most of these approaches involve multiple single-point energy 

calculations with balanced combinations of theory levels and basis set sizes, thus reducing 

the overall computational requirements. The final energy is derived from the results of these 

multiple steps. It should also be noted that routine use of high-accuracy HEAT or the Wn 
theories is extremely computationally-expensive on modern mainstream hardware, even for 

moderately-sized molecules. Consequently, the “budget” Gn and CBS procedures presently 

dominate the practical estimation of the enthalpies of formation.21–25 Most methods from 

these families approximate coupled-cluster with single, double, and perturbative triple 

excitations (CCSD(T)) level of theory with large (or extrapolated to infinite) basis set. 

Recent benchmarking for ΔfH○ derived from atomization enthalpies reported the best 

performance at the level of 2.5–3 kJ·mol−1 standard deviation (s) for C/H/O systems22 and 

nitrogen-containing organics,23 although reliable experimental data for nitrogen compounds 

are limited,24,25 making large-scale assessment problematic.

This brings another issue related to the performance assessment: the method performance is 

normally evaluated by comparing predictions with reliable experimental data. The majority 

of ΔfH○ for organic compounds are determined from their energies of combustion measured 

in bomb calorimeters. This requires a few grams of a sample of very high purity, preferably 

above 99.9 %. The high purity is important since the relative standard uncertainty in 

the energies of combustion is typically about 0.02 %. Accurate chemical analysis of the 
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combustion products is also necessary to achieve this data quality. This analysis is especially 

important for large molecules and cases involving heteroatoms. Furthermore, since bomb 

experiments are usually conducted with compounds in the condensed state, the enthalpy of 

vaporization or sublimation is required to derive the gas-phase ΔfH○. While the standard 

uncertainty in gas-phase enthalpies of formation is about 1 kJ·mol−1 for state-of-the-art 

studies, uncertainties of a few kJ·mol−1 are typical for the majority of the competent 
measurements. This imposes a limitation on determination of the performance metrics as 

one cannot achieve accuracy better than that of the data themselves.

The focus of this work is the development of a method for efficient estimation of ΔfH○ 

suitable for practical applications with moderate computational resources. Of note is the 

fact that most of composite (multiple-step) methods rely on numerical solution of exact 

model equations. However, a number of methods based on efficient approximate solution 

exist, and some of them have evolved to a level of practical maturity. Specifically, 

the “Resolution-of-Identity” (RI) (also referred to as “Density-Fitted”, DF) methods can 

substantially accelerate Self-Consistent Field (SCF), Density Functional Theory (DFT), and 

the Møller-Plesset second-order perturbation theory (MP2) calculations.26–28 With the use of 

the RI approximations, the first step of a composite method, geometry optimization, can be 

conducted very efficiently and with significantly larger basis sets as compared to those that 

can be afforded in a course of the canonical solution. Furthermore, if a sufficiently accurate 

and efficient CCSD(T) approximation is available, one can bypass multiple steps and use 

this approximation with a large basis set as a final step of the method. The recently reported 

DLPNO-CCSD(T) approach29–32 offers a very efficient and accurate approximation of 

the canonical CCSD(T) with nearly linear scaling of the computational time with the 

system size. Provided that the approximations are sufficiently accurate for the application 

considered here, a drastic reduction in computational time and memory requirements can be 

achieved or, alternatively, the calculations for very large molecules become possible. This 

represents the basic idea of the proposed method. The specific implementation details are 

given below.

Methods

Computational methods

In this study, we focus on efficient estimation of the enthalpies of formation for closed-

shell compounds with compositions restricted to C, H, O, and N elements. We consider 

two methods, B3LYP-D3(BJ)33 and RI-MP2, for geometry optimization and frequency 

calculations, and DLPNO-CCSD(T) for single-point electronic energy calculations. The 

balanced Karlsruhe “def2” triple- and quadruple-zeta basis sets34 were used in these 

calculations. Additional computations with the popular G4 method, representative of the 

current budget composite methods, were also done for comparison. The direct estimation of 

the enthalpy of formation is performed with the following equation:

ΔfH∘ = E + ZPVE+Δ0
TH − ∑

i = 1

N
niℎi . (1)
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The summation in the last term of Eq. (1) is performed over all chemical elements present in 

the compound (N equals to 4 in this study); ni is the ith element count, and hi is the element-

specific constant. Eq. (1) is mathematically equivalent to the derivation of ΔfH○ using the 

enthalpy of atomization, and hi can be formally defined via computed atomic electronic 

energies, reference enthalpies of formation, and reference enthalpy changes for individual 

atomic species. The present implementation of DLPNO-CCSD(T) does not support open-

shell systems, a restriction that does not apply to gas-phase atomic species in their ground 

states considered in this study. To circumvent this problem, we treat hi as empirical 

constants and determine them from the regression analysis against the experimental data. 

This approach resembles earlier semi-empirical “atom-equivalent” proposals35–37 to convert 

SCF and DFT energies to ΔfH○, but with the full rigor of explicitly accounting for ZPVE 

and Δ0
TH terms. Our tests have shown that exclusion of these terms results in a nearly 4-fold 

increase in the standard deviation between the experiment and the model. It should also 

be noted that absolute DLPNO-CCSD(T) energies used in Eq. (1) are very sensitive to the 

DLPNO threshold parameters;31 consequentely, the hi regression constants depend on them 

as well. “TightPNO” settings31 were used in all cases and need to be applied if hi constants 

reported here are used to predict ΔfH○. The use of default, “NormalPNO” settings31 leads to 

larger data scatter, manifested in about 0.1–0.2 kJ·mol−1 increase in the standard deviation 

and wider ranges of deviations between the experimental and predicted values. Because hi 

constants are determined empirically using the experimental data, they are also expected to 

compensate, at least to some extent, for the deficiencies in the computed ZPVE and the lack 

of the post-CCSD(T)38 contributions.

The computational schemes tested using the present approach are listed in Table 1. They 

include four schemes based on RI-MP2 geometries (“small”, “small+”, “medium”, and 

“large”); the naming follows an increase in the basis sets used in the scheme. Additionally, 

the combination based on B3LYP-D3(BJ) geometry, “medium-DFT”, with the basis sets 

corresponding to the “medium” scheme was tested. Energies in all schemes, except for the 

“small+”, were obtained from a single-point DLPNO-CCSD(T) calculation. The “small+” 

scheme is a test of a more complex composite protocol that includes additional MP2 

energy correction, similar to the Gaussian theory methodology.5 In comparison with the 

“small”, “small+” includes an additional single-point RI-MP2/def2-QZVP calculation, and 

the DLPNO-CCSD(T)/def2-TZVP energy is corrected by the energy increment between the 

corresponding RI-MP2/def2QZVP and RI-MP2/def2-TZVP values.

Finally, two schemes based on the popular G4 procedure were evaluated for comparison. 

The scheme labeled “G4” represents canonical G4 calculation of ΔfH○ via the enthalpy of 

atomization. The scheme “G4-E” is the case when only E was taken from the G4 results, 

while ΔfH○ was computed using Eq. (1) with ZPVE, Δ0
TH, and the hi constants determined 

in the same manner as for the schemes based on DLPNO-CCSD(T).

From the initial tests, it was recognized that the vibrational frequency analysis needed for 

evaluation of ZPVE and Δ0
TH terms posed a significant “bottleneck” in practical RI-MP2 

calculations. To keep the computational costs down, the vibrational frequencies used in 

all proposed schemes (except for the canonical G4) were computed with B3LYP-D3(BJ)/

def2-TZVP using the geometries optimized at the same level. For the schemes based on 
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geometries other than those produced with B3LYP-D3(BJ)/def2-TZVP, this introduces an 

additional optimization step. However, the overall computational effort still remains lower 

as compared to the alternative of using RI-MP2 for frequency calculations. Prior to their 

use, the computed frequencies were scaled with the factors of 0.96 for hydrogen stretches 

and 0.985 for all other modes. The Δ0
TH terms were evaluated using conventional rigid 

rotor - harmonic oscillator approximation,40 and anharmonicities due to internal rotations 

were ignored. The compounds for which anharmonicities can significantly affect Δ0
TH were 

deliberately avoided during the data set selection.

The assignments for scaling factors used here are consistent with reported 

recommendations41–43 and the results do not show strong sensitivity to variations in their 

values. Their fidelity was also tested by including them in the optimization procedure along 

with hi constants. This did not lead to significant performance improvements (standard 

deviation reduction was within 0.1 kJ·mol−1) or variations in the scaling factor for the lower 

frequencies, but resulted in unrealistically low values of the scaling factor for hydrogen 

stretches, about 0.8.

All computations (except for G4) were performed with ORCA44 v.3.0.3 package. The G4 

calculations were performed with Gaussian 09.45

Critically-evaluated data set

The data set of reliable, critically-evaluated experimental enthalpies of formation at 

298.15 K for 45 compounds compiled from evaluated data reviews39,46,47 and from 

the original experimental works is given in Table 2. Only cases with at least two 

independent experimental verifications were considered. If the values in the reviews were 

consistent and no new data were available, the recommended values from the reviews 

were used. Otherwise, the experimental data and their uncertainties were evaluated to 

identify outliers. The uncertainties included contributions due to repeatability, calibration, 

auxiliary compounds, and chemical analysis, if this information was available. The most 

reliable combustion energies were weight-averaged and the condensed-state enthalpies 

of formation were derived using the enthalpies of formation for carbon dioxide and 

water recommended by CODATA.48 The uncertainties in the enthalpies of formation also 

included the uncertainties in ΔfH○ for reference compounds present in the combustion 

equations. Similar analysis for the enthalpies of vaporization and sublimation included 

both calorimetric results and temperature-dependent vapor pressures. An effort was made 

to achieve a balanced representation of different functional groups and to avoid cases 

exhibiting significant conformational ambiguity or, as mentioned earlier, vibrations with 

strong anharmonicity affecting evaluation of Δ0
TH terms. The expanded uncertainties (0.95 

confidence level) were below 2 kJ·mol−1 in all cases. We note that much larger data sets 

with the same restrictions on elemental composition and electronic structure as applied here 

were reported in the literature (e.g., Ref. 37). However, the imposed strict requirements of 

the confirmed experimental accuracy are critical for robust determination of parameters in 

Eq. (1) and meaningful assessment of the method performance, and they firmly constrain 

any significant extension of the present set of compounds. It should be emphasized 
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that development of the present data set (inclusive of the associated critical evaluation 

procedures) is significant and absolutely critical part of the present effort.

Performance metric and uncertainty of predictions

For the main model performance metric, the standard deviation was used:

s = [( ∑
j = 1

M
(ΔfHj

∘, exp − ΔfHj
∘, calc)2)/(M − np)]

1/2
, (2)

where ΔfHj
∘, exp and ΔfHj

∘, calc are experimental and computed enthalpies of formation for 

the jth compound, respectively, M the total number of compounds in the data set, and np 

the number of optimized parameters (equals N for all schemes except for the canonical G4 

method, for which it is zero).

For the model with optimized parameters, the standard uncertainty of the predicted value can 

be estimated as112

u(ΔfH∘) = [s2 + nVnT]1/2, (3)

where n is the row-vector of the chemical element counts in the compound for which the 

prediction was made, and V is the covariance matrix:

V=s2(NTN)−1 . (4)

In the above equation, N is the M × N design matrix of the linear least squares problem 

defined by Eq. (1) and composed of row-vectors of element counts for the compounds in the 

data set. Combining Eqs (3) and (4), one can obtain

u(ΔfH∘) = s[1 + n(NTN)‐1nT]1/2 . (5)

As seen, the expression in the brackets of Eq. (5) has no dependency on the computational 

scheme used in the method; it depends only on compositions of the compounds in the data 

set and the compound for which the estimate is being made. It is, therefore, possible to 

precompute (NTN)−1 matrix for the data set adopted here and use it for a priori assessment 

of the relative contributions of the two terms in Eq. (5) to the standard uncertainty. The 

(NTN)−1 matrix computed for the present data set is given in Table 3. Clearly, some off-

diagonal terms (e.g., carbon-hydrogen) are rather significant, indicative of the obvious fact 

that element counts in closed-shell organic compounds are correlated following the chemical 

bonding patterns. All off-diagonal terms are negative, suggesting the rate of uncertainty 

increase with compound size that is slower than what would be expected for uncorrelated 

element counts. For all compounds in the present data set (with sizes ranging from water to 

biphenyl), the term in Eq. (5) associated with (NTN)−1 can be neglected and u(ΔfH○) N is 

nearly equal to the corresponding standard deviation s.
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Finally, the commonly reported expanded uncertainty (coverage factor of 2, corresponding 

to 0.95 confidence for normal distribution) is twice of the standard uncertainty,

U(ΔfH∘) = 2 × u(ΔfH∘) . (6)

Results and Discussion

The results for all schemes are presented in Table 2 (deviations between the experiment 

and predictions for individual compounds and standard deviations for each scheme), Table 

4 (regression constants hi), and Fig. 1 (box-and-whisker diagram of deviation distributions). 

As seen, the “small” scheme based on def2-TZVP basis set yields rather high standard 

deviation of 4.6 kJ·mol−1 and 3 outliers. Elevating the basis set for the singlepoint 

DLPNO-CCSD(T) energy calculations to def2-QZVP results in dramatic improvement 

over the “small” scheme. All three schemes using DLPNO-CCSD(T)/def2-QZVP energies, 

“medium”, ”large”, and ”medium-DFT”, exhibit very similar performance. They differ only 

in terms of the method used to generate the optimized model geometry; no noticeable 

effect on performance is observed for the choices tested (Table 2 and Fig. 1). The obtained 

regression constants hi are also very close for these three cases (Table 4). The standard 

deviations for “medium”, ”large”, and ”medium-DFT” schemes do not exceed 1.5 kJ·mol−1 

(corresponding to about 3 kJ·mol−1 expanded uncertainty), and they feature no apparent 

outliers. ΔfH○ for all compounds in the set are predicted within 3 kJ·mol−1 for all three 

schemes. Among the three, “medium-DFT” is the most economical computationally and can 

be suggested as the first choice to consider. However, the other two schemes, “medium” 

and ”large”, do not pose significantly higher computational expenses and may be considered 

in situations that can benefit from the use of RI-MP2 geometries over those obtained with 

B3LYP-D3(BJ).

The “small+” scheme presents an interesting dilemma. Formally, it can be viewed as an 

intermediate case between the “small” and the “‘medium” schemes: instead of performing 

full DLPNO-CCSD(T)/def2-QZVP calculation as in the case of the “medium” scheme, 

the DLPNO-CCSD(T)/def2-TZVP energy of “small” scheme is corrected with the RI-MP2 

energy increment due to basis set increase from def2-TZVP to def2-QZVP. The resulting 

standard deviation for the “small+” scheme is nearly the same as those for the three 

DLPNO-CCSD(T)/def2-QZVP-based methods discussed above (only about 0.1 kJ·mol−1 

increase). However, the distribution of deviations between the experimental and predicted 

values for this scheme appears noticeably different (Fig. 1). The deviations span over 

approximately the same range as for the DLPNO-CCSD(T)/def2-QZVP-based schemes, but 

the interquartile range (box size in Fig. 1) is smaller. This implies a narrower middle portion 

of the distribution with higher “tails”. More detailed analysis of the data in Table 2 indicates 

that the changes in the distribution are not uniform across the data set: while improvement 

is generally observed for the hydrocarbons (which represent the largest fraction of the 

data set), it is accompanied by some degradation of predictions for oxygenates and 

especially nitrogen-containing compounds, mainly responsible for the elevated “tails” of the 

distribution. This is not unexpected as oxygen and nitrogen contributions are more affected 

by the basis set size and the theory level. Therefore, although “small+” represents an 
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attractive budget alternative, the DLPNO-CCSD(T)/def2-QZVP-based schemes are expected 

to be more reliable for the general use.

As seen in Fig. 1, the canonical G4 atomization scheme shows significant bias 

(systematically overpredicts ΔfH○) for the present data set, consistent with prior 

observations.22 Two outliers, urea and nitrobenzene, are present. “Parametrization” of G4 

via Eq. (1), “G4-E” scheme, allows more objective comparison of G4 procedure with 

the present results by introducing the same set of adjustable parameters (it should be 

noted, however, that G4 energies already incorporate an empirical term, “the higher-level 

correction”7). “G4-E” does have significantly reduced bias as compared to the canonical 

G4. However, the outliers still persist (nitrobenzene and phenol), resulting in only moderate 

reduction in the standard deviation, from 2.5 to 2.0 kJ·mol−1 (Table 2). With the outliers 

excluded, the remaining compounds are predicted within 4.9 and 3.7 kJ·mol−1 for “G4” 

and “G4-E“ schemes, respectively. Comprehensive and scrupulous analysis of the original 

experimental data for the outliers exhibited by the G4-based methods (urea, phenol, 

and nitrobenzene) carried out in this study did not yield reasons to suspect significant 

experimental errors. Similar problem with the G4 method for nitrobenzene was reported 

previously, and the discrepancy was circumvented with an empirical correction.104 Recent 

extensive G4 investigation114 suggested revision to the experimental ΔfH○ of phenol based 

on their theoretical findings. The reported G4 results114 are consistent with the present 

G4-based predictions. On the other hand, the deviation of the present DLPNO-CCSD(T)/

def2-QZVP-based results from our critically-evaluated experimental value is within 2.8 

kJ·mol−1. Although it is one of the highest deviations for this data set, it remains within two 

standard deviations, giving no sufficient grounds for revision.

Finally, the computational performance of the presented procedures needs to be mentioned. 

The efficiency of the most expensive step, DLPNO-CCSD(T), was documented in detail 

by its developers.32 In the present study with the “TightPNO” settings,31 DLPNOCCSD(T)/

def2-QZVP calculations took about 30 min for butane (4 heavy atoms) and 9.5 hours for 

biphenyl (12 heavy atoms) on 10 Intel Xeon E5–4617 CPU cores at 2.9 GHz with 100 Gb of 

RAM and 7200 rpm mechanical disk RAID storage. This performance opens possibility for 

large-scale applications of the presented methodology over a wide range of molecular sizes.

Conclusions

The proposed computational schemes provide simple and economical approach to estimate 

the enthalpies of formation of closed-shell organic compounds requiring only 3–5 steps 

performed using very cost-efficient approximations. The results obtained with the critically-

evaluated experimental data set containing molecules with up to 12 heavy atoms suggest 

the expanded uncertainties of predicted values to be about 3 kJ·mol−1, well below 4 

kJ·mol−1 of the target “chemical accuracy”19 and competitive with the typical experimental 

uncertainties. For the compounds within the stated scope, the proposed schemes were also 

found to be superior to the more general, budget composite method (G4) widely used at 

present. Due to their efficiency, the schemes can be used for large-scale validation of the 

existing data collections and emerging new data.115 Furthermore, as more accurate and 
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efficient methods become available,116 the approach presented here can be easily upgraded 

via straightforward reparametrization of Eq. (1).
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Figure 1: 
Box-and-whisker diagram of the deviations between the experimental and computed ΔfH○. 

Whiskers indicate data extrema within 1.5 of the interquartile range from the corresponding 

box edges.113 The outliers: ● - nitrobenzene, ◆ - urea, ■ - phenol, ▴ - water, ▾ - carbon 

dioxide, ◇ - acetonitrile. The shaded area represents a 50 % confidence interval (consistent 

with the box sizes) for the state-of-the-art calorimetric measurements corresponding to 0.95 

confidence level of 2 kJ·mol−1.
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Table 1:

Computational schemes testeda

scheme E ZPVE & Δ0
TH

small DLPNO-CCSD(T)/def2-TZVP//RI-MP2/def2-TZVP B3LYP-D3(BJ)/def2-TZVP

medium DLPNO-CCSD(T)/def2-QZVP//RI-MP2/def2-TZVP B3LYP-D3(BJ)/def2-TZVP

large DLPNO-CCSD(T)/def2-QZVP//RI-MP2/def2-QZVP B3LYP-D3(BJ)/def2-TZVP

medium-DFT DLPNO-CCSD(T)/def2-QZVP//B3LYP-D3(BJ)/def2-TZVP B3LYP-D3(BJ)/def2-TZVP

small+ E (small) + A E (RI-MP2)b B3LYP-D3(BJ)/def2-TZVP

G4c G4 G4

G4-E G4 B3LYP-D3(BJ)/def2-TZVP

a unless specified, ΔfH○ were computed via Eq. (1);

b ΔE(RI-MP2)= E(RI-MP2/def2-QZVP//RI-MP2/def2-TZVP)−E(RI-MP2/def2-TZVP//RI-MP2/def2-TZVP);

c ΔfH○ were computed via conventional atomization procedure using atomic data from Ref. 39
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Table 3:

Matrix (NTN)−1 from Eq. (5) computed for the data set listed in Table 2

C H O N

C 0.005073 −0.003146 −0.001 679 −0.000443

H −0.003146 0.002 544 −0.000692 −0.001579

O −0.001679 −0.000 692 0.037142 −0.008760

N −0.000443 −0.001579 −0.008 760 0.103257
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Table 4:

Regression constants −hi in Eq. (1) for the tested computational schemes

−ℎi/kJ ⋅ mol‐1

scheme C H O N

small 99 880.13 1516.17 197071.22 143562.88

medium 99 904.57 1525.81 197129.56 143 605.50

large 99 904.58 1525.78 197129.66 143605.53

medium-DFT 99 904.56 1525.80 197129.63 143605.41

small+ 99 907.55 1527.03 197131.91 143608.06

G4-E 100044.38 1528.35 197275.39 143749.04

J Phys Chem A. Author manuscript; available in PMC 2023 August 04.


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Computational methods
	Critically-evaluated data set
	Performance metric and uncertainty of predictions
	Results and Discussion

	Conclusions
	References
	Figure 1:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

