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ABSTRACT
DNA methylation has proven to be the most promising age-predictive biomarker in mammals resulting 
in the emergence of ‘epigenetic clocks’ that describe the relationship between methylation levels and 
age. Using Targeted bisulfite Sequencing, we evaluated blood DNA-methylation data from 96 domes-
ticated cows (Bos Taurus) of which 88 were adults and 8 were calves. This allowed us to measure DNA 
methylation across three thousand regions in the genome that were conserved across mammals. The 
significant association of age with the changes in DNA methylation enabled us to construct an epigenetic 
clock that predicts the age of cows to within nine months. We also investigated whether factors exist that 
moderate the association between epigenetic age and actual age and found that milk production levels 
significantly increase the rate of epigenetic ageing, suggesting that the stress of excessive milk produc-
tion might be accelerating epigenetic ageing in cows.
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Introduction

The genome of the domesticated cow, Bos taurus, 
was sequenced and annotated in 2009. The size of 
the bovine genome is approximately 3 billion base 
pairs, which is similar to the size of the genomes of 
humans and other mammals. Although humans 
and primates are phylogenetically distant from 
the Artiodactyla, which includes the domesticated 
cow, they share a large percentage of their genes. 
Analysis of the bovine genome revealed that out of 
18,019 human genes, 17253 genes (95.7%) had 
significant homologs in cows [1,2]. The study of 
cows has informed our understanding of fertility 
in women, due to the similarity with human phy-
siology related to follicle selection, and gestation 
period among other traits [3]. Recently, a web 
portal known as CattleGTEx atlas has been made 
available to the public and serves as a primary 
reference for cattle genomics, breeding, adaptive 
evolution, veterinary medicine and comparative 
genomics [4]. Interestingly, the most represented 

breed in the CattleGTEx portal is the Holstein cow 
(35.5% of all samples).

Milk is a valuable commercial commodity and 
with the help of improved genetics, selection, and 
management, the production of milk by the mod-
ern dairy cow exceeds the amount required to feed 
the offspring. The primary factor limiting milk 
production in cows is the number of milk- 
synthesizing cells in the mammary gland [5,6]. 
The mammary gland of dairy cattle undergoes 
three cycles of development, lactation, and involu-
tion. The mammary epithelial cells (MEC) synthe-
size milk fat, milk protein [7] and lactose using 
metabolites from the blood [8]. Studies also sug-
gest that DOCK1, PTK2, and PIK3R1 are impor-
tant genes associated with milk production traits 
in dairy cattle [9].

The world’s most productive dairy animal, the 
Holstein cow, is the result of comprehensive 
genetic and breeding programmes to augment 
milk productivity [10,11]. Breeding programmes 
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have developed Holstein cows that can produce 
10,000 kg of milk/year, which converts to more 
than 33 kg/day [12,13]. Therefore, Holstein cows 
have become an excellent model system for study-
ing the impact of high milk production on phy-
siology. Several differentially expressed genes 
(DEGs) in the liver have been identified during 
the three lactation periods: dry period (50-d pre-
partum), early period (10-d postpartum) and peak 
of lactation (60-d postpartum) [14]. These include 
APOC2, PPP1R3B, PKLR, ODC1, DUSP1, LMNA, 
GALE, ANGPTL4, LPIN1 and CDKN1A, and may 
affect milk production traits such as milk yield, fat 
traits and milk protein in dairy cattle [14]. 
Molecular pathways involving cytokine-activated 
Janus kinase (JAK) and signal transducer and acti-
vator of transcription (STAT) have also been show 
to impact milk production [15].

While many studies have examined the genetic 
basis of cow traits, not many have investigated cow 
epigenetics. Unlike genetics, epigenetic changes 
are reversible and do not change the DNA 
sequence but alter gene expression in a cell type 
specific manner. Alterations in DNA methylation 
also lead to epigenetic drift which can occur with 
age. Studies have shown that DNA methylation 
plays a regulatory role in gene transcription, 
resulting in the modification of milk protein gene 
expression [16] which in turn affects milk produc-
tion. It has also been observed that DNA methyla-
tion plays an integral role in regulating the 
expression of important milk protein genes in the 
mammary gland during lactation both in mouse 
[17] and in dairy cattle [18]. Epigenetic mechan-
isms may also play a significant role in modulating 
other factors that influence cell number and milk 
production, which include, but are not limited to, 
farm management practices such as nutrition, 
pregnancy, milking frequency, photoperiod, and 
even diseases like mastitis, milk fever, etc.

A cow has a natural lifespan of 15–20 years. 
However, the lifespan is often shortened to 4 to 
6 years due to dairy and/or beef practices. Previous 
studies have shown that DNA methylation profiles 
in cattle are influenced by age [19–21]. It has been 
reported that in many tissues of diverse organisms, 
from salmon, cattle, rats and mice to humans, the 
overall level of DNA methylation decreases with 
age [22–27]. In several mammals there is 

a nonlinear relationship between DNAm levels 
and animal age, with the rate of changes in methy-
lation decreasing with age [21].

Several prior studies have investigated the devel-
opment of epigenetic clocks for cows. An epige-
netic clock was constructed to measure the age of 
oocytes using the HorvathMammalian40K array, 
which contains 37,000 mammalian CpGs sites 
[3]. Another epigenetic clock for tropically 
adapted cattle was derived from tail hair (a tissue 
widely used in industry for genotyping) and using 
portable sequencing devices [28]. Finally, an epi-
genetic clock for cattle (Bos taurus) was con-
structed using the custom mammalian 
methylation array ‘HorvathMammalMethyl40K’ 
from TSU (ear tissue punches) samples, showing 
high accuracies to the individual species’ clocks (r  
> 0.97) and utilizing only 217 CpG sites to esti-
mate age [29].

To study the dynamics of DNA methylation, we 
developed quantitative models that measure 
changes in DNA methylation with age as well as 
the effect of multiple factors on DNA methylomes, 
including milk production, reproductive status, 
number of lactations and days carried calf. We 
collected bovine blood samples from 96 Holstein 
cows and used targeted bisulfite sequencing to 
measure methylomes at approximately three thou-
sand loci. We investigated the relationship 
between DNA methylation and age, along with 
other factors.

Materials and methods

Bovine samples

Mature crossbred lactating cows (n = 93) were 
housed at the Southwest Regional Dairy Center 
(Tarleton State University, Stephenville, Texas) 
and sampled under Animal Care and Use 
Protocol 10-021-2018. Calves (4-month-old hei-
fers, n = 8) were owned and sampled by a private 
producer in Central Texas and blood samples were 
graciously donated to the study. The hybrid cattle 
used in the study were Holstein X Jersey crossbred 
dairy cows. All animals were bled by coccygeal 
venipuncture into 10 mL lavender K2EDTA 
Vacutainers (Becton, Dickinson and Company, 
Franklin Lakes, New Jersey). Blood was stored at 
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4°C until DNA extraction was performed using 
300 µL of blood in the fresh blood protocol of 
the Genomic DNA Mini Kit (IBI Scientific, 
Dubuque, Iowa). Genomic DNA was eluted in 
100 µL of elution buffer, quantified by Qubit and 
stored at −20°C until further analysis. The age 
distribution of the samples is described through 
the histogram (Figure 1).

All the bovine traits are described in 
Supplementary Table S3.

Targeted bisulfite sequencing

We applied targeted bisulfite sequencing (TBS- 
seq) to characterize the methylomes of 96 DNA 
cow samples. The protocol is described in detail in 
[31]. Briefly, 500 ng of genomic DNA were used 
for TBS-seq library preparation. Fragmented DNA 
was subject to end repair, dA-tailing and adapter 
ligation using the NEBNext Ultra II Library prep 
kit (NEB) and custom pre-methylated dual unique 
index adapters (IDT). Pools of 16 purified libraries 
were hybridized to 3572 biotinylated probes spe-
cific for conserved sequences in mammals (IDT). 
The sequence of the probes used in this study can 
be found in Supplementary Table S1.

The Hybridization was carried out using the 
xGen hybridization capture kit (IDT) according 
to the manufacturer’s instructions. Captured 
DNA was bisulfite treated with the Zymo Gold 
kit (Zymo Research) prior to PCR amplification 

using KAPA HiFi Uracil+(Roche). The following 
conditions were used for the PCR amplification: 2  
min at 98°C; 14 cycles of (98°C for 20 sec; 60°C for 
30 sec; 72°C for 30 sec); 72°C for 5 minutes; hold at 
4°C. Library QC was performed using the High- 
Sensitivity D1000 Assay on a 4200 Agilent 
TapeStation. Pools of 96 libraries were sequenced 
on a NovaSeq6000 (Sp lane) as paired-end 150 
bases.

Data processing

Demultiplexed fastq files were aligned to the 
bovine genome ARS-UCD1.2/bosTau9 using 
BSBolt Align (v1.3.0) [30]. Before calling methyla-
tion using BSBolt CallMethylation function, PCR 
duplicates were removed using samtools markdup 
function (samtools version 1.15). CGmap files 
were generated to describe the methylation status 
of the observed cytosines using the BSBolt 
CallMethylation function. These CGmap files are 
assembled into a consensus methylation matrix 
using the function BSBolt AggregrateMatrix. The 
minimum site read depth coverage of 10 and 
a minimum coverage threshold of 0.8 required 
for the proportion of samples that must have 
a valid site was used to build the aggregate matrix 
[30]. The resulting methylation matrix had 8408 
methylation sites (Supplementary Table S2).

Epigenetic clock

The package glmnet was used for building the pena-
lized regression models [31]. In order to optimize the 
input of the number of predictors of CpGs, we 
utilized the ‘elastic net’ version of glmnet corre-
sponding to the alpha parameter of 0.5. Internal 
cross-validation (cv.glmnet) was employed to auto-
matically select the optimal penalty parameter. 
Leave-one-out cross-validation (LOOCV) training 
method was used to predict the age of individual 
cows, wherein each predicted cow represented the 
testing set and the rest was the training set against 
which the age of an individual was predicted.

Moderation analysis

To identify the factors that moderate the relation-
ship between the actual age and the predicted age 

Figure 1. Histogram of Age Distribution of Samples. Age dis-
tribution of cow samples used in the study.

EPIGENETICS 3



we used linear models and computed the p-value 
for each term using Linear Regression and lm() 
function in R. We used 96 cows to train the model. 
The moderators we tested were milk production, 
reproductive status (0 = calf, 1 = preg, 2 = bred, 3 =  
OK/open, 4 = fresh), days carried calf and number 
of lactations. The significance of each term was 
calculated with the matrix of factors input as the 
independent variables and the epigenetic age pre-
dictions as the dependent variable.

Epigenetic pacemaker

The Python package EpigeneticPacemaker 
(EpigeneticPacemaker.EpigeneticPacemaker) was 
used to generate predictions for each cow’s epige-
netic state [32]. We used the Pearson correlation 
coefficient to select the top 8408 methylation sites 
that were highly correlated with age. The mini-
mum correlation threshold was set to be 0.5.

EWAS
Epigenome Wide Association Analysis was per-
formed using the R package ‘qqman.’ We display 
the results of this analysis using Manhattan and 
Q-Q plots. In this study, age, milk production, 
number of lactations, reproductive status and 
days carried calf were the phenotype of interest 
and the association score is calculated as –log10 
(P-value) on the y-axis versus the chromosomal 
position of the CpG site on the x-axis. The two 
horizontal lines in the Manhattan plot are the 
suggestive line and genome-wide line respectively, 
based on the chromosome-wide or genome-wide 
Bonferroni threshold. We used the Benjamini- 
Hochberg procedure to correct the P values for 
multiple testing. The closest gene to each CpG 
site was found in the bovine genome (ARS- 
UCD1.2/bosTau9) using the UCSC genome 
browser.

Results

Bovine methylomes

We collected DNA from 96 bovine blood samples, 
of which 88 were adults and 8 were calves. The age 
of the bovine samples ranged from 4 months to 8  
years and 9 months. Targeted bisulfite sequencing 

libraries were prepared from these samples. DNA 
was sheared, and libraries were prepared using 
premethylated adapters. We then carried out tar-
geted enrichment using a panel of 3387 probes 
designed to hybridize to the regions of the genome 
that are conserved across mammals 
(Supplementary Table S1). Following bisulfite con-
version, the final library pools were sequenced on 
an Illumina Novaseq. The resulting reads were 
then aligned to an index of the cow genome 
using BSBolt. The aligned reads were used to gen-
erate methylation matrices that measured the 
methylation of captured regions across the sam-
ples. Details of the samples, library preparation, 
and data analysis are provided in the Methods 
section.

Age associated changes in DNA methylation

Two complementary approaches were used to 
study DNA methylation changes associated with 
age: the epigenetic clock and epigenetic pace-
maker. Epigenetic clocks are an efficient and reli-
able method to predict the age of an animal based 
on their methylation profile. DNA methylation 
clocks, or epigenetic clocks, are generally built 
using supervised machine learning methods such 
as penalized regression. Here we used elastic net 
regression as implemented in the glmnet 
R package. The methylation data used to train 
the model consisted of eight thousand four hun-
dred and eight CpG sites that were covered with at 
least 10 reads across all of our samples. To avoid 
overfitting, we used leave-one-out cross-validation 
to build an individual model for each sample 
which was trained on all the remaining data 
excluding the test sample. Our resulting model is 
able to predict the age of cows to within an average 
absolute error of approximately nine months 
(Figure 2a), although we observe that these models 
tend to under-predict the age of calves, and there-
fore we also explored alternative approaches to 
model the changes in methylation with age. The 
epigenetic clock we developed using targeted bisul-
fite sequencing compares favourably to two pre-
viously published clocks based on correlation and 
mean absolute error between predicted and actual 
ages (see Table 1).
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DNA methylation changes associated with age are 
often non-linear with time, with faster rates of change 
early in life that decrease with age. To test whether this 
is occurring in our samples, we have previously devel-
oped the epigenetic pacemaker. This approach is com-
plementary to the regression based approach used in 
epigenetic clocks. The epigenetic pacemaker (EPM) is 
a linear model of DNA methylation values with 
respect to an unknown variable we refer to as the 
epigenetic state:

wherein, i is the CpG site and j the individual, mij 
represents the methylation level of position i in 
individual j, m0 represents the methylation level at 
birth (i.e., the initial methylation values), ri is the 
rate of change and sj is the epigenetic state. The 
epigenetic state of each individual represents 
a position in the epigenetic trajectory of its life-
span, and we do not assume a priori that the 
epigenetic state changes linearly with time, but 
rather allow the optimization to identify this rela-
tionship in an unbiased fashion. The underlying 
working of the EPM algorithm is a fast conditional 
expectation maximization (EM) algorithm wherein 
each methylation site is assigned an independent 
rate of change (ri), an initial methylation value 
(mi

o) and each individual is assigned an epigenetic 
state (sj) that is initially set to the actual age of the 
sample. The EM process is repeated until the 
model converges and minimizes the difference 
between the observed and predicted methylation 
values in our dataset.

Previous studies have shown that in humans the 
logarithmic function provides a good fit for the 
association of epigenetic age with actual age. The 
same was also shown in dogs [8]. We find that in 
our cow samples the relationship between epigenetic 
state and actual age is well fit by a square root 
function (Figure 2b). These results are consistent 
with those we have observed in humans and dogs 
and suggest that the rate of DNA methylation change 
is decreasing as the cow age increases.

EWAS analysis

To identify individual methylation sites that show 
age associated change, we performed Epigenome 
Wide Association Analysis on 8408 CpG sites. In 
order to measure the relationship between the 
methylation and age, we used the lm() function 
in R to calculate the p-values and the correlation 
coefficient between SNPs and methylation sites. 
We used the Bonferroni procedure to find the 
significantly correlated sites. The closest gene to 
each site was found using the Ensembl browser 
(ARS-UCD1.2). The top age-related genes are as 
follows (Figure 3 and supplementary figure S1): 
KCNH8, TBR1, DMRTA2, FEZF1, KLRD1, 
NEUROG2, GABRA6, BNC2, FILIP1, MEIS2, 

Figure 2. Epigenetic age and state of cows. (a) Models were 
generated using elastic net regression. (b). The Epigenetic 
Pacemaker was used to predict epigenetic states of the bovine 
samples. The trend line was fit using a non-linear function.
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CAMKMT, NBEA, SKIDA1, ZFHX4, PAX6, 
GRIA2, HSD11B1, IRX5, TLX3, NEUROD2, 
FOXG1, LHFPL4, SLF2, FGD2, SMAD2, 
ZFAND2A, ETS1, BCOR, LRMDA (Table 2).

We performed functional enrichment analysis 
of these genes using the EnrichR tool [33–36] 
(Table 3). We have seen in previous studies that 
CpG sites that change with age are often associated 
with polycomb repressive complex binding sites 
(PRC) [37]. For example, JARID2, SUZ12 and 
EZH2 are transcription factors associated PRC 
and with the H3K27 trimethylation mark. 

Another factor we identified is REST, which is 
associated with the suppression of neural specific 
genes. This factor has been observed in other stu-
dies of age associated DNA methylation 
changes [38]. 

We also carried out an EWAS analysis between 
methylation and different phenotypic traits includ-
ing milk production, reproductive status, number 
of lactations and days carried calf (Supplementary 
Figures S3-S5). Table 4 shows the number of sam-
ples associated with each trait that was considered 
for the EWAS analysis.

Figure 3. Epigenome-wide association results for age. Manhattan plot representing epigenome-wide association results for age. 
8408 CpG sites were included. CpG sites are plotted on the x-axis ordered by position and the y-axis shows the -log10(p) of the 
association.

Table 1. Bovine Epigenetic clocks.

Clock Tissue
Sample Size 

(n)
Correlation Coefficient 

(r)
Mean Absolute Error (MAE) 

(months) Assay

Kordowitzki et al., 2021 Blood-Oocyte 357 0.9 8.79 Methylation array (40K)
Kordowitzki et al., 2021 Blood 277 0.91 8.86 Methylation array (40K)
Hayes et al., 2021 Tail hair 66 0.71 16 (n<3yrs) 

17 (n=3-10yrs)
Oxford nanopore (37K)

Our study Blood 96 0.88 9.35 Targeted bisulfite sequencing(8K)
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The ‘milk yield’ phenotype data used in the EWAS 
analysis is the cow’s milk yield in pounds on a daily 
basis. The milk yield information was recorded on 
one day in the month prior to sampling and 
recorded each cow’s milk yield for that day.

Following the same procedure described for age 
associated change, and the top milk production- 
related genes are (Figure 4 and supplementary 
figure S2): ATP5F1B, CXCL11, SKIDA1 and 
DLG5 (Table 5). However, unlike the age asso-
ciated sites, none of these reached the Bonferroni 
threshold, and are therefore only suggestive of 
a possible association that will need to be con-
firmed with larger sample sizes.

We again performed functional enrichment 
analysis of these genes using the EnrichR tool 

[34–36]. Our hypothesis is that excess milk pro-
duction is associated with stress and higher pro-
duction of milk leads to inflammation which is 
supported by the functional enrichment annota-
tion of milk production associated sites which 
show enrichment for IL6, Interferon alpha and 
TNF alpha, all of which as associated with 
inflammation [39] (Table 6).

Moderation analysis

To identify the factors that moderate the relation-
ship between the actual age and the predicted age 
we used multiple linear regressions and computed 
the p-value for each term to assess whether any 

Table 2. Top Significant genes for Age.

Chromosome site Chromosme number Closest gene from site Strand
Distance to 
gene (bp)

155797851 1 KCNH8 1 501282
34966494 2 TBR1 −1 9902
45847764 3 DMRTA2 1 5079
68801404 4 FEZF1 −1 3006
87471453 5 KLRD1 −1 4777
13061269 6 NEUROG2 1 1492
73272273 7 GABRA6 1 16788
27513731 8 BNC2 1 475936
14932363 9 FILIP1 −1 218085
32619863 10 MEIS2 −1 223131
27195648 11 CAMKMT 1 427048
25982827 12 NBEA −1 671846
22724269 13 SKIDA1 −1 2768
39849062 14 ZFHX4 1 202050
62569850 15 PAX6 −1 27906
73609682 16 HSD11B1 −1 69590
41789795 17 GRIA2 −1 186515
23238778 18 IRX5 1 5989
39988762 19 NEUROD2 −1 4124
3160122 20 TLX3 1 2652
39241904 21 FOXG1 1 1472
17088486 22 LHFPL4 1 31434
9191745 23 FGD2 1 26289
47035393 24 SMAD2 −1 82882
41617913 25 ZFAND2A 1 8040
21719705 26 SLF2 1 39509
31139646 28 LRMDA 1 26038
29998660 29 ETS1 −1 136647
103336063 55 BCOR 1 23734

Table 3. Age.

Term Overlap P-value
Adjusted 
P- value

REST CHEA 7/1280 .001940325 .033726991
REST ENCODE 4/383 .002152787 .033726991
REST 21,632,747 ChIP-Seq MESCs Mouse 9/1765 6.24E–04 .009608245
H3K27me3 Stomach Smooth Muscle 7/993 4.34E–04 .126809376
H3K27me3 CD8 Naive Primary Cells 10/2258 8.70E–04 .126996471
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other factor is associated with age acceleration. 
Multiple factors were tested for significant mod-
eration across the 96 cows in our dataset. These 
included milk production, reproductive status (0 =  
calf, 1 = preg (confirmed pregnancy), 2 = bred 
(cows have been bred but not confirmed preg-
nant), 3 = OK/open (not pregnant), 4 = fresh 
(recently calved and just started milking)), days 
carried calf and number of lactations. The signifi-
cance of each term was calculated by modelling the 
predicted age using the actual age, the factor and 
the product of the factor with age. The significance 
of each factor was measured by the P values asso-
ciated with the factor and product term in each 

Figure 4. Epigenome-wide association results for milk production. Manhattan plot representing epigenome-wide association 
results for milk production. CpG sites are shown on the x-axis ordered by position and the y-axis shows the -log10(p) for the 
association.

Table 4. Number of samples for each trait.
Phenotypes No. of samples

REPRODUCTIVE STATUS 87
PREG 37
BRED 38
FRESH 10
OK/OPEN 2
NO. OF LACTATIONS 87
FIRST LACTATION 11
SECOND LACTATION 11
THIRD LACTATION 24
FOURTH LACTATION 22
FIFTH LACTATION 10
SIXTH LACTATION 6
SEVENTH LACTATION 3
DAYS CARRIED CALF 87
RANGE 0–172

Table 5. Top Significant genes for Milk Production.
Chromosome site Chromosme number Closest gene from site Strand Distance to gene (bp)

26310461 5 ATP5F1B 1 30479034
11101140 6 CXCL11 −1 79801580
22724269 13 SKIDA1 −1 4088
33387233 28 DLG5 −1 27111
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model. We found that among all of the factors we 
tested, only milk production was a significant 
moderator. In this model the coefficient for milk 
production is significant and positive while the 
interaction term is only significant at the 5% 
level and negative. This suggests that milk produc-
tion accelerates epigenetic ageing for cows but 
does so in a manner that decreases with age 
(Figure 5).

Discussion

We aimed to develop epigenetic clocks for cows 
that are based on DNA methylation patterns mea-
sured in blood. Using blood samples from cows of 
known age, two approaches were used to model 
epigenetic ageing: the epigenetic clock (EC) and 
the epigenetic pacemaker (EPM). One of our 
objectives was to predict the age of an individual 
by using a weighted linear model of methylation 
sites. The epigenetic clock developed from blood 
samples to predict the chronological age predicted 
the age of an individual with a 9-month average 
error. Our study also demonstrates that similarly 
to humans and other mammals, cows have rapid 
changes in DNA methylation early in life that slow 
down with age. We also identified the significant 
genes that are strongly associated with age and 
milk production.

By modelling the time dependent changes in 
DNA methylation, the EPM model allows us to 
measure non-linear trends in DNA methylation 
across the lifespan of cows. Non-linear epigenetic 
ageing trends have been seen in humans and other 
species [40,41], suggesting that DNA methylation 
changes are rapid early in life and slow as organ-
isms age. Along with the slowing of epigenetic 
changes we also observed an increased variability 
in epigenetic age in adult cows compared to calves. 

Similar trends of decreased variance with age have 
also been observed in human studies [42].

Among the traits we investigated, age and milk 
production were the phenotypes with the strongest 
association with DNA methylation. By carrying 
out association studies, we identified the genes 
closest to the significant CpGs. The top significant 
genes that were identified for the milk production 
were ATP5F1B, CXCL11, SKIDA1, and DLG5. The 
CXC chemokine family consists of two main clus-
ters of chemokines, the Gro cluster and the IP-10 
cluster as well as other non-cluster chemokines. 
Both the clusters are found on chromosome 4 in 
humans and chromosome 6 in cattle. The IP-10 
cluster comprises three chemokines – CXCL9, 
CXCL10 and CXCL11. Cattle possess three genes 
that appear to be the direct homologues of CXCL9, 
CXCL10, and CXCL11 in other species when com-
pared phylogenetically [43]. These chemokines 
play an essential role in the permeation or accu-
mulation of the immune cells in inflammatory 
lesion and studies have shown that IL-27 could 
induce CXCL11 production along with CXCL9 
and CXCL10 in TR146, a human oral epithelial 
cell line that is supplemented with 10% foetal 
bovine serum, which implies that IL-27 could be 
involved in Th1 cells accumulation [44]. This 
result might suggest that high levels of milk pro-
duction may induce inflammatory responses. 
Studies of DLG5 have shown that single nucleotide 
polymorphisms (SNP) associated with DLG5 are 
closely related to the reproductive traits in buffa-
loes [45], also linking this gene to milk production. 
It has been shown that ATP5F1B is present as one 
of the 543 milk fat globule membrane (MFGM) 
proteins that have been identified on goat colos-
trum and all these identified MFGM proteins in 
the colostrum and mature milk were mainly 
involved in 32 KEGG pathways [46]. Finally, 

Table 6. Milk Production.

Term Overlap P-value
Adjusted 
P- value

IL-6/JAK/STAT3 Signaling 1/1987 .01728794 .03940669
Interferon Alpha Response 1/1987 .01926061 .03940669
TNF-alpha Signaling via NF-kB 1/200 .03940669 .03940669
Oxidative Phosphorylation 1/200 .03940669 .03940669
Interferon Gamma Response 1/200 .03940669 .03940669
Estrogen Response Late 1/200 .03940669 .03940669
Inflammatory Response 1/200 .03940669 .03940669
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studies have shown that SKIDA1 among many 
others is one of the significantly regulated genes 
by colostrum exosome capsulated oligosaccharides 
in macrophages, which are responsible for the 

establishment of intestinal immunity [47]. It has 
also been seen that the expression ofSKIDA1 in the 
house mouse foetal heart increases, then decreases 
with age [48].

Figure 5. Moderation Analysis. a regression model of predicted age using three variables: Actual Age(AA), Actual Milk 
Production(AMP) and the product of actual age and actual milk production(AA*AMP). Regression lines are shown for different 
levels of milk production.
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We found some association with ageing for 7 of 
the 29 age associated genes. Some of the genes that 
we found to be associated with age include TLX3, 
FOXG1, KCNH8, TBR1, DMRTA2, FEZF1, and 
SKIDA1. TLX3 or T Cell Leukaemia Homeobox 3 
encodes a DNA-binding nuclear transcription fac-
tor. The transcription factors have been considered 
important in the regulation of the genes which con-
fer various biological functions associated with 
maturity and ageing [28]. FOXG1 plays a critical 
role in the auditory degeneration process through 
regulation of macroautophagy/autophagy [47]. 
KCNH8 is a member of the human ElK K+ channel 
gene family. Voltage-gated potassium channels 
represent the most complex class of voltage-gated 
ion channels from both structural and functional 
standpoints. Their diverse functions include but are 
not limited to regulating neurotransmitter release, 
insulin secretion, heart rate, neuronal excitability, 
epithelial electrolyte transport and smooth muscle 
contraction [49]. TBR1 belongs to a conserved family 
of genes that share a common DNA-binding 
domain, the T-box. T-box genes encode transcrip-
tion factors involved in the regulation of numerous 
developmental processes. In mice, the ortholog of 
this gene is expressed in the cerebral cortex, hippo-
campus, amygdala and olfactory bulb and plays an 
important role in the neuronal migration and axonal 
projection. Studies have shown that the TBR1 CpG 
site demonstrates a strong and statistically robust 
linear relationship between DNA methylation and 
age in humans [50]. DMRTA2 is required for early 
embryonic development of the cerebral cortex in 
mice [51]. The Fez family zinc finger protein 1 
FEZF1 is a C2H2 zinc finger transcription factor in 
nervous system development. It plays a critical role 
during forebrain and olfactory system development 
in vertebrates. FEZF1 promotes cell proliferation 
and migration by acting as a transcriptional activator 
of the Wnt signalling pathway and thereby plays an 
oncogenic role in cervical cancer [52]. KLRD1 along 
with KLR, KLRC3, and KLRG1 and many more have 
shown enhanced expression in NK cells. It is one of 
the most profound age-related changes in T cells, 
especially in human CD28_ CD8 T cells [53]. 
NEUROG2 is a transcription factor gene that plays 
an important role in retinal neurogenesis. 
Expression of NEUROG2 can be enhanced by 
SOX2. Finally, among the genes that showed 

a significant association between methylation and 
age, SMAD2 may regulate the inverse relationship 
between the lifespan and the size of the adult dogs 
[54] and humans [55].

We recognize that our study has several limita-
tions. Firstly, we only analysed blood samples, but 
there is also interest in the study of more easily 
collected tissues such as buccal swabs. Secondly, 
since the cows do not live their full natural lifespan, 
the age range for the samples represent only half of 
their natural lifespan. Absent the farming needs, the 
lifespan of cows could understate their longevity. 
The oldest living cow has been recorded as 48 years 
and nine months old. Considering that the beef and 
dairy industries are inseparable and 21% of the com-
mercially sold meat are produced by dairy cows in 
2019 just in the United States [56]. Interestingly, 
gender affects the calf’s longevity in agriculture. In 
the dairy sector, female calves are raised for meat if 
they are not able to produce enough milk and 
because of the unprofitable status, many male calves 
are killed as soon as they are born.

Our analysis of epigenetic ageing in cows 
extends prior studies in several ways. First, we 
have used a novel technology to probe DNA 
methylation that is cost effective and allows us to 
infer the age of cows by profiling only a couple of 
thousand locations in the genome. Compared to 
previously reported clocks, our clock had similar 
results with a correlation coefficient of r = 0.88 and 
mean absolute error of 9.35 months. The epige-
netic clock with bovine blood samples generated 
a correlation coefficient of r = 0.91 and a mean 
absolute error of 8.86 months as reported by 
Kordowitzki et al., 2021. Similarly, a correlation 
coefficient of r = 0.71 and a mean absolute devia-
tion of 16 months for animals aged less than 3  
years of age, and 17 months for animals aged 3– 
10 years was reported by Hayes et al., 2021. Our 
clock has some advantages over the studies that 
have been conducted so far on the cattle epigenetic 
ageing. By measuring only a couple of thousand 
sites, our method is less expensive and more cost 
efficient compared to both methylation arrays and 
whole genome sequencing.

As we collected information other than age on 
the cows, we were also able to ask whether there 
was a significant association between epigenetics 
and milk production and whether the level of milk 
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production influenced epigenetic ageing. Cows 
experience significant oxidative stress in early lac-
tation as physiological pressure for milk synthesis 
results in an increase in energy and oxygen 
demand and also increases the production of reac-
tive oxygen species (ROS) [57]. The act of giving 
birth (calving) and stopping milk production (dry- 
off) also causes stress in the dairy cow. Stressors 
assume a variety of forms creating strain, which 
affects multiple aspects of animal production from 
embryonic development to pregnancy outcome 
[58]. Studies have revealed that less strain in 
response to stress would make cows more fertile. 
Although there are multiple aspects of stress that 
affect cattle from heat and humidity, infectious 
disease, injury to milk production and undernutri-
tion, the mediators of these stresses could be seen 
in the form of elevated body temperature, chronic 
pain, metabolic and hormonal imbalance, and 
inadequate nutrient intake to name a few. The 
final effect of these stresses could be seen in the 
embryonic development phase or even during 
pregnancy [58]. Studies have also shown that 
because of metabolic heat production associated 
with high milk production, lactating cows are par-
ticularly sensitive to heat stress. Also, 
a commonality between beef and dairy cattle is 
the environmental stress caused by heat and 
humidity (heat stress), although the strain asso-
ciated with heat stress which is the elevated body 
temperature is greater in dairy cows [59,60].

It has been proven that there is a strong 
correlation between cow longevity and milk 
production levels wherein lower production 
cows live a longer life than higher production 
cows [29]. Our results are consistent with pre-
vious findings and we hypothesize from the 
results of our study that the stress of producing 
large quantities of milk accelerates the epige-
netic ageing process in cows. This suggests 
that the breeding of cows for high levels of 
milk production may come at the expense of 
their longevity.
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