Skip to main content
. 2023 Jul 4;9:e1450. doi: 10.7717/peerj-cs.1450

Table 1. Results of different methods on the dataset PEMSBAY.

Classification Methods PEMSBAY (10/15/20 min)
MAE MAPE (%) RMSE
Classical methods HA 2.41/2.48/2.56 5.62/5.78/5.97 5.37/5.58/5.76
SVR 1.43/1.60/1.74 3.46/3.87/4.26 3.23/3.60/3.94
RF 1.35/1.54/1.72 2.90/3.42/3.90 2.69/3.15/3.56
KNN 1.45/1.62/1.78 3.20/3.65/4.08 2.92/3.34/3.72
State-of-the-Art methods STGCN 1.39/1.68/2.02 3.24/4.02/5.11 2.50/3.10/3.67
FC-GAGA 1.36/1.65/1.83 3.08/3.91/4.44 2.69/3.45/3.97
AGCRN 1.37/1.47/1.58 3.23/3.50/3.76 2.77/3.03/3.27
Our methods GST-HCN 1.32/1.51/1.68 3.17/3.71/4.21 2.41/2.82/3.18
HST-HCN 1.41/1.60/1.76 3.68/4.18/4.64 2.61/3.01/3.31
LST-HCN 1.25/1.46/1.64 2.81/3.45/3.96 2.27/2.73/3.11
ST-HCN 1.22/1.40/1.57 2.73/3.23/3.73 2.19/2.58/2.94

Notes.

The best experimental results for each setting are bolded.