Skip to main content
. 2023 Jul 4;9:e1450. doi: 10.7717/peerj-cs.1450

Table 2. Results of different methods on the dataset PEMSM.

Classification Methods PEMSM (10/15/20 min)
MAE MAPE (%) RMSE
Classical methods HA 3.14/3.22/3.32 7.60/7.81/8.03 6.09/6.29/6.49
SVR 1.78/2.01/2.21 4.45/5.03/5.54 3.44/3.92/4.36
RF 1.82/2.10/2.34 4.24/4.95/5.60 3.19/3.76/4.25
KNN 1.96/2.21/2.43 4.64/5.28/5.87 3.48/3.99/4.44
State-of-the-Art methods STGCN 1.87/2.29/2.60 4.32/5.38/6.19 3.16/3.93/4.46
FC-GAGA 1.86/2.20/2.45 4.36/5.26/5.98 3.38/4.16/4.77
AGCRN 1.82/1.96/2.09 4.39/4.75/5.08 3.28/3.60/3.89
Our methods GST-HCN 1.74/2.00/2.21 4.15/4.79/5.37 2.94/3.41/3.82
HST-HCN 1.72/1.97/2.19 4.07/4.74/5.29 2.90/3.39/3.75
LST-HCN 1.68/1.96/2.18 3.87/4.56/5.22 2.88/3.40/3.82
ST-HCN 1.62/1.86/2.08 3.72/4.34/4.98 2.77/3.23/3.63

Notes.

The best experimental results for each setting are bolded.