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Abstract

Acute respiratory distress syndrome (ARDS) is a life-threatening condition, characterized by diffuse inflam-
matory lung injury. Since the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, the most
common cause of ARDS has been the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fection. Both the COVID-19-associated ARDS and the ARDS related to other causes—also defined as classical
ARDS—are burdened by high mortality and morbidity. For these reasons, effective therapeutic interventions
are urgently needed. Among them, inhaled nitric oxide (iNO) has been studied in patients with ARDS since
1993 and it is currently under investigation. In this review, we aim at describing the biological and pharma-
cological rationale of iNO treatment in ARDS by elucidating similarities and differences between classical and
COVID-19 ARDS. Thereafter, we present the available evidence on the use of iNO in clinical practice in both
types of respiratory failure. Overall, iNO seems a promising agent as it could improve the ventilation/perfusion
mismatch, gas exchange impairment, and right ventricular failure, which are reported in ARDS. In addition,
iNO may act as a viricidal agent and prevent lung hyperinflammation and thrombosis of the pulmonary
vasculature in the specific setting of COVID-19 ARDS. However, the current evidence on the effects of iNO on
outcomes is limited and clinical studies are yet to demonstrate any survival benefit by administering iNO in
ARDS.
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Introduction

Acute respiratory distress syndrome (ARDS) is a
life-threatening acute, diffuse, and inflammatory lung

injury of different etiologies and it is characterized by hyp-
oxemia and stiff lungs.1 It affects 86 per 100,000 person-

years and *10%–15% of patients admitted to the intensive
care units (ICUs) have ARDS. The mortality rate ranges from
35% to 46% according to the disease severity.2,3

Currently, the clinical diagnosis is based on the Berlin
definition, which includes the acute onset of the ARDS, the
presence of bilateral lung opacities at chest X-ray or
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computed tomography scan, the alveolar and interstitial ede-
ma—not fully explained by cardiac failure—and the develop-
ment of hypoxemia.4 At the onset of the lung injury, lung
histology is characterized by a diffuse alveolar damage with
interstitial edema and inflammation. Nearly a week later, al-
veolar cell proliferation takes place; some patients enter into a
restorative phase, while others progress to a fibrotic stage.1,5,6

Since the coronavirus disease 2019 (COVID-19) pan-
demic challenged the health care systems worldwide, in-
fection from severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has become one of the most common
causes of ARDS over the last few years. The urge to de-
crease mortality and morbidity from COVID-19 has greatly
increased the production of clinical research, and new
clinical trials were developed to discover effective thera-
peutic agents.7–10

Among the potential therapeutic agents for ARDS, in-
haled nitric oxide (iNO) has been studied in human ARDS
since 1993.11 Since then, iNO was used as a rescue therapy
in critically ill patients with ARDS who showed a limited
response to recommended treatments, such as protective
mechanical ventilation and prone positioning.2,12,13

In this review, we aim to describe the biological and
pharmacological rationale supporting the use of iNO in
ARDS patients. We explored the similarities and differences
between classical and COVID-19 ARDS that may unveil the
potential of iNO treatment in ARDS. In addition, we re-
ported the clinical evidence available so far on the use of
iNO in patients with classical and COVID-19 ARDS.

Methods

Clinical studies on the use of iNO in patients with ARDS
published until February 20, 2023, were searched in the
Medline database. The Mesh terms ‘‘Nitric Oxide,’’ ‘‘Re-
spiratory Distress Syndrome,’’ and ‘‘COVID-19’’ were used
and studies including the definition of ARDS according to
the Berlin’s4 or the American-European Consensus Con-
ference criteria on ARDS14 were considered. Only two
studies, included in a Cochrane meta-analysis,15 did not
meet these criteria.16,17 Priority was given to randomized
controlled trials (RCTs), meta-analysis, and guidelines.
When this evidence was not available, observational studies
and case series were considered. Ongoing clinical trials
were identified through search on clinicaltrials.gov ‘‘Nitric
Oxide’’ was entered as the drug name and ‘‘ARDS’’ was
entered as the disease category. RCTs were preferred over
other study designs. Preclinical studies were included when
helpful to fulfill the aim of the review.

Since the evidence of iNO in COVID-19 ARDS is mainly
limited to case series or small observational studies, we
widened the study search to studies regarding the adminis-
tration of iNO to patients with COVID-19, regardless the
severity of respiratory failure. We also considered other
relevant articles included in the references of other studies
when they were not identified in our primary search (i.e.,
snowballing).

Biology and Pharmacology of NO

NO is a colorless and odorless gas that is endogenously
produced from the oxidation of l-arginine and l-citrulline in
vascular endothelial cells by the constitutive and inducible

NO synthases.18–20 NO diffuses into the vascular smooth
muscle cells and activates soluble guanylyl cyclase, which
catalyzes the production of cyclic guanosine monophosphate
(cGMP). Subsequently, cGMP activates cGMP-dependent
protein kinase, which eventually leads to decreased intra-
cellular calcium and thus relaxed vascular smooth muscle
tone in precapillary resistance arterioles.21 In addition to this
vasodilatory effect, NO has been shown to reduce platelet
aggregation,22 smooth muscle cell proliferation,23 and en-
dothelial leukocyte binding.24

When inhaled, NO rapidly diffuses into the smooth
muscle cells of lung vessels in the ventilated lung areas and
exerts a vasodilation of the pulmonary vasculature. This
vasodilatory effect is selective on the vessels in the venti-
lated areas, since this gas has a short half-life of 2–6 sec-
onds. Indeed, NO is highly reactive and it is rapidly
inactivated either by heme moiety scavenging25 or by oxi-
dation to the more stable nitric dioxide and nitric trioxide,
which lack vasodilatory properties.26–30

At present, iNO is approved by the Food and Drug Ad-
ministration only for the treatment of persistent pulmonary
hypertension of newborns (PPHN) at the dose of 20 ppm up
to 14 days.31 However, it was suggested for the treatment of
a variety of other conditions, such as ischemia/reperfusion
injury,32 pulmonary hypertension,33 hemolysis-induced va-
soconstriction,34 renal failure associated with cardiopulmo-
nary bypass,35 and classical and COVID-19 ARDS.30,36

Classical ARDS

Rationale of iNO in classical ARDS

ARDS is the clinical consequence of the acute lung injury
characterized by the histological hallmark of diffuse alve-
olar damage that is characterized by both the epithelial and
the endothelial damages.37 The latter activates the coagu-
lation cascade and pulmonary capillary thrombosis devel-
ops, and further contributes to the increase in the right
ventricle afterload.5,38 The lung injury undermines the pul-
monary gas exchange as it leads to a ventilation/perfusion
(V/Q) mismatch.39 A constellation of hypoxic pulmonary
vasculature constriction, hypercapnia, acidosis, hemolysis,
vasopressors, hypothermia, endothelial dysfunction, vascu-
lar thrombosis, airway collapse, and hyperinflation during
mechanical ventilation (i.e., airway pressure greater than
capillary perfusion pressure) may all determine an increase
in pulmonary vascular resistances, which is seen in up to
25% of patients with ARDS.40

In the context of ARDS, systemic vasodilators have been
studied.41–44 However, if a systemic vasodilator is admin-
istered, such as NO donors (e.g., sodium nitroprusside, ni-
trates, sildenafil) or prostacyclin, there might be an
indiscriminate vasodilation of the whole pulmonary vascu-
lature. Both vasculature of ventilated and nonventilated lung
areas would be dilated and there would be an increase in the
ventilation-perfusion mismatch leading to worsened respi-
ratory gas exchanges.

Contrarily, iNO may play a role in the treatment of ARDS
as it determines selective vasodilation of vessels in venti-
lated lung units, thus improving the V/Q mismatch. This
selective effect is due to the short half-life of iNO.45 Im-
proved V/Q ratio would be associated with better gas ex-
changes. Moreover, pulmonary vasodilation may decrease
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pulmonary vascular resistances and reduce the right ven-
tricle workload. In addition, a rapid inactivation of iNO
would not affect the systemic vasculature, preventing from
the risk of systemic hypotension and subsequent organ hy-
poperfusion and ischemia.

Overall, iNO may have the following potential thera-
peutic properties in the classical ARDS: (1) enhancement of
the V/Q match by diverting blood flow to ventilated lung
units and therefore improvement of the respiratory gas ex-
change, thanks to a selective pulmonary vasodilatory ef-
fect11,46,47; (2) offloading of the right ventricle and
prevention of its failure, because of pulmonary vasodilation,
which determines a reduction in pulmonary arterial pressure
(PAP) and then a decrease of right ventricle afterload; and
(3) maintenance of patent pulmonary vessels thanks to an-
tiplatelet properties (Fig. 1A–C).

Clinical applications of iNO in classical ARDS

iNO was first tested in humans with ARDS in 1993 by
Rossaint et al.11 Considering increased pulmonary vascular

resistances and intrapulmonary right-to-left shunt key
characteristics of ARDS, the authors assumed that iNO
would have decreased PAP and not affected the systemic
hemodynamics. iNO was administered at 18 and 36 ppm for
40 minutes to 10 consecutive patients. They demonstrated
that iNO significantly decreased PAP from 37 – 3 to
30 – 2 mmHg ( p = 0.008) and intrapulmonary shunting from
36% – 5% to 31% – 5% ( p = 0.028). As hypothesized, iNO
did not alter the systemic arterial pressure, and the cardiac
output remained unchanged. Moreover, during iNO admin-
istration, the ratio of the partial pressure of arterial oxygen
to the fraction of inspired oxygen (PaO2/FiO2) improved
from 152 – 15 to 199 – 23 mmHg ( p = 0.008).

The analysis of V/Q distributions through the multiple
inert-gas-elimination techniques48 showed a redistribution of
pulmonary blood flow from nonventilated lung areas toward
ventilated areas, thus confirming an improved ventilation-
perfusion match during NO inhalation. The effect of iNO
was also compared with the effect of prostacyclin, a systemic
vasodilator. As expected, prostacyclin decreased PAP, but
also worsened intrapulmonary shunt and gas exchanges.

FIG. 1. iNO properties exerted in classic (left side) and COVID-19 (right side) ARDS. In
classic ARDS, iNO exerts the following properties: (A) maintenance of patent pulmonary
vessels thanks to antiplatelet properties; (B) enhancement of the V/Q match by diverting
blood flow to ventilated lung units and therefore improvement of the respiratory gas
exchange, thanks to selective pulmonary vasodilatory effect; (C) offloading of the right
ventricle and prevention of its failure, because of pulmonary vasodilation, which deter-
mines a reduction in PAP and then a decrease of right ventricle afterload. In COVID-19
ARDS—together with the properties described in classic ARDS—iNO has the following
properties: (D) replenishment of the depleted storage of endogenous NO in the presence of
inflammatory induced endothelial dysfunction (i.e., eNOS dysfunction); (E) direct viricidal
activity against SARS-CoV-2; (F) immune modulation and decreased lung inflammation
and prevention of SARS-CoV-2-induced endothelial dysfunction thanks to anti-
inflammatory properties. ARDS, acute respiratory distress syndrome; COVID-19, cor-
onavirus disease 2019; eNOS, endothelial nitric oxide synthase; iNO, inhaled nitric oxide;
PAP, pulmonary arterial pressure; SARS-CoV-2, severe acute respiratory syndrome cor-
onavirus 2; V/Q, ventilation/perfusion.
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The authors also tested prolonged administration of iNO
in 7 out of 10 patients included in the study. iNO was ad-
ministered at 5–20 ppm for 3–53 days for 30 min/day and
was discontinued when the PaO2/FiO2 rose above 250 mmHg
without inhalation of NO. During the intermittent adminis-
tration of iNO, PAP decreased and PaO2/FiO2 improved
consistently, without affecting systemic hemodynamics.

Later, the same group demonstrated that iNO decreases
PAP and improves the right ventricle ejection fraction
(RVEF) in patients with severe ARDS. Indeed, iNO reduced
the mean PAP from 33 – 2 to 28 – 1 mmHg ( p = 0.008) and
increased right ventricular ejection fraction from 28% – 2%
to 32% – 2% ( p = 0.005).49 Similarly, Fierobe et al., in the
same year, showed the beneficial effects of iNO on PAP and
RVEF in severe ARDS in an independent study.50

In view of the improvement of pulmonary hemodynamics
and respiratory gas exchange in patients with ARDS, iNO
was tested in 14 RCTs to detect an effect of this treatment
on mortality.16,17,50–61 These RCTs have been included into
a meta-analysis of 1275 adult and pediatric participants, of
whom 654 received iNO.15 A summary of the RCTs is
presented in Table 1. iNO was administered at doses ranging
from 5 to 80 ppm for a maximum of 30 days. The analysis
showed no significant benefit from iNO, neither on long-
term mortality, defined as the longest mortality measured in
the study (28–90 days) (relative risk [RR] 1.04, 95% con-
fidence interval [CI] 0.9–1.19; I2 statistic = 0%), nor on
mortality at 28 days (RR 1.08, 95% CI 0.92–1.27; I2 sta-
tistic = 0%). No effect on mortality was observed despite the
study population being categorized according to ARDS se-
verity (e.g., moderate and severe).

Regarding the physiologic parameters, the PaO2/FiO2

increased by 15.91 mmHg after iNO administration at 24
hours and mean PAP was significantly lower by 1.76 mmHg
in the iNO group at day 1 compared with control. However,
no difference on physiologic parameters was detected from
day 2 through day 4. No benefits were reported for
ventilator-free days in the iNO-treated group. Therefore, the
authors concluded that there is insufficient evidence to
suggest iNO for the treatment of ARDS. Furthermore, the
same meta-analysis detected a statistically significant in-
crease in renal failure in the iNO groups (RR 1.59, 95% CI
1.17–2.16; I2 statistic = 0%).

Due to the limited evidence of iNO on mortality and the
potential harmful effects, the current guidelines of the
American Thoracic Society for the treatment of ARDS do
not make any recommendation about the use of iNO.
Nevertheless, inhaled vasodilators are highlighted as an is-
sue to be addressed in the future iterations of the guide-
lines.13 Instead, the U.K. Faculty of Intensive Care Medicine
guidelines make a weak recommendation against the use of
iNO in ARDS.62 However, despite iNO not being part of the
routine therapy of patients with ARDS, iNO is considered a
‘‘rescue’’ strategy for severe hypoxemia. The use of iNO in
patients with moderate-to-severe ARDS is in <1 out of 10
patients worldwide.63

ARDS is a heterogeneous clinical condition that may
affect patients with diverse clinical characteristics and with
a potential different immune response to the lung injury. In
the meta-analysis by Gebistorf et al., the RCTs included
evaluated the role of iNO in the overall population of pa-
tients with ARDS.15 However, whether iNO would play a

role in the presence of (1) different etiologies of ARDS64;
(2) sex65; (3) patient comorbidities66 and organ dysfunc-
tions67,68; (4) management69,70; or (5) limitation of care71

has not been investigated yet. ARDS and patients’ charac-
teristics may differently affect the potential therapeutic ef-
fect of iNO. Despite iNO having failed to demonstrate a
generalizable clinical benefit in ARDS on outcomes, it may
still play a role in a selected subgroup of patients.

The current phenotyping of ARDS—which is based on
different clinical and biological features within the same
definition of ARDS,72 may help to understand the failure of
a number of pharmacological clinical trials.73 Indeed, the
definition of trial’s populations on phenotyping or other
patient’s characteristics known before randomization, also
referred as population enrichment,74,75 may decrease the
population heterogeneity and increase the trial sensitivity
and clarify which patients may benefit most from different
treatments including iNO.9,72,76,77

In addition, other aspects of iNO therapy in ARDS need
clarification. Indeed, no consensus on the dose of iNO has
been reached. A study by Iotti et al. showed a beneficial
effect of iNO on oxygenation in ARDS even at very-low
doses (0.5 ppm) and a plateau effect was observed at
5 ppm.78 Similarly, another study showed a peak effect on
oxygenation at 10 ppm.55 However, iNO was administered
up to 80 ppm in other studies and, so far, the optimal dosing
has not been determined. Also, the timing of iNO treatment
and its duration are to be explored yet. Particularly, iNO may
induce sensitization over time and lower doses may be re-
quired to obtain the same improvement on both oxygenation
and mean PAP after some days of treatment. Maintaining the
same dose showed a deterioration in oxygenation.55

Therefore, ARDS phenotypes—that summarize biologi-
cal characteristics of the disease and clinical characteristics
of the patients—iNO doses, and timing of administration are
an open field of research that should be considered in future
clinical trials to elucidate the role of iNO in ARDS.

COVID-19 ARDS

Rationale of iNO in COVID-19-associated ARDS

In the context of COVID-19, a worrisome complication of
this disease is ARDS. In this condition, the etiology of
ARDS is the SARS-CoV-2 infection, which determines
pneumonia and, in some cases, progresses to ARDS.

Opposed to classical ARDS, where a linear relationship
between lung compliance and hypoxemia is often observed,
in COVID-19 ARDS there is a dissociation between severe
hypoxemia and lung compliance. This could be explained
by a loss of the lung perfusion regulation and hypoxic va-
soconstriction, which worsens the V/Q mismatch.79,80 In
this context, iNO might play a role in improving the V/Q
mismatch, and therefore, the gas exchanges in severely
COVID-19 hypoxemic patients.81 Indeed, critically ill
COVID-19 patients were shown to have decreased venous
erythrocyte levels of 5-a-nitrosyl-hemoglobin (HbNO), a
marker of reduced endogenous NO bioavailability and a
proxy of severe endothelial dysfunction. In addition, HbNO
directly correlated with respiratory gas exchanges in terms
of PaO2/FiO2 ratio.82,83

Moreover, as severely hypoxemic patients have high
probability of requiring veno-venous extracorporeal
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membrane oxygenation (V-V ECMO) and the high ICU
admission rate of COVID-19 patients may determine a
limitation of resources, iNO may serve as an alternative to
V-V ECMO or as a bridge to lung healing.7,84

In addition, iNO may be helpful in COVID-19 treatment
as it demonstrated to have some antiviral activity.85 This
potential effect is supported by an in vitro study, in which
SARS-CoV-infected cells were exposed to S-nitroso-N-
acetylpenicillamine (SNAP), an NO donor compound.
SNAP was able to inhibit SARS-CoV replication.86 Another
study confirmed this activity on SARS-CoV-infected cells
and also demonstrated that NO produced by stimulation of
NOS determined the same antiviral effect.87 A similar effect
was observed also in SARS-CoV-2-infected cells exposed to
SNAP. Indeed, SNAP inhibited SARS-CoV-2 replication in
a dose-dependent manner and delayed or completely pre-
vented the development of a viral cytopathic effect.88 This
direct antiviral activity of NO has been demonstrated for a
lot of other viruses, both respiratory89 and nonrespiratory
viruses.90 Also, NO reacts with other molecules to produce
highly reactive species, such as dinitrogen trioxide, perox-
ynitrite, and nitrogen dioxide (NO2).

These reactive species may have a direct antiviral effect,
although oxidative stress and cytotoxicity may be a downside.
Interestingly, a trial performed in Beijing in 2002 in six patients
affected by severe acute respiratory syndrome by SARS-CoV
showed that the administration of iNO up to 30 ppm resulted
not only in improved oxygenation and less respiratory support,
but also in decreased lung infiltrates compared with controls.
Moreover, Moni et al. investigated the effect of iNO on viral
clearance in patients with hypoxemic COVID-19. Viral
clearance was obtained on day 5 in all the patients treated with
iNO and in 72% of controls ( p < 0.01).91 These results may
support a direct effect of iNO on SARS-CoV-2 along with the
pulmonary vasodilatory effect.92

Apart from the antiviral activity, NO may modulate the
host immune response during the viral infection, by induc-
ing a suppression of immune cell activity that may be as-
sociated with an inadequate immune response to infection.
On the contrary, this immune response regulation could
decrease the inflammatory-mediated tissue injury.93

Moreover, from a histopathological point of view, pul-
monary hyperinflammation is a key element in COVID-19
ARDS. This condition leads to endothelial inflammation,
vasculitis, and vascular microthrombi.94 In this situation,
iNO may decrease the endothelial damage and the vascular
thrombosis thanks to its anti-inflammatory and antiaggregant
properties22 and prevention of leukocyte adhesion.24 Indeed,
iNO is known to act on the coagulation cascade by increasing
the bleeding time through the inhibition of platelet aggrega-
tion. This potential adverse effect may be advantageous in a
prothrombotic condition as in COVID-19.7,95

Patients with COVID-19 were also found to have lower
levels of endogenous NO, compared with healthy con-
trols.82,96,97 This could be determined by endothelial oxi-
dative stress and by inhibition of the angiotensin converting
enzyme 2 receptor (ACE-2 receptor) in the lungs by the
SARS-CoV-2. In fact, the ACE-2 receptor is involved in a
metabolic pathway that enhances NO production and it is
vasoprotective. iNO could therefore subsidize the shortage
of endogenous NO and exert the beneficial properties above
mentioned.98

Lastly, in patients on V-V ECMO that could present he-
molysis induced by the extracorporeal therapy, free hemo-
globin may deplete endogenous NO and lead to
vasoconstriction. Even in this case, iNO could replenish the
depleted endogenous NO.

Overall—together with the properties exerted in classic
ARDS—iNO may have diverse potential benefits in the
treatment of COVID-19 ARDS: (1) direct viricidal activity
against SARS-CoV-2; (2) immune modulation and de-
creased lung inflammation and prevention of SARS-CoV-2-
induced endothelial dysfunction thanks to anti-inflammatory
properties; and (3) replenishment of the depleted storage of
endogenous NO in the presence of inflammatory-induced
endothelial dysfunction (i.e., endothelial NO synthase dys-
function) (Fig. 1D–F).

Clinical applications of iNO in COVID-19 ARDS

To date, data on the administration of iNO in COVID-19-
associated ARDS are limited and conflicting. The available
evidence consists of observational studies, which are sum-
marized in Table 2. All the studies have a low quality of
evidence, due to the observational nature and the small
sample size, which do not allow generalizability and cause–
effect interpretation. RCTs aiming to determine whether iNO
improves clinical course, and is safe and feasible in patients
with COVID-19, are currently ongoing (NCT04476992,
NCT04460183, NCT04383002, NCT04306393).99 So far, no
RCT was registered on clinicaltrials.gov with the primary
endpoint to detect an effect on mortality by administering
iNO in COVID-19 ARDS.

In the available studies, the iNO dose ranged from a
minimum of 10 ppm to a maximum of 80 ppm and iNO was
started at different time points. After intubation, all the
patients received conventional protective mechanical ven-
tilation and, in some cases, underwent prone positioning,
before iNO. iNO was often used as a rescue therapy and/or
as a test for 30 minutes to identify patients who could
benefit in terms of respiratory gas exchange.

In all the studies, patients had PaO2/FiO2 below
150 mmHg, consistent with a moderate or severe ARDS,
according to the Berlin definition.4

Some studies showed an improvement in arterial oxy-
genation,100–102 while others did not detect any significant
difference (Fig. 2).103–111 Of note, Tavazzi et al. adminis-
tered iNO at 10 ppm to patients admitted to ICU for
COVID-19 pneumonia and a PaO2/FiO2 <150 mmHg.
Responders to iNO—defined as patients whose PaO2/FiO2

increased by 20% over 30 minutes after iNO administration—
were 65%. Responders had a lower PaO2/FiO2 at baseline
compared with nonresponders (70 vs. 134, p < 0.0001, re-
spectively). Interestingly, a trend toward a larger improve-
ment of oxygenation was observed in patients with a
dysfunction of the right ventricle compared with patients
with normal right ventricle function (PaO2/FiO2 increase
24.1% vs. 3.3%, p = 0.069), suggesting a beneficial effect of
NO on right ventricle function. The authors supposed that
the limited improvement in oxygenation in patients without
right ventricle dysfunction would be a consequence of the
endothelial injury, which could lead to a decreased sensi-
tivity to NO.108 The effect of iNO on the right ventricle was
also evaluated by Bonizzoli et al. aimed in a small group of
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patients with COVID-19-associated ARDS. No change in
right ventricle function, dimension, and PAP, as determined
by cardiac ultrasound, was identified after iNO administra-
tion.110 In a multicenter retrospective propensity score-
matched study, Al Sulaiman et al. showed that iNO at median
doses of 40 (32.5–40.0) ppm was associated with improved
oxygenation parameters after 24 hours of treatment.112

Opposite results on oxygenation come from a case–con-
trol study that showed a better response rate in patients with
ARDS not related to COVID-19 compared with patients
with COVID-19-associated ARDS.104 Indeed, PaO2/FiO2

improvement was 3% in patients with COVID-19-associated
ARDS and 47% in patients with classical ARDS.

In another study, Bagate et al. found no change of PaO2/
FiO2 ratio after iNO treatment, however, when iNO was
administered along with almitrine, the PaO2/FiO2 ratio var-
ied from 102 to 180 mmHg ( p < 0.01).107 Almitrine, a pul-
monary vasoconstrictor, may enhance the iNO effect to
divert flow to better ventilated lung areas and thus improving
the V/Q matching. However, a similar study found no effect
on oxygenation by combining iNO and almitrine.105

Of note, in these studies, iNO was often administered as a
‘‘rescue’’ therapy, after implementing protective mechanical
ventilation and prone positioning. However, whether the
aim of iNO treatment is the viricidal and anti-inflammatory
effect in COVID-19-associated ARDS, it is plausible that an
early iNO administration could prevent the progression of
the disease. For sure, further investigation is warranted to
clarify the correct timing to initiate iNO in COVID-19
ARDS. Indeed, iNO could be considered in spontaneous
breathing patients as a therapeutic agent to prevent the need
of mechanical ventilation and to speed up the resolution of
COVID-19.

In this context, iNO was administered at high doses
(160 ppm), twice a day for 30 minutes, in spontaneously
breathing patients with COVID-19 and tachypnea. iNO
decreased respiratory symptoms and improved oxygenation
in hypoxic patients.113,114 iNO was also administered to 20
pregnant patients hospitalized for severe COVID-19 pneu-

monia. These patients had 63.2% (95% CI 36.2%–95.4%;
p < 0.001) more oxygen supplementation-free days com-
pared with pregnant women who did not receive iNO, and
no iNO adverse event was reported.115

iNO was also administered as a ‘‘rescue’’ and ‘‘bridge’’
therapy to consent transport of critically ill patients with
ARDS from community-based hospitals to tertiary care
centers. Indeed, iNO administration during transport seemed
feasible and safe in 50 patients, of whom 39 had COVID-19
ARDS.116 Another case series suggested the feasibility of
iNO administration during transportation.117

As aforementioned, due to the paucity of data and their
limited quality, no efficacy of iNO in COVID-19-associated
ARDS can be speculated. RCTs could determine the role of
iNO on outcome in this specific subtype of ARDS patients.
Results from a multicenter single-blinded RCT, aiming to
determine whether iNO may improve arterial oxygenation
in patients with hypoxic SARS-CoV-2, are awaited
(NCT04306393). Moreover, population enrichment should
be considered also in the COVID-19 ARDS population, as
preliminary data described different COVID-19 clinical
phenotypes that may explain different outcomes and make
the study population more homogeneous.118

iNO toxicity and adverse events

Along with the potential benefits of iNO in ARDS patients,
the toxicity and adverse effects of iNO should be considered.
Indeed, iNO may react with superoxide anion, commonly
produced in the presence of inflammation, and generating
peroxynitrite, a highly reactive oxidant species, which in turn
is able to interfere with mitochondrial respiration and lung
surfactant function.119–121 However, these effects have not
been well investigated in humans. In addition, iNO is oxidated
to NO2, an airway irritant and can lead to pulmonary edema.
The exposure limits of NO2 are 5 and 20 ppm, considered
immediately dangerous to life or health.122 NO2 levels of
5.6 ppm were reported in a patient receiving intermittent iNO
at 160 ppm out of 343 iNO administrations.123,124

FIG. 2. Changes of PaO2/FiO2 ratio before and after iNO administration in patients with
COVID-19 ARDS. (A) Studies that showed a significant change in PaO2/FiO2 ratio after iNO
administration. (B) Studies that did not show a significant change in PaO2/FiO2 ratio after iNO
administration. Data represent mean or median according to the data presentation in the original
study.
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Nevertheless, these doses are by far higher than the
amount of iNO usually administered in ARDS patients.
Measurements of NO2 levels should be performed whether
very high doses of iNO are delivered. A potential carcino-
genic effect of iNO may be hypothesized as it can alter
DNA, although this has never been demonstrated.125,126 iNO
promotes the conversion of oxyhemoglobin into methemo-
globin (MetHb), impairing the ability of red blood cells to
release oxygen to the tissues and can lead to tissue hypoxia.
Commonly, there are no clinical implications until MetHb
concentrations of 10% and iNO doses up to 40 ppm are not
associated with this adverse effect.120 However, treatment
with methylene blue, which reduces MetHb to hemoglobin,
is prompted when levels of MetHb are above 20% or in case
of tissue hypoxia.127

In a meta-analysis of 1363 patients with ARDS enrolled
in 10 RCTs, iNO was associated with an increased risk of
acute kidney injury compared with placebo (RR 1.4, 95% CI
1.06–1.83).128 In contrast, iNO showed to prevent renal
failure associated with cardiopulmonary bypass. Finally,
iNO may also have detrimental effects on patients’ hemo-
dynamics. Systemic hypotension is more common in pa-
tients receiving iNO compared with those treated with
placebo129 and it could increase left ventricle filling pressure
in patients with concomitant left ventricle heart failure.130

Moreover, rebound increase in pulmonary vascular resis-
tances can be present in up to 25% of patients undergoing
abrupt iNO interruption.131 In case of these hemodynamic
effects, a careful dose titration, weaning, and/or treatment
suspension are necessary. In general, interruption of iNO
administration and supportive care or specific treatment is
suggested if any of the mentioned adverse effects appear
during iNO treatment.

iNO delivery systems and costs of treatment

iNO is commonly administered to the patient through
systems that use cylinders containing a mixture of NO and
nitrogen. Although these systems are reliable, they are
cumbersome, expensive, and require a supply chain and
trained health care professionals. This makes iNO treatment
expensive and the most expensive drug used in neonatal
departments where it is used for PPHN. The average cost of
5 days of iNO treatment for PPHN in the United States is
estimated to be $14,000.132 Other iNO delivery strategies
are currently under investigation, including electric NO
systems,132 chemical-based systems,133 NO-releasing solu-
tions (NCT04337918, NCT04163978), and nanoparticle
technology (Table 3).134 NO-releasing solutions and re-
leasing nanoparticles have been studied to treat cutaneous
infections, and no application in ARDS of these iNO de-
livery strategies has been tested so far.

On the contrary, Yu et al. developed a lightweight por-
table device, exploiting an economical method that gener-
ates NO from room air by pulsed electrical discharge.132

The administration of iNO through the classical delivery
system and the portable device is different. Indeed, the
former uses a continuous flow, while the latter a pulsed flow.
In the case of continuous flow, gas concentration monitors
and continuous adaptation of the flow are necessary to
maintain the concentration constant and avoid accumulation
of iNO in the circuit of the ventilator when there is no
ventilator flow. The pulsed NO administration may easily
overcome this drawback as a specific dose of NO is deliv-
ered at the beginning of each inspiration and it is indepen-
dent on minute ventilation and gas flow.

In addition, the pulse of NO may minimize the amount of
drug used and decrease the costs.135 The new portable

Table 3. Mechanism of Actions, Advantages, and Potential Drawbacks of Different Nitric Oxide

Delivery Systems

Type of delivery
system Mechanism Advantages Disadvantages

NO cylindersa NO is pressurized in cylinders with
nitrogen

Reliable, can deliver
broad range of NO
concentrations

Cumbersome, expensive,
require supply chain,
and trained personnel,
limited to hospitals

Electrical NO
generationa

High-voltage electricity through
two metallic electrodes that
ionize air, generating NO, NO2,
and ozone. Filter and scavengers
remove toxic metallic products,
NO2, and ozone

Portable Risk of release of by-products
from air ionization. Dependent
on air flow (i.e., the higher
the flow, the lower the
amount of NO production)

Chemical NO
generationa

Generation of NO2 from
vaporization of dinitrogen
tetroxide, then reduction of NO2

through ascorbic acid to obtain
NO.

Portable Requires supply chain

Solutions
releasing NO

Solutions that release NO when
activated by change in pH

Studies currently limited to topical administration to treat
cutaneous infections and prevent/treat mild or moderate
COVID-19 (NCT04337918, NCT04163978)

Nanoparticles
releasing NO

Release of NO from nanoparticles
containing NO or precursors

Potential application: topical administration
to treat cutaneous infections

aCommercially available.
COVID-19, coronavirus disease 2019; NO2, nitrogen dioxide.
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device was tested in humans through two exploratory studies
that demonstrated its safety, with neither MetHb nor NO2

levels above safety range.29,136 Another electric NO generator
has been recently approved by FDA for PPHN.137 Lovich
et al. developed an NO chemical generator and currently a
device using this technology can deliver NO at 20 ppm.133,138

Further investigation is required to determine the feasibility
and safety of these devices in patients with ARDS. In this
way, iNO might become more economical and more acces-
sible to patients and clinicians, with less impact on the health
care system costs. Moreover, widespread access to iNO might
boost the initiation of RCTs to determine whether, and in
which patients with ARDS, this drug may benefit the most.

Conclusions

iNO has a strong biological and pharmacological ratio-
nale for its use both in classical and COVID-19-associated
ARDS. It might improve the ventilation-perfusion match,
respiratory gas exchanges, decrease PAPs and prevent or
reduce right ventricular failure. In the specific scenario of
COVID-19 ARDS, it might be viricidal and decrease the
development of pulmonary hyperinflammation and throm-
bosis. However, so far, data are limited in the subgroup of
COVID-19 ARDS. iNO failed to ameliorate clinical out-
comes in classical ARDS, although the heterogeneity of
ARDS recently highlighted by the study of phenotypes may
be a promising field of research to characterize potential
ARDS subgroups that may be responders to iNO.

The COVID-19 pandemic has highlighted the urgent need
to investigate effective treatments to increase survival in
ARDS and that may prevent the progression to the most
severe forms of this disease. Therefore, further investigation
is needed to demonstrate the theoretical benefits of iNO.
Moreover, the timing of iNO treatment initiation, and the
optimal duration and dose of iNO, is a field of research that
needs to be further explored.
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87. Åkerström S, Mousavi-Jazi M, Klingström J, et al. Nitric
oxide inhibits the replication cycle of severe acute respi-
ratory syndrome coronavirus. J Virol 2005;79(3):1966–
1969; doi: 10.1128/JVI.79.3.1966-1969.2005

88. Akaberi D, Krambrich J, Ling J, et al. Mitigation of the
replication of SARS-CoV-2 by nitric oxide in vitro. Redox
Biol 2020;37:101734; doi: 10.1016/j.redox.2020.101734

89. Proud D. Nitric oxide and the common cold. Curr Opin
Allergy Clin Immunol 2005;5(1):37–42.

90. Torre D, Pugliese A, Speranza F. Role of nitric oxide in
HIV-1 infection: Friend or foe? Lancet Infect Dis 2002;
2(5):273–280; doi: 10.1016/S1473-3099(02)00262-1

91. Moni M, Madathil T, Sathyapalan DT, et al. Clinical ef-
ficacy of inhaled nitric oxide in preventing the progression
of moderate to severe COVID-19 and its correlation to
viral clearance: Results of a pilot study. Infect Microbes
Dis 2022;4(1):26–33; doi: 10.1097/IM9
.0000000000000079

92. Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in
the treatment of severe acute respiratory syndrome: A
rescue trial in Beijing. Clin Infect Dis 2004;39(10):1531–
1535; doi: 10.1086/425357

93. Akaike T, Maeda H. Nitric oxide and virus infection.
Immunology 2000;101(3):300–308; doi: 10.1046/j.1365-
2567.2000.00142.x

94. Chen W, Pan JY. Anatomical and pathological observa-
tion and analysis of SARS and COVID-19: Micro-
thrombosis is the main cause of death. Biol Proced Online
2021;23(1):4; doi: 10.1186/s12575-021-00142-y

95. Panigada M, Bottino N, Tagliabue P, et al. Hypercoa-
gulability of COVID-19 patients in intensive care unit: A
report of thromboelastography findings and other param-
eters of hemostasis. J Thromb Haemost 2020;18(7):1738–
1742; doi: 10.1111/jth.14850

96. Dominic P, Ahmad J, Bhandari R, et al. Decreased
availability of nitric oxide and hydrogen sulfide is a
hallmark of COVID-19. Redox Biol 2021;43:101982; doi:
10.1016/j.redox.2021.101982
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