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Abstract

INTRODUCTION: LOAD is a complex neurodegenerative disease characterized by multiple 

progressive stages, glucose metabolic dysregulation, AD pathology, and inexorable cognitive 

decline. Discovery of metabolic profiles unique to sex, APOE-genotype and stage of disease 

progression could provide critical insights for personalized LOAD medicine.

METHODS: Sex- and APOE-specific metabolic networks were constructed based on changes in 

127 metabolites of 656 serum samples from the ADNI cohort.

RESULTS: Application of advanced analytical platform identified metabolic drivers and 

signatures clustered with sex and/or APOEɛ4, establishing patient-specific biomarkers predictive 

of disease state that significantly associated with cognitive function. Presence of the APOEɛ4 

shifts metabolic signatures to a phosphatidylcholine-focused profile overriding sex-specific 

differences in serum metabolites of AD patients.

DISCUSSION: These findings provide an initial but critical step in developing a diagnostic 

platform for personalized medicine by integrating metabolomic profiling and cognitive 

assessments to identify targeted precision therapeutics for AD patient subgroups through 

computational network modeling.

Keywords

Late-onset Alzheimer’s disease; computational systems biology; metabolic network; 
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1 BACKGROUND

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder without a cure. 

Recent clinical trial failures targeting β-amyloid (Aβ) or hyperphosphorylated tau protein 

(p-tau) underscore the importance of understanding disease-driving mechanisms. The 

primary risk factors of late-onset AD (LOAD), the predominant form, include age, female 

sex, and the presence of the APOEε4 allele [1, 2]. LOAD is a multifactorial disorder with 

perturbations in glucose and insulin signaling, energy and lipid homeostasis, mitochondrial 

function, oxidative stress, inflammation, and neurotransmission [3, 4]. Recent progress in 

dissecting sex-specific mechanisms of AD has become possible through the implementation 

of systems-level approaches and availability of clinically characterized samples including 

ADNI cohort tissue and biofluids samples from AD patients and cognitively normal 

individuals enabling large-scale multi-omics studies. Metabolomics is the newest omics 

that measures thousands of metabolites reflecting alterations in genetic, transcriptomic, 

proteomic profiles, and influences from the environment [5, 6]. A large number of studies 

using metabolomcis and lipidomics platforms has provided new biochemical insights about 

disease mechanisms, early changes in disease and provided support that peripheral metabolic 

changes inform about central changes and ATN markers of disease [7–20].

We recently conducted stratified linear regression analyses of serum metabolites from 

1517 ADNI participants to determine the association of metabolic signatures with disease 
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diagnosis (Dx) and A-T-N biomarkers (CSF Aβ1–42 (A); CSF p-tau (T); FDG-PET (N)) 

[14] . Changes in metabolites associated with the Dx or A-T-N were influenced by sex and 

APOE and related to altered energy homeostasis [14]. We applied a recently developed 

computational predictive network model [21–24] to construct sex- and APOE-specific 

metabolic networks of CN and LOAD patients from the ADNI cohort in respect to sex and 

genotype and to clinical diagnosis cognitive parameters. We confirmed previous findings, 

demonstrated that metabolic panels associate with cognitive assessment, and identified 

metabolic drivers of LOAD. These findings further support the application of blood-based 

metabolomics as a precision medicine tool for disease stage profiling, prognosis, and 

identification of novel therapeutic targets.

2 METHODS

2.1 Participants

Figure 1 and Table 1 summarize information on ADNI participants utilized in this study.

2.2 Metabolomics data acquisition, normalization, and covariate adjustment

Metabolomics data normalization followed a six-step procedure [11] (Figure 1B, Online 

Method-1). Final 127 metabolites are listed in Table S1, and the final 362 CN and 294 AD 

samples were stratified into eight groups based on sex and APOE genotype (Table S2).

2.3 Predictive network Modeling

For each patient group, metabolites of AD and CN subjects were integrated with Dx into the 

predictive network modeling pipeline [22–25]. The network model consists of metabolites 

and Dx as nodes and causal interactions between them (Figure 2, Online Method-2).

2.4 Empirical non-parametric bootstrap and consensus network analysis

For each patient group, the 95% confidence interval (CI) of each edge was evaluated with 

the empirical bootstrap method (Online Method-3). To derive the patient-specific consensus 

metabolic networks, we included top 10% of edges with 95% confidence per patient group 

(Table S3). The metabolic signature was extracted as the 3-step upstream subnetwork of Dx 

in the patient-specific network (Table S4).

2.5 Evaluation of heterogeneity of key drivers

The heterogeneity of key drivers was evaluated by calculating the significance of robustness 

and confidence of patient-specific key driver in each patient group (Table S5, Online 

Method-4).

2.6 Differential expression (DE) analysis

Following covariate adjustment, metabolites were subjected to t-test using Limma R package 

[26] between AD and CN samples in each group (Figure 4, S1, Table S6).
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2.7 Machine learning model and feature selection

To derive biomarker panel for each patient group, we employed a two-step machine learning 

procedure consisting of quantifying the feature importance in the first step followed by 

training elasticnet and XGBoost models to select a subset of features from input features 

(Online Method-5). To evaluate the prediction accuracy of every patient-specific panel, we 

performed 5-fold cross-validation in each group and repeated 100 times. The prediction 

performance was evaluated by calculating the averaged area under the curve (AUC).

2.8 Biomarker association with clinical features

For each biomarker panel, we extracted principal components that explained >90% of the 

variance in data. The response variables (clinical cognitive test scores) were regressed on 

these principal components, and ANOVA with F-statistics were used to calculate the fitness 

of regression. Multiple testing was adjusted by calculating the FDR value and significance 

reported based on FDR<0.05 (Table S8).

3 RESULTS

3.1 Sex- and APOE-specific consensus metabolic networks identify distinct metabolic 
signatures and drivers of LOAD

The analytical pipeline utilized in the study is presented in Figure 1. Consensus networks 

provide metabolic signatures defined as subnetworks containing metabolites within 3-steps 

upstream of Dx node. Metabolic key drivers are the immediate (1-step) metabolite(s) 

upstream of Dx node in each network (Figure 2, Table S4). To investigate the common 

metabolic signature of LOAD, we first built a background network by using 656 AD and 

CN samples without patient stratification (Figure 2A). This network identified changes in six 

phosphatidylcholines (PCs) with PC aa C36:6 as an immediate upstream driver regardless 

of sex or APOE genotype (Table S4A). The DE analysis confirmed significant changes in 

thirteen PCs, three sphingomyelins (SMs), four acylcarnitines and citrulline (Table S6A).

To reveal sex-specific differences, we built consensus metabolic networks using residuals of 

161 AD and 177 CN males and 133 AD and 185 CN females. The male consensus network 

(Figure 2B) identified changes in amino acids valine, isoleucine, lysine and tryptophan 

mediated by alpha-amino adipic acid (alpha-AAA) (Table S4B). The DE analysis confirmed 

increased levels of three acylcarnitines and a decrease in sarcosine, two PCs and one 

sphingomyelin (SM) (Table S6B). Levels of valine, a metabolite directly connected to alpha-

AAA, were decreased by more than 7-fold (P = 0.13, Table S6B). The female consensus 

network (Figure 2C) was dominated by reduced levels of four PCs, one SM and tryptophan, 

and an increase in creatinine (Table S6C). These data suggest that AD was mainly associated 

with changes in amino acids in males, and PCs and tryptophan in females.

To define APOE-specific metabolic signatures, we built consensus networks using residuals 

of 193 AD and 101 CN APOEɛ4+ and 101 AD and 261 CN APOEɛ4-. The APOEɛ4+ 

consensus network (Figure 2D) revealed a homogeneous signature of six PCs mediated by 

PC aa C34:4 (Table S4D). The DE analysis confirmed significant changes in four PCs (Table 

S6D). The APOEɛ4- consensus network (Figure 2E) identified a mixed signature of valine, 
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isoleucine, alpha-AAA, tryptophan, creatinine, lysine, proline, two acylcarnitines, and 26 

PCs mediated by PC aa C38:0 and alpha-AAA (Table S4E). The DE analysis confirmed a 

significant decrease in nine PCs, four SMs, sarcosine, lysine, and valine, and an increase 

in creatinine and citrulline, three acylcarnitines and a pro-inflammatory agent symmetric 

dimethylarginine (Table S6E). These results demonstrate that APOE ɛ4 allele specifically 

affects the metabolism of PCs.

Next, we built male APOEε4+, male APOEε4-, female APOEε4+, and female APOEε4- 

consensus networks by using 107/47, 54/130, 86/54 and 47/131 AD/CN residuals, 

respectively (Figure 2F–2I). The male APOEɛ4+ network (Figure 2F) identified a 

homogeneous signature of 22 PCs and five SMs (Table S4F). The DE analysis revealed 

significant decrease in taurine and carnitine C7-DC, and an increase in asparagine and 

lyso-PC a C18:0. While not statistically significant, levels of alanine and lysine decreased 

by more than 8- and 3-fold, respectively, whereas levels of glycine, threonine, ornithine, and 

glutamate increased by more than 20-, 5-, 3- and 3-fold, respectively. The male APOEɛ4- 

consensus network (Figure 2G) identified changes in ten acylcarnitines, five amino acids 

and three lyso-PCs (Table S4G). A decrease in sarcosine and two PCs and an increase 

in six acylcarnitines were significant in LOAD compared to CN. While not significant, 

levels of branched chain amino acids (BCAA) valine and isoleucine and amino acids 

lysine, glutamate, isoleucine, and arginine were decreased while levels of citrulline, glycine, 

creatinine, alanine and taurine were increased from 2 to 13-fold (Table S4G).

The female APOEɛ4+ consensus network (Figure 2H) identified a PC-dominant signature 

(Table S4H). DE analysis revealed significantly decreased PCs and essential amino acid L-

tryptophan. Levels of alanine and lysine decreased by more than 18- and 6-fold, respectively, 

whereas glycine, proline, and arginine increased by more than 6-, 4- and 4-fold, respectively, 

though not statistically significant. In female APOEɛ4- carriers, the consensus network 

discovered a mixed signature of eight SMs and three PCs (Figure 2I, Table S4I). The DE 

analysis revealed significantly decreased four PCs and amino acids L-tryptophan, taurine, 

lysine, as well as significantly increased citrulline and creatine. Summary for each group is 

presented in Table 2.

3.3 Heterogeneity in patient group-specific metabolic key drivers

The consensus network analysis revealed distinct patterns of homogeneity/heterogeneity 

in the metabolic signatures within each patient group. While this network captures the 

most robust signal relative to all individuals in each patient group, it doesn’t address the 

endogenous metabolic heterogeneity associated with different subpopulations within the 

same group. To further investigate inherent metabolic heterogeneity, we calculated the 

significance (FDR adjusted) of robustness and confidence for every key driver in each group 

(Table S5). Robustness of metabolic drivers was determined based on their connection to 

Dx with positive 95% CI, significant robustness, and confidence. Despite multiple potential 

metabolic drivers identified in each subpopulation group, the following metabolites robustly 

connected to Dx: males: alpha-AAA; females: PC aa C36:6 and tryptophan; APOEɛ4+: PC 

aa C34:4; APOEɛ4-: PC aa C38:0, alpha-AAA, and serotonin; male APOEɛ4+: PC ae C36:3 
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and PC aa C40:2; male APOEɛ4-: C6 and sarcosine; female APOEɛ4+: PC aa C34:4, PC ae 

C36:4 and L-tryptophan; and female APOEɛ4-: SM C26:0 (Figure 3, Table 2, Table S5).

3.4 Metabolic network cross-validation using sex- and APOE-specific biomarker panel

To validate metabolic networks and key drivers, we trained an ensemble of machine 

learning models to select a subset of metabolites based on the network model and drivers 

with changes significantly associated with the disease state in each patient group. The 

prediction performance was evaluated with averaged AUC by cross-validation in the 

ADNI data (Figure 5). In each patient group, we trained different models and compared 

AUCs of each model with eight sets of input features. Set 1: all 127 metabolites; Set 

2: significant DE metabolites; Set 3: network-derived metabolites; Set 4: combination 

of all 127 metabolites plus age, education, BMI; Set 5: significant DE metabolites plus 

demographics; Set 6: network-derived metabolites plus age, education length, BMI; Set 

7: network-derived metabolites plus significant DE metabolites; Set 8: network-derived 

metabolites plus significant DE metabolites and age, education, BMI. The network-derived 

metabolites were extracted from the neighbor (within 3-step undirected) subnetwork of the 

Dx node in respectful networks.

We found that the prediction accuracy (AUC) of the network-derived metabolites (Set 3, 

Figure 5 green line) robustly and significantly outperformed those predicted by using all 

metabolites in the data (Set 1, Figure 5 black line) and only significant (P<0.05) DE 

metabolites derived from the linear regression model (Set 2, Figure 5 purple line) across all 

patient groups. Adding patient demographics to Sets 1 and 3 greatly improved individual 

prediction accuracy. However, the same pattern was observed in their relative accuracy, 

i.e., the AUC produced by the network-derived metabolite with patient demographics 

(Set 6, Figure 5 orange line) consistently outperformed the accuracy predicted by adding 

demographics to either all metabolites in the data (Set 4, Figure 5 pink line) or only 

significant (P<0.05) DE metabolites (Set 5, Figure 5 blue line) across all patient groups. 

When significant DE metabolites were added to the combination of network-derived features 

with patient demographics (Set 8, Figure 5 red line), a marginal improvement in AUC 

was observed in all APOEɛ4-, female APOɛ4+ and female APOEɛ4- groups, with a slight 

decrease in AUC was observed in males, male APOEɛ4+, male APOEɛ4-, suggesting 

that significant DE metabolites derived from linear regression added no further power in 

prediction of Dx given the network structure and patient demographics. Data suggest that the 

metabolic network-derived features with or without age, BMI, and education significantly 

improved the prediction accuracy compared to the other feature sets, DE metabolites and all 

127 metabolites in the data, across all patient groups. These data indicate that the predictive 

network model utilized in this study is more sensitive than traditional regression method 

in detecting weaker relations of metabolic changes with disease state in sex- and APOE-

specific patient groups. The best performing feature set with or without demographics, 

respectively, was selected for each group as the biomarker panel (Table S7).

3.5 Blood-based metabolic biomarker panels associate with cognitive decline

To evaluate the association of selected biomarker panels with clinical cognitive assessment 

(diagnosis, ADAS-Cog score, memory, and executive function), we calculated the eigen 
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expression to recapitulate the primary variance component (the first principal component) 

for each panel and fitted a linear regression model between the eigen expression of the 

1st principal component and cognitive measures. Significance of association is shown in 

Figure 5I (Table S8). Network-derived biomarker panels for each patient group with or 

without demographics were all significantly associated with the Dx. Of 16 panels (Table S7, 

two selected panels per group times 8 patient groups), 13 and 15 panels were significantly 

associated with memory (ADNI_MEM) and the overall cognition (ADAS-Cog Total Score), 

respectively. Of 16 panels, 10 were significantly associated with the executive function 

composite score (ADNI_EF). Two biomarker panels approached statistical significance 

with the executive function composite score: network-derived features with demographics 

for male APOEɛ4+ (FDR=0.0667) and network-derived features without demographic for 

female APOEɛ4+ (FDR=0.0678). Two biomarker panels approached statistical significance 

with overall cognition score: network-derived features with (FDR=0.0655) and without 

(FDR=0.0667) demographics. These results indicate that patient-specific metabolic networks 

and network-derived biomarker panels are associated with clinical cognitive assessment.

4 Discussion

Using advanced computational method, we demonstrated that LOAD is associated with 

metabolomic profiles defined by sex and APOE genotype. Based on patient group-

specific network models, we identified key drivers, differentially produced metabolites 

and metabolic signatures of the disease. Unstratified analyses identified changes in lipid 

homeostasis, with carnitines, PCs and SMs as most affected metabolites that differentiated 

AD from CN. Further stratification by sex revealed that metabolic changes in AD males 

were associated with amino acids while lipids remained predominantly affected in females. 

Stratification by sex and APOE did not affect lipid-dominant metabolic signatures in 

females while in APOEɛ4+ males, metabolic drivers and signatures changed from amino 

acids, especially BCAAs, to lipids comparable to APOEɛ4+ females. In APOEɛ4- males and 

females, metabolic changes were more diverse compared to APOEɛ4+ and included lipids 

and amino acids. The identified metabolic alterations are consistent with previous reports 

where changes in blood levels of PCs, SMs, acylcarnitines, ceramides, and amino acids 

differentiated MCI and AD from CN [11, 14, 18, 19, 27–30].

In addition to replicating sex-specific differences in serum metabolites associated with AD 

[14], our analyses also generated multiple novel and important findings by identifying 

metabolic signatures and key drivers in patient groups stratified by the intersection of 

sex and APOE genotype, which has not been previously reported. We demonstrate that 

i) previously observed amino acid-centered metabolic signatures and drivers in AD males 

are true for males without APOEɛ4; (ii) metabolic signatures and drivers for APOEɛ4+ 

males shifted from amino acids to lipids (PCs and SMs) similar to changes observed in 

APOEɛ4+ females. This important finding highlights the ability of APOEɛ4 genotype to 

signifinatly influence metabolic changes overriding sex-specific differences observed in 

serum metabolites in AD males and females. (iii) The metabolic shift is more subtle between 

APOEɛ4+ and APOEɛ4- females, which is confined to different lipid species, i.e., the 

shift from a SM-dominant metabolic signatures and drivers in APOEɛ4- to a PC-dominant 

signatures and drivers in APOEɛ4+. Overall, our novel findings indicate that APOEɛ4 
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genotype drives metabolic signature to a phosphatidylcholine-focused profile regardless of 

the patient sex.

The replicative validity and novelty of our findings emphasizes the importance of these 

metabolic pathways for AD. We identified changes in numerous individual lipids, including 

PCs and lysoPCs, as key drivers or components of metabolic signatures associated with 

cognition. PCs and SMs are integral constituents of the plasma membrane. The reduced 

PC levels observed in AD may reflect abnormal membrane functions including synaptic 

transmission and processing of the amyloid precursor protein contributing to Aβ production 

[31]. Furthermore, alterations in PCs may contribute to increased inflammation, one of 

the underlying mechanisms of LOAD [32, 33]. The panel of PCs and carnitines predicted 

the conversion from CN to AD/aMCI with sensitivity and specificity of 90% [27, 34] 

yielding improvements to previous reports where stratification was not used [35–37]. 

L-Carnitine and acylcarnitines play an essential role in energy metabolism transporting 

activated long-chain fatty acids into mitochondria for β-oxidation. They also mediate the 

metabolism of BCAAs, neuromodulation, antioxidant and anti-apoptotic functions in the 

brain [38, 39]. Consistent with our findings, changes in multiple carnitines (e.g., C12, 

C12:1, C14:1 and C8) contributed to discriminating AD from CN [40–42]. A recent study 

with the same metabolomics data conducted in both ante-mortem blood and post-mortem 

brain samples in two community-based longitudinal aging and dementia cohorts reported 

that decanoylcarnitine C10, pimelylcarnitine C7-DC, and tetradecadienylcarnitine C14:2 

significantly predicted a lower AD risk after a 4.5-year follow-up, independent of age, sex, 

and education [34]. However, the most important changes in carnitines and amino acids 

detected in AD patients associate with sex-specific dysregulation of energy metabolism [2, 

43].

Altered glucose uptake in the brain detected using FDG-PET occurs decades before onset of 

AD symptoms, suggesting that metabolic deficits are an upstream event specific to LOAD 

[43, 44]. Thus, changes in carnitines, fatty acids and amino acids, BCAA in particular, 

may indicate differential compensatory mechanisms for alternative energy substrates in 

AD males and females [45, 46]. High levels of carnitines may indicate a buildup of 

fatty acids, suggesting increased energy demands coupled with impaired energy production 

via mitochondrial β-oxidation [46]. Male-specific metabolic signatures identified herein 

included alpha-AAA and BCAA valine and isoleucine. BCAAs are important energy 

carrying molecules associated with cognitive decline and brain atrophy in AD [47]. Changes 

in their levels could indicate a switch to increased energy consumption via degradation 

of amino acids. The biogenic amine alpha-AAA is a degradation product of lysine and is 

involved in mechanisms of neurotransmission [48, 49]. Higher levels of serum alpha-AAA 

are associated with decreased cognitive function [5]. Consistent with previous observations, 

we detected positive associations of AD cognitive function with multiple amino acids, 

including tryptophan, citrulline, sarcosine, aspartic acid, and taurine [5, 11, 14, 18–20].

Our study has several limitations. First, the AbsoluteIDQ-p180 system is a targeted 

metabolomic platform with limited set of metabolites, including amino acids (21), 

biogenic amines (21), hexose (1), acylcarnitines (40), lysophosphatidylcholines (14), 

phosphatidylcholines (76), and sphingolipids (15). Utilization of this platform enabled 
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a direct comparison of the results reported herein, generated using advanced analytical 

computational analysis, to previously generated findings using the same platform[14]. 

Our novel computational systems biology approach enabled findings that strongly support 

utility of the targeted metabolomic biomarker translational approach for individualized 

medicine. Future large-scale metabolomics analyses could provide greater detail that 

support the metabolic pathways reported herein while also identifying additional pathways. 

From a translational perspective the replication of affected pathways using the targeted 

metabolomic platform coupled with a novel systems biology computational approach 

enabled identification of sex, APOE genotype and AD stage specific phenotypes. 

These findings provide the foundation for personalized therapeutic interventions and 

simultaneously a biomarker strategy to determine target engagement and therapeutic 

efficacy. Second, the metabolic data are inherently susceptible to environmental influences 

and personal factors. Such variability is further amplified in stratified analyses like ours, 

where although starting with thousands of patients, stratification reduces group size resulting 

in smaller detection power. Thus, most of significant DE didn’t survive multiple-testing 

correction. Therefore, potentially important findings could be missed by using conventional 

analytical methods such as DE and linear regression. We addressed this problem by utilizing 

a more sensitive network model than conventional methods. Our network model exploited 

the conditional independence derived from the robust covariance structure to overcome the 

relatively small effect-size in metabolic data due to random noise and small detection power 

due to reduced number of patients by stratification, which is not well handled by linear 

regression and correlation-based methods[14]. Herein, we demonstrated that our network 

approach is more robust and sensitive for detecting true associations over conventional 

methods. This may explain why previous studies have not discovered that APOEɛ4 status 

overrides sex-specific difference in serum AD metabolites though a similar effect was 

observed in a recent study with humanized APOE mice [30]. Although our network 

approach to some extent can mathematically alleviate the issue of low detection power, the 

number of subjects in each group was relatively small and studies in larger longitudinal 

cohorts are warranted to confirm these results. Our Alzheimer Disease Metabolomics 

Consortium (ADMC) is conducting comprehensive metabolic profiling across metabolomic 

platforms to provide broad biochemical coverage of the metabolome to map metabolic 

failures across trajectory of disease.

In summary, we provide a compelling systems biology analytical platform for metabolomics 

data analysis. We identified sex- and APOE-specific metabolic signatures associated with 

clinical diagnosis and cognitive assessment and key metabolic drivers that could be 

evaluated as therapeutic targets with a potential to shift the trajectory of the disease. 

The metabolic signatures and key drivers demonstrated clear metabolic differences in 

sex and APOE genotype and highlighted the potential of APOEɛ4 genotype overriding 

sex-difference in human serum metabolic associated with AD. In addition, we identified 

serum metabolic panels significantly associated with clinical diagnosis and cognitive 

assessment in each patient subgroup. This is the first study to establish patient-specific 

serum metabolic biomarkers predictive of disease diagnosis that significantly associated 

with clinical cognitive assessment for individual groups of patients stratified by sex and 

APOE genotype (Figure 5I, Table S9). Based on the biomarker panel of network-derived 
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metabolites and demographic features, we identified that education attainment and BMI are 

two most common biomarkers shared by 5 out of 8 patient groups, followed by tryptophan 

(4 out of 8), a set of PCs (PC aa C42:6, PC ae C36:5, PC ae C40:2, PC ae C42:5, PC 

ae C36:0) and age (3 out of 8). Interestingly, we identified valine, creatinine, lysine, C16, 

SM C26:1, lysoPC a C16:1, lysoPC a C18:0, lysoPC a C18:2, lysoPC a C20:3, PC aa 

C32:1, PC ae C38:5, PC ae C42:3 as unique markers for males; alpha-AAA and sarcosine 

as specific markers for APOEɛ4- males; C14:1-OH, PC aa C40:3, PC ae C30:0, SM (OH) 

C22:1 and taurine as unique markers for APOEɛ4+ males; PC aa C34:4 as a specific marker 

for APOEɛ4- females; and PC aa C38:0 as a specific marker for APOEɛ4+ females.

Our study provides an initial but critical step towards developing personalized and precision 

medicine for AD and an operational strategy to achieve that goal, which integrates clinical 

cognitive assessment, metabolomic profiling, and computational network model to identify 

targeted therapeutic strategies for subsets of patients.
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List of Abbreviations

APOE apolipoprotein E

ADNI Alzheimer’s Disease Neuroimaging Initiative

ADMC Alzheimer Disease Metabolomics Consortium

LOAD Late-onset Alzheimer’s disease

APOEε4 ε4 allele of the Apolipoprotein E (APOE)

AD Alzheimer’s Disease

Aβ amyloid beta

CN cognitively normal

CSF cerebrospinal fluid

MCI mild cognitive impairment

Aβ1–42 amyloid beta peptide 1–42

p-tau hyperphosphorylated-tau protein

FDG-PET fluorodeoxyglucose-positron emission tomography

Dx disease diagnosis

BMI body mass index

BN Bayesian network

CI confidence interval

XGBoost eXtreme Gradient Boosting

AUC area under curve

ANOVA analysis of variance

FDR false discovery rate

PC phosphatidylcholine

DE Differential Expression

SM sphingomyelin

alpha-AAA alpha-amino adipic acid
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APOEɛ4- APOEε4 negative/non-carrier

APOEɛ4+ APOEε4 positive/carrier

C7-DC Pimelylcarnitine

lyso-PC Lysophosphatidylcholine

BCAA branched chain amino acid

ADAS-Cog The Alzheimer’s Disease Assessment Scale–Cognitive Subscale

ADNI_MEM Alzheimer’s Disease Neuroimaging Initiative Memory Test Score

ADNI_EF Alzheimer’s Disease Neuroimaging Initiative Executive Function 

Test Score

aMCI amnestic mild cognitive impairment
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Figure 1. Analytical pipeline utilized in the study.
The analytical pipeline included 1152 samples from ADNI cohort. Patients with self-

memory complain (SMC) and early mild cognitive impairment (EMCI) were removed 

leaving 1152 samples from AD, late mild cognitive impairment (LMCI) and CN (A). Data 

were normalized; the residuals were obtained after covariate adjustment (B). 362 CN and 

294 AD samples were stratified into eight groups based on sex and APOE genotype (C). 

A predictive network model was built (D) to derive patient-specific metabolic signatures 

and drivers of progression from CN to AD in each group (G). The DE analysis identified 

significant changes in metabolites. Metabolic biomarker panels (F) were derived using 

machine learning models (E). Patient-specific pathways were identified based on metabolic 

signatures and drivers (H). N, the number of participants; M, the number of metabolites; 

ADNI, AD Neuroimaging Initiative; ADNI 1&2GO, phase 1 and phase 2/GO of ADNI; QC, 

quality control; AD, Alzheimer disease; CN, cognitive normal; BMI, body mass index.
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Figure 2. Sex- and APOE-specific consensus predictive metabolic network
To build consensus causal predictive metabolic network, we subsampled 100 datasets and 

constructed 100 metabolic networks per patient group. The 95% confidence interval is 

calculated per edge. The consensus network models were used to identify the upstream 

metabolites and pathways associated with AD in background with all 656 AD and CN 

samples (A), males (B), females (C), APOEɛ4+ (D), APOEɛ4- (E), male APOEɛ4+ (F), 

male APOEɛ4- (G), female APOEɛ4+ (H), female APOEɛ4- (I). Dx, disease diagnosis. 

Red color indicates metabolites metabolite level is increased in AD comparing to CN; 

green color indicates metabolite level is decreased in AD comparing to CN. Significant DE 

metabolites are indicated with black circles.
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Figure 3. Sex- and APOE-specific metabolic heterogeneity
In each group, the confidence and robustness of metabolic drivers were shown in the 

heatmap where the X-axis represents 100 different networks and Y-axis represents candidate 

key drivers in 100 networks. Each row in the heatmap represents a vector of 100 posterior 

probability values of the edge from a key driver to Dx derived from 100 networks, and the 

bar plot is ranked based on the log2 of the sum of the 100 posterior values per key driver 

in male (A,B), female (C,D), APOEɛ4+ (E,F), APOEɛ4- (G,H), male APOEɛ4+ (I,J), male 

APOEɛ4- (K,L), female APOEɛ4+ (M,N), female APOEɛ4- (O,P).
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Figure 4. Sex- and APOE-specific metabolic differential expression analysis
The significant P-value<0.05 of differentially produced metabolites are compared between 

patient groups to illustrate the specificity and commonality of AD-associated metabolic 

signatures to sex and APOE genotype. (A) Male vs Female; (B) APOEɛ4+ vs APOEɛ4-; 

(C) Male APOEɛ4+ vs Male APOEɛ4-; (D) Male APOEɛ4- vs Female APOEɛ4+; (E) 

Female APOEɛ4+ vs Female APOEɛ4-; (F) Male APOEɛ4+ vs Female APOEɛ4+; (G) 

Male APOEɛ4- vs Female APOEɛ4+; (H) Male APOEɛ4+ vs Female APOEɛ4-.
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Figure 5. Biomarker panel and cross-validation accuracy for AD diagnosis
The prediction performance of diagnostic biomarker panels derived from different sets 

of features are compared in each patient group, The number in the figure represents the 

averaged cross-validation AUC with 8 feature sets respectively in male (A), female (B), 

APOEɛ4+ (C), APOEɛ4- (D), male APOEɛ4+ (E), male APOEɛ4- (F), female APOEɛ4+ 

(G), male APOEɛ4- (H); All, all 127 metabolites in the data; All Clinic, all 127 metabolites 

in the data combines with age, BMI and/or education; DE: significant DE metabolites; DE 

Clinic: significant DE metabolites combined with age, BMI and/or education; Network: 

biomarkers derived from metabolic network; Network_DE: biomarkers derived from the 

combination of significant DE and metabolic network; Network_DE_Clinic: biomarkers 

derived from combination of significant DE metabolites, metabolic network and age, BMI, 

and/or education. Network_Clinic: biomarkers derived from metabolic network and age, 

BMI and/or education; (I) Two selected optimal biomarker panel association with clinical 

assessment and cognitive decline: The association of the two selected biomarker panel with 

and without Age, BMI and Education in each patient group (A: biomarker pane derived from 

metabolic network; B: biomarker pane derived from combination metabolic network plus 
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age, BMI and/or education) with diagnosis (Dx) and clinical assessments (ADAS-Cog Total 

Score, memory function (ADNI_MEM) and executive function (ADNI_EF)).
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Table 1.

Characteristics of the 1152 ADNI subjects in this study

Demographics CN LMCI AD

Sample size 362 496 294

Sex (M/F) 177/185 307/189 161/133

Age(yr.) 74.61(+/−5.66) 74.11(+/−7.57) 74.71(+/−7.85)

BMI (kg/m2) 27.04(+/−4.51) 26.49(+/−4.32) 25.87(+/−4.71)

Education(yr.) 16.20(+/−2.79) 15.86(+/−2.91) 15.19(+/−2.99)

APOE ɛ4 +/− 101/261 265/231 193/101

Clinic Assessment

ADAS-Cog total score 5.99(+/−3.04) 11.56(+/−4.50) 19.34(+/−6.75)

Memory function (ADNI_MEM) 0.95(+/−0.53) −0.05(+/−0.57) −0.73(+/−0.52)

Executive function (ADNI_EF) 0.74(+/−0.70) 0.014(+/−0.78) −0.82(+/−0.84)

CSF Pathology

CSF p181-Tau 25.54(+/−14.80) 35.36(+/−17.36) 41.64(+/−19.63)

CSF Aβ1–42 207.67(+/−54.47) 163.48(+/−53.57) 143.64(+/−41.86)

Table 1. Characteristics of the 1152 ADNI participants included in this study

Metabolomics datasets from the Biocrates p180 platform used in the current analyses for the ADNI-1 and ADNI-GO/2 cohorts are available 
via the Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD) Knowledge Portal and can be accessed at http://dx.doi.org/10.7303/
syn5592519 (ADNI-1) and http://dx.doi.org/10.7303/syn9705278 (ADNI GO-2). The full complement of clinical and demographic data for 
the ADNI cohorts are hosted on the LONI data sharing platform and can be requested at http://adni.loni.usc.edu/data-samples/access-data/. 
Abbreviations: ADAS-Cog, Alzheimers Disease Assessment Scale – Cognitive Subscale; BMI, Body Mass Index; CN, cognitively normal; 
LMCI, Late Mild Cognitive Impairment; AD, Alzheimer’s Disease; yr., years. APOEε4−/+: non-carriers and carriers of the APOE ε4 allele, 
ADAS-Cog: Alzheimer’s Disease Assessment Scale-Cognitive Subscale, CSF Aβ1–42: Cerebrospinal fluid Amyloid beta 1–42 protein. CSF 
p181-Tau: Cerebrospinal fluid phosphorylated Tau protein at threonine 181 (p181tau).
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Table 2.

Summarize of Sex- and APOE-specific metabolic signature, key drivers and DE metabolites in each patient 

group.

A. Overall.DE Overall.KD Overall Signature

C12↑ PC aa C36:6 PC aa C36:6

C18↑ PC ae C38:0

C18:1↑ PC aa C34:4

C18:2↑ PC ae C40:6

Citruline↑ PC aa C30:0

PC aa C34:4↓ PC aa C38:4

PC aa C36:0↓

PC aa C36:5↓

PC aa C36:6↓

PC aa C38:0↓

PC aa C38:3↓

PC aa C38:6↓

PC aa C40:6↓

PC aa C42:6↓

PC ae C36:5↓

PC ae C38:0↓

PC ae C38:6↓

PC ae C40:1↓

SM (OH) C22:1↓

SM (OH) C22:2↓

SM (OH) C24:1↓

B. Male.DE Male.KD Male.Signature

C18↑ alpha-AAA alpha-AAA

C18:1↑ Val

C18:2↑ Ile

PC ae C36:5↓ Lys

PC ae C38:6↓ Trp

Sarcosine↓

SM C24:0↓

C. Female.DE Female.KD Female.Signature

Creatinine↑ PC aa C36:6 PC aa C36:6

PC aa C34:4↓ Trp Trp

PC aa C36:6↓ PC aa C30:0

PC aa C38:6↓ PC ae C38:0

PC ae C38:0↓ PC ae C40:6

SM (OH) C22:2↓ PC aa C34:4

Trp↓ PC aa C36:5
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C. Female.DE Female.KD Female.Signature

PC aa C38:6

Tyr

C3

Val

PC ae C30:0

PC aa C32:1

PC aa C32:0

PC aa C38:0

PC aa C40:6

PC ae C40:1

PC ae C42:3

PC ae C42:2

PC aa C42:1

PC ae C40:5

PC ae C38:6

PC aa C34:3

PC aa C40:4

PC aa C38:4

PC aa C38:5

PC ae C40:4

Ala

Asn

C4

alpha-AAA

C0

Ile

Lys

D. Male.APOE e4+.DE Male.APOE e4+.KD Male.APOE e4+.Signature

Asn↑ PC ae C36:3 PC ae C36:3

C7-DC↓ PC aa C40:2 PC aa C40:2

lysoPC a C18:0↑ PC ae C34:3

Taurine↓ PC ae C34:2

PC ae C34:1

SM C16:0

PC aa C42:2

PC aa C40:3

PC ae C32:1

PC ae C30:0

PC ae C36:4

PC ae C36:2

PC ae C38:3

PC aa C32:0
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D. Male.APOE e4+.DE Male.APOE e4+.KD Male.APOE e4+.Signature

PC ae C34:0

PC ae C36:1

PC aa C36:1

SM C24:1

SM C24:0

PC ae C32:2

PC ae C40:3

SM C16:1

SM (OH) C14:1

PC aa C42:1

PC ae C42:3

PC ae C42:1

PC ae C42:2

E. Female.APOE e4+.DE Female.APOE e4+.KD Female.APOE e4+.Signature

PC aa C30:0↓ PC aa C34:4 PC aa C34:4

PC aa C34:4↓ PC ae C36:4 PC ae C36:4

PC aa C38:3↓ PC aa C30:0

Trp↓ PC aa C34:3

PC aa C36:6

PC aa C40:4

PC aa C38:5

PC ae C34:3

PC ae C36:5

PC ae C36:3

PC ae C38:5

PC ae C38:4

PC ae C30:0

PC aa C32:1

PC aa C32:0

PC ae C34:0

PC ae C38:0

PC aa C40:6

PC aa C36:5

PC aa C38:6

PC aa C38:3

PC ae C42:1

PC ae C40:4

PC aa C40:5

PC aa C38:4

PC ae C40:1

PC aa C42:5

PC ae C38:6
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E. Female.APOE e4+.DE Female.APOE e4+.KD Female.APOE e4+.Signature

PC ae C32:2

PC ae C32:1

PC ae C34:2

SM C16:0

PC ae C34:1

PC aa C40:3

PC ae C36:2

PC ae C40:5

PC ae C44:5

SM (OH) C16:1

C18

F. Male.APOE e4-.DE Male.APOE e4-.KD Male.APOE e4-.Signature

C10↑ C6 (C4:1-DC) C6 (C4:1-DC)

C12↑ Sarcosine Sarcosine

C14:2↑ alpha-AAA

C16:1↑ C8

C7-DC↑ C10

C8↑ C16:1

PC aa C38:6↓ C10:2

PC ae C38:6↓ C5-DC (C6-OH)

Sarcosine↓ C12

C14:1

C18:1

lysoPC a C16:0

lysoPC a C18:0

C9

lysoPC a C17:0

Glu

Val

Ile

G. Female.APOE e4-.DE Female.APOE e4-.KD Female.APOE e4-.Signature

Citrulline↑ SM C26:0 SM C26:0

Creatinine↑ SM (OH) C22:1

Lysine↓ SM C26:1

PC aa C38:0↓ SM (OH) C24:1

PC aa C38:6↓ SM C24:0

PC aa C40:6↓ SM (OH) C22:2

PC ae C38:0↓ SM C24:1

Taurine↓ PC ae C40:3

Trp↓ PC ae C40:2

SM (OH) C16:1
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G. Female.APOE e4-.DE Female.APOE e4-.KD Female.APOE e4-.Signature

PC ae C44:5
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