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Topological defects law for migrating banded
vegetation patterns in arid climates
D. Pinto-Ramos1*, M. G. Clerc1, M. Tlidi2

Self-organization and pattern formation are ubiquitous processes in nature. We study the properties of migrat-
ing banded vegetation patterns in arid landscapes, usually presenting dislocation topological defects. Vegeta-
tion patterns with dislocations are investigated in three different ecosystems. We show through remote sensing
data analysis and theoretical modeling that the number of dislocations N(x) decreases in space according to the
law N ∼ log(x/B)/x, where x is the coordinate in the opposite direction to the water flow and B is a suitable cons-
tant. A sloped topography explains the origin of banded vegetation patterns with permanent dislocations. The-
oretically, we considered well-established approaches to describe vegetation patterns. All the models support
the law. This contrasts with the common belief that the dynamics of dislocations are transient. In addition,
regimes with a constant distribution of defects in space are predicted. We analyze the different regimes depend-
ing on the aridity level and water flow speed. The reported decay law of defects can warn of imminent ecosystem
collapse.
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INTRODUCTION
Self-organization phenomena leading to spatially periodic patterns
are observed in complex or nonlinear systems (1–5). Vegetation
population dynamics provide puzzling and notable examples of
spatially periodic structures, generically called vegetation patterns,
formed by large-scale botanical organizations controlled by a non-
equilibrium symmetry-breaking instability (6–13). The banded pat-
terns, often called tiger bush (14), consist of dense vegetation bands
alternating with sparsely covered or even bare soil, their wavelength
ranges from decimeters to hundreds of meters. Banded vegetation
patterns have probably been first reported by Macfadyen in the
earlier fiftieth (15, 16). The spontaneous symmetry-breaking insta-
bility causes their formation even when the topography is flat (6).
The presence of the slope causes the migrating banded patterns (6,
8, 12). They grow by a few decimeters each year in the opposite di-
rection of the water flow (8, 12). Besides, a bibliography of empirical
and scientific studies devoted to the origin of their formation and
maintenance can be found in (6, 12, 17–20).

Most of the banded vegetation patterns observed in nature are
disordered and present topological defects such as dislocations, as
can be seen in Fig. 1. Dislocations in the banded vegetation patterns
are indicated by red rings in the aerial photographs of Fig. 1. When
two stripes join and transform into a single one, they form a defect
called dislocation. Observations across large areas of numerous arid
and semi-arid regions of Africa, Australia, America, and the Middle
East show that topological defects are abundant. Banded vegetation
is a well-documented issue that has been abundantly discussed and
is by now fairly well understood. So far, however, the law governing
the formation of such defects has neither been experimentally de-
termined nor theoretically predicted.

Here, we establish a law governing the organization of disloca-
tions. By analyzing satellite images taken from vast territories of the
African and American continent, we show that the number of

dislocations obeys the formula N ∼ log(x/B)/x, where x is the coor-
dinate in the opposite direction of water flow and B is a suitable
constant. Theoretically, we have considered three different ecolog-
ical approaches describing the dynamics of topological defects. All
these models quantitatively support this deterministic law. Further-
more, these ecological models predict an additional dynamical
regime where the number of dislocations remains constant. In ad-
dition to the slope, which is the source of dislocation propagation,
we show that boundary conditions play an essential role in their per-
manent creation; defect generation from boundaries is a document-
ed phenomenon in nonlinear physics that appears in several
situations, the most common being the dynamics of viscous flows
(21). Therefore, with a source of dislocations through the boundar-
ies, the dynamics of these topological defects can be permanent
rather than transient. This fact strongly contrasts with previous
work where dislocation formation is considered a transient
dynamic due to their mutual annihilation interaction, leading at
long times to a perfectly ordered banded pattern free of defects
(8). The permanent dynamics of defects is the process of pairs of
dislocations being created at the boundary with opposite topologi-
cal charges, and then they move with the pattern migration velocity
(toward x) at the same time they interact, approaching each other
until annihilation; the process is repeated in time in an unpredict-
able way. This complex permanent dynamic leaves an imprint in the
dislocation number as a function of the x direction.We demonstrate
how a decaying number of dislocations in space may be used as an
early indicator of an ecosystem’s potential collapse under harsh en-
vironmental conditions. We conclude by showing how the measure
of the dislocation distribution in space can be used as a noninvasive
tool for diagnosing ecosystem health. The ecosystem transition to
bare soil is a much-studied issue in which spatial vegetation
models play a crucial role (22–24). Our theory complements the un-
derstanding of ecosystem adaptability and resilience until now, as
we consider the role of sloped topography and boundary conditions
in the dynamics. The predicted law is supported by field observa-
tions and can be crucial for identifying and comprehending the
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different spatiotemporal behaviors seen in complex systems other
than ecological ones.

RESULTS
Remote sensing data analysis and the dislocation
distribution decay law
To establish through field observation that the number of disloca-
tions in the banded vegetation follows a logarithmic law, we
perform an image analysis. Three regions of the world are consid-
ered: Chile, Sudan, and the United States. To do that, we use high-
resolution satellite images obtained from the Google Earth software
(https://earth.google.com/web), together with the elevation data-
base SRTM (Shuttle Radar TopographyMission) with 1–arc sec res-
olution (25). First, we select and create an adequate mask of the
region where banded vegetation patterns are settled on sloppy land-
scape as shown in the satellite images of Fig. 2 (A to C). Second, we
extract the mean orientation of the elevation gradient 〈θ〉 over the
selected region as illustrated by Fig. 2 (D to F). We assume that the
mean orientation of the elevation gradient is parallel to x. In the case
of the banded vegetation pattern in hyper-arid landscapes of Chile,
the x variable decreases with height, as water comes from the East-
to-West traveling fog (26, 27). This means that the water bubbles
move uphill, and therefore, the vegetation pattern migrates

downhill. However, in arid landscapes of North America and
Sudan, water is supplied by rainfall, and the x variable grows
with height.

Once the x direction is defined, dislocation positions aremarked.
For the satellite images, because of the intrinsic fluctuations, the
high anharmonicity, and the high variations in the wavelength in
the banded vegetation, the dislocations could not be recognized
with standard methods. To detect dislocations, we construct a skel-
eton of the banded vegetation pattern using the software for scien-
tific image analysis Fiji (28) (see Materials and Methods section).
This method allows us to identify the branch split points and the
branch ends as points representing dislocations of the local
pattern. The results are summarized in Fig. 2 (G to I).

Last, we select an area within the banded vegetation pattern in
the plane (x, y), and we define the dislocation number N(x, y)
over tiles of one wavelength side. Then, we average along the y di-
rection. The obtained dislocation number N(x) is plotted as a func-
tion of x/λ where λ is the wavelength of the banded vegetation
pattern. Note that N is the expected number of dislocations in a
λ2 surface tile centered on the (x, y) plane. The results are shown
in Fig. 3. In the hyper-arid landscape of Chile and Sudan and the
United States arid landscapes, the number of dislocations N(x) de-
creases with the x direction. From these results obtained from
remote sensing observations, we can see that the spatial distribution

Fig. 1. Migrating banded vegetation patterns with dislocations observed in arid and semi-arid ecosystems on different continents. (A) Sudan 11° 90 N, 28° 16.50

E. (B) Somalia 8° 6.90 N, 47° 26.50 E. (C) United States 31° 2.50 N, 103° 5.50 W. (D) Mexico 28° 8.50 N, 104° 280 W. (E) Australia 23° 230 S, 133° 23.20 E. (F) Chile 20° 29.50 S, 70° 3.50

W. (G) Saudi Arabia 24° 19.80 N, 42° 55.20 E. Insets show dislocations indicated with red rings.
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Fig. 2. Remote sensing analysis: Determination of the x direction and defect recognition with remote sensing data. (A to C) show the vegetation patterns in Chile
20 β 29.50 S, 70° 3.50 W, Sudan 11° 90 N, 28° 16.50 E, and the United States 31° 2.50 N, 103° 5.50 W, respectively. (D to F) exhibit the direction of the steepest variation in the
altitude over the region of interest. (G to I) illustrate the pattern’s skeletons, and insets show the patterns dislocations highlighted.
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of defects is not uniform. Their distribution depends on the sloped
direction along which the water flows. The fit of the observations is
indicated by continuous orange curves in Fig. 3. Unexpectedly, the
N(x) ∼ log(x/B)/x decay law fits well with the data obtained from
Chile and Sudan. For the U.S. landscapes, the fit is excellent.

To understand the complex ecological phenomenon reported
above and the role of the law dictating the number density of dislo-
cations in space, mathematical modeling is indispensable. In the fol-
lowing subsections, we investigate the origin of the logarithm decay
law through theoretical investigation and numerical simulations of
three ecological models.

Theoretical modeling
To shed light on the observations of the previous section, we con-
sider different standard approaches to explain biomass evolution.
The dynamics of ecological systems are often described by either
reaction-diffusion models that explicitly incorporate water trans-
port or integrodifferential equations. The latter approach is ground-
ed on nonlocal interactions associated with facilitative and
competitive feedback and seed dispersion. Other models based on
cellular automata have been first proposed (14) and also models
based on environmental randomness (3, 29).

We consider the reaction-diffusion (8–11) and the integrodiffer-
ential approaches (6, 30). The later can be seen as a logistic equation
with the abovementioned nonlocal interactions, i.e., the spatiotem-
poral evolution of the normalized biomass b(r, t), reads (30).

∂tb ¼ mf ð1 � bÞb � μmcbþ dr2b ð1Þ

where r = (x, y) and t are the spatial coordinates and time,
respectively. mf and mc account for facilitation and competition
plant-to-plant feedbacks. The nonlocal contributions read
mf,c = exp [χf,c ∫ ϕf,c(r0)b(r + r0, t)dr0], where ϕf ;cðx; yÞ ¼
exp½� ðx � x0f ;0cÞ2=2l2fx;cx � y2=2l2fy;cy� are ellipsoidal coupling
kernels with a shift in x with respect to the origin of magnitude
x0f,0c. The facilitative and the competitive ranges are lfx,cx and lfy,cy
for the x and y direction, and the feedback strengths are measured
by χf,c. The Kernels ϕf,c introduce an anisotropy and break the
reflection symmetry x ↔ −x. The last term of the right-hand side
of Eq. 2 models the seed dispersion with diffusive coefficient d.

In the weak gradient approximation, one can derive from model
Eq. 1 a simpler partial differential equation (see Materials and
Methods for details) of the form

∂tb ¼ � ηþ κb �
b2

2

� �

bþ pr2b � bðα∂x þ γ∂2x þ ∂4xÞb ð2Þ

where α accounts for the translation parameter of the ellipsoidal
kernel. The parameter η measures the decrease–to–growth rate
ratio, called the aridity parameter. κ is the facilitation-to-competi-
tion strength difference, called the cooperativity parameter. γ is pro-
portional to the difference of the squared competition-to-
facilitation lengths and p plays the same role as d.

In addition to the integrodifferential and the weak-gradient
models, we consider the water-biomass model describing the
space-time evolution of the biomass (b) and water (w) density.

Fig. 3. Dislocation number decay law obtained from remote sensing analysis
in Chile, Sudan, and U.S. landscapes. Circles account for observed data, and the
orange curves represent the fits. (A to C) correspond to a N(x) ∼ log(x/B)/x fit for
patterns in Chile, Sudan, and the United States, respectively. Fit parameters in λ
units are (A) x0 = −2.9, B = 1.2, and A = 2.7; (B) x0 = −2, B = 1.5, and A = 10.6; (C)
x0 = −2.4, B = 1.3, and A = 5. R2 is the coefficient of determination of the fits.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Pinto-Ramos et al., Sci. Adv. 9, eadf6620 (2023) 4 August 2023 4 of 11



This model reads (10)

∂tb ¼
γw

1þσw � μ
� �

b � b2 þ dr2b

∂tw ¼ p � ð1 � ρbÞw � w2bþ
r2ðw � βbÞ � α∂xðw � vbÞ

ð3Þ

The slope effect is accounted for in the term α∂x(w − vb), where
α is the water speed, which flows opposite (in favor) to the x direc-
tion for α < 0 (α > 0). Because of the water absorption by plants, the
biomass reduces the water advective transport mediated by the pa-
rameter v. The parameters γ and σ model the biomass production
increase with water considering a saturable function, d models the
seed dispersion, and μ accounts for mortality. The parameter pmea-
sures water input, ρ reduces the transpiration rate linearly with the
biomass, and β models how plants affect water absorption by
the soil.

Numerical simulations of the nonlocal model Eq. 1 with ellipsoi-
dal translated kernels (lfx,cx ≠ lfy,cy) display propagative banded pat-
terns for small x0f,0c values as shown in Fig. 4A. These results are
obtained using Dirichlet boundary conditions with zero value in
the flow direction edges (b = 0 for x = 0 and x = s, where s is the
system size). Periodic boundary conditions are used in the y direc-
tion. Numerical simulations of all the models presented were con-
ducted with a Runge-Kutta algorithm of fourth order for time
integration and a finite difference scheme for space discretization.

As the translation parameter increases, the uniform banded pat-
terns become unstable and the system generates permanent disloca-
tions from the fixed edge x = 0, see Fig. 4B. Similarly, a permanent
emission of defects can be sustained by environmental stochastic
fluctuations (31).

The permanent dislocation dynamics are also obtained from the
reduced model Eq. 2 (cf. Fig. 4, C and D) and the reaction-diffusion
Eq. 3 (cf. Fig. 4, E and F). All models display a transition from a
perfect traveling banded vegetation to a regime where dislocations
are permanently emitted, as shown in Fig. 4. This transition occurs
for α* < α, the system asymptotically tends to a regular banded
pattern as x → ∞, cf. Fig. 5A(i), but with dislocations being
created in the upstream boundary. The critical value α* is the
threshold for the boundary layer instability, and below this value,
the number of dislocations is zero. The α* parameter has no analyt-
ical expression and depends on the model considered. Hence, this
parameter only is determined numerically. When dislocations are
only created on the edge, numerical data follows

NðxÞ ¼
Alog½ðx � x0Þ=B�
ðx � x0Þ

ð4Þ

where A, B, and x0 are the fit parameters. The number of disloca-
tionsN(x) as a function of xis plotted in Fig. 5A(iii). This numerical
result agrees with field observations using remote sensing image
data analysis, as shown in the panels of Fig. 3. Table 1 summarizes
the results of fitting law (4) to both observational and numeri-
cal data.

To understand analytically the origin of the logarithmic law, we
perform a normal form analysis, which leads to the derivation of the
well-known Ginzburg-Landau Eq. 9 (see Materials and Methods).
Dislocations correspond to topological singularities in the phase
of the Ginzburg-Landau equation (32–34). This reduction shows
that in defect interaction, when the nonlinear phase correction β

is small, the length l between the defects decays according to the
law l2 = t/log(t) (35–37). Then if the system is advected with
speed α, one can interchange the role of time for space using the
relation t = x/α. Hence, this characteristic length changes with dis-
tance as l2 = x/αlog(x/α). Likewise, the average number of defects in
a given area Π is N(x) = Π/l2 = Παlog(x/α)/x. Again, the normal
form analysis confirms the logarithmic law.

When, however, the advection parameter increases, i.e., large α,
we identify a second transition where a permanent creation of dis-
locations occurs not only from the edge but also in the bulk, as
shown in Fig. 5A(iv). This regime is well-known in nonlinear
systems in general, and it is referred to as defects turbulence (32,
38). In this regime, the averaged dislocation number is constant
N(x) = c as a result of the continuous creation of defects in the
bulk, see Fig. 5A(vi). This figure is obtained from numerical simu-
lations of Eq. 2. The transition from nonturbulent to turbulent
regime is also obtained from the Ginzburg-Landau Eq. 9, as
shown in Fig. 5B.

The numerical analysis of ecological models indicates that by
only measuring the number of dislocations in the pattern, one
can infer if the semi-arid and arid ecosystems operate in the turbu-
lent regime where N(x) = c or in the nonturbulent regime where
N(x) obeys a logarithmic decay law. This law obtained from numer-
ical simulations of the three models considered here is in good
agreement with observations using remote sensing image analysis,
as shown in the panels of Fig. 3. Therefore, the measure of the
number of dislocations in the vegetation patterns and their spatial
distribution can be used as a noninvasive tool for diagnosing the
degree of complexity of arid landscapes and for identifying unex-
pected dynamical phenomena in ecological systems.

DISCUSSION
The transition between different regimes is investigated in terms of
the speed of the water flows. We have shown that for a large speed,
the ecosystem presents a turbulent behavior where the number of
topological defects is constant. For a small value of the water flow
speed, the number of defects decreases according to the logarithmic
law. In what follows, we discuss the effect of the aridity level on dis-
location formation. For this purpose, we fix the speed of the water
flow and vary the aridity level. Figure 6 summarizes the different
ecosystem operating regimes. For small aridity parameters, the
system develops migrating banded pattern devoid of defects (cf.
red curve). For a moderate level of aridity, the system exhibits a tran-
sition toward a turbulent regime where the number of dislocations
is constant (see blue curve). However, for extreme aridity condi-
tions, the system reaches a regime where the system undergoes
self-organized dislocations with a logarithmic decay law (see
yellow curve). Further increasing the aridity, the banded patterns
exhibit a transition toward a state totally devoid of vegetation.
Thus, for a given landscape with a homogeneous slope, the presence
of a decaying number of dislocations can be an ecological indicator
of imminent transition toward a bare state. This complements what
is known about the catastrophic shift of ecosystems in flat topogra-
phy, where different types of stationary patterns exist and where
multistability of patterns with different wavelengths can be ob-
served. The existence of many pattern branches permits the ecosys-
tem to adapt to environmental changes, which allows a patterned
ecosystem to survive past the tipping point compared to a

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Pinto-Ramos et al., Sci. Adv. 9, eadf6620 (2023) 4 August 2023 5 of 11



homogeneous ecosystem (22). However, once a gentle slope is intro-
duced into the system, the advective effects of water flow must be
taken into account for the stability analysis of patterns and other
solutions of the system (39). This changes the stable pattern branch-
es compared to a flat territory case. In addition, complex and tur-
bulent-like dynamics can emerge as a consequence of the slope.
These complex dynamical regimes have their own relative stability

compared to the different perfect migrating pattern regimes and ho-
mogeneous states. Multistability of the complex dynamical regimes
and the perfect patterns can occur, as observed in Fig. 6, suggesting
that in adaptation to change, ecosystems could transit to these
complex regimes if in the presence of a slopped territory. Numeri-
cally, only the most stable branch of perfect patterns is accessible.

Fig. 4. Theoretical modeling of the dislocation decay law: Numerical simulations for three models of migrating banded vegetation patterns with different
advection parameters. (A and B) correspond to the integrodifferential model Eq. 1. Parameters are lfx = lfy = 0.5, lcx = 2.2, lcy = 0.3, μ = 0.95, χf = 2.8, χc = 2.0, d =
0.01, for (A) x0f = −0.2 and x0c = 0.1, for (B) x0f = −0.4 and x0c = 0.8. (C and D) show the weak gradient model Eq. 2, parameters are η = −0.04, κ = 0.3, p = 0.05, γ =
1.9, for (C) α = 0.4, for (D) α = 1.0. (E and F) represent the water-biomass model (3), parameters are γ = 2.0, σ = 1.5, d = 0.1, μ = 0.1, w0 = 0.3, ρ = 0, β = 0, v = 4.0, for (E) α =
−1.4, for (F) α = −2.0. The right panels correspond to the respective number of dislocations N(x) as a function of the propagation coordinate (x/λ) for each model in the
regime of asymptotic uniform stripe patterns. Fit parameters in λ units are (G) x0 = 27.2, B= 4.1, and A = 0.2 (R

2 = 0.99); (H) x0 =−7, B= 3.8, and A = 0.5 (R2 = 1.0); (I) x0 = 14.3,
B = 0.7, and A = 0.06 (R2 = 0.99).
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Fig. 5. Transition from nonturbulent to turbulent regime. (A) Numerical simulations of the weak gradient vegetation model Eq. 2. The real field, the amplitude of the
banded pattern, and the defect number distribution. Parameters are η = −0.04, κ = 0.3, p = 0.05, γ = 1.9, for (i) and (ii) α = 1.0, for (iv) and (v) α = 2.0. (iii) and (vi) show the
number of dislocations N(x). (B) Numerical simulations of the complex Ginzburg-Landau Eq. 9. Parameters μ(x) = 1 − e−x/10, ν(x) = 10e−x/10, ~α ¼ 1:0, for (i) and (ii) β = 0.1,
for (iv) and (v) β = 3.0. (iii) and (vi) show the number of dislocations. Fit parameters in λ units are (A, iii) x0 = 2.7, B = 0.9, and A = 0.1 (R

2 = 0.99); (B, iii) x0 = 13, B = 0.7, and A =
0.1 (R2 = 0.98). (A, vi) c = 0.16; (B, vi) c = 0.21
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Different stable branches of perfect patterns could be obtained from
Eq. 9 analytically at the onset of pattern formation.

To summarize, we have investigated different transitions of mi-
grating vegetation banded patterns: from zero defects, to constant,
and to a decaying number of dislocations. We have shown analyti-
cally that the number of dislocations in space N(x) obeys a N(x) ∼
log(x/B)/x law. This formula is in good agreement with numerical
simulations of the three ecological models and with remote sensing
image data taken from three arid ecosystems of different continents.
Furthermore, the dislocation law allows us to determinewhether the
self-organized response to the water scarcity of arid and semi-arid
ecosystems favors uniform bands or ecological spatio-temporal
complexity.

A usual approach to characterize the response of plants to
changes in their environment is through studies of the plants them-
selves (local analysis). Characterizing dislocation distributions of
migrating banded vegetation patterns (macroscopic analysis)
opens a noninvasive diagnostic tool for determining the degree of
aridity mediated by desertification and global warming processes.
Likewise, a full characterization of the bifurcation diagram for
models including reflection symmetry rupture and dislocations
self-organization becomes relevant in designing conservation
guidelines, preventing the further degradation of migrating pat-
terned vegetation cover.

Last, the spatial distribution of defects is a consequence of their
creation induced by the boundary condition and their annihilation
through mutual interaction. The boundary induces inhomogenei-
ties in the system. The inhomogeneous Ginzburg-Landau equation
constitutes an ideal framework for investigating the dynamics of
defects in banded vegetation patterns. It provides a unified and
simple description containing the dynamics discussed. Thus, the
analytical results can be easily extended to describe similar laws
in other complex nonlinear spatially extended systems present
in nature.

MATERIALS AND METHODS
Detailed derivation of the weak gradient model with
advection
We look for an approximation to Eq. 1 of the main text, in the form
of a partial differential Eq. 2. To account for anisotropy, we consider
that the interaction ranges associated with facilitation and the com-
petition lcx,fx and lcy,fy are different.We seek corrections to the steady
states close to μ = 1 and b = 0 that depend on time and space through
the slow variables T = ϵt, X = ϵ1/8x, and Y = ϵ1/8y. We expand the
parameters μ, χf,c, lfx,fy, x0c,0f, d, and the biomass b in terms of a small
parameter ϵ (ϵ ≪ 1) that measures the distance from μ = 1 as follows

μ ¼ 1þ ϵηþ . . .;

χf ¼ 1þ χc þ ϵ1=2κþ . . .;

χc ¼
l2fx

l2cx� l
2
fx
þ ϵ1=4χ1 þ . . .;

x0f ¼ ϵ3=8αf þ . . .; x0c ¼ ϵ3=8αc þ . . .;

l2fy ¼ ϵ1=4σ2fy þ . . .; l2cy ¼ ϵ1=4σ2cy þ . . .;

d ¼ ϵ3=4pþ . . .; bðt; x; yÞ ¼ ϵbðT;X;YÞ þ . . .

Introducing these scalings and the above expansions in Eq. 1, we
then obtain a sequence of linear problems for unknown functions.

Table 1. Summary of the best fit for the decaying spatial distribution
of dislocations for mathematical models and remote sensing image
analysis. A, B, and x0 are the fit parameters of Eq. 4, and R2 is the coefficient
of determination for the respective fits.

Mathematical models A/λ B/λ x0/λ R2

Eq. 1 0.2 4.1 27.2 0.99

Eq. 2 0.5 3.8 −7.0 1.0

Eq. 3 0.06 0.7 14.3 0.99

Remote sensing image analysis

Chile 2.7 1.2 −2.9 0.92

Sudan 10.6 1.5 −2 0.91

United States 5 1.3 −2.4 0.96

Fig. 6. Diagram of migrating banded vegetation pattern biomass as a func-
tion of the aridity parameter η. For Eq. 2, parameters κ = 0.3, p = 0.05, γ = 2, and α
= 1. (A) illustrates the mean biomass 〈b〉 at the steady states of the model when
changing the aridity. (B) corresponds to the branch of perfect patterns N(x) = 0. (C)
shows the turbulent-like behavior where N(x) = c. (D) represents the branch of as-
ymptotic patterns, where N(x) ∼ log(x/B)/x.
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We analyze each problem and apply the solvability condition at each
order. These conditions are automatically fulfilled at the orders ϵ1/2
and ϵ. By applying the solvability condition at the higher order in-
homogeneous problem (ϵ3/2), we obtain the following partial differ-
ential equation for the biomass

∂Tb ¼ ð� ηþ κb � b2=2Þbþ pr2b
� bðα∂X þ γx ∂2X � γy ∂

2
Y þ Λ∂

4
XÞb

ð5Þ

where the coefficients are χ0 ¼ l2fx=ðl
2
cx � l2fxÞ, α = αcχ0 − αf(1 + χ0),

γx ¼ χ1ðl2cx � l2fxÞ, γy ¼ σ2fyð1þ χ0Þ � σ
2
cyχ0, and Λ ¼ 3l2fxl

2
cx.

Model Eq. 5 has different homogeneous steady states which are b
= 0 and b0 = κ ± (κ2 −2η)1/2. Note that the upper branch of b0 is
stable when lcx > lfx and γy > 0. Otherwise, we need to consider
higher ϵ orders in the equation. The condition γy = 0 will be used
throughout the work, as it does not change the qualitative behavior
of the system.

Introducing the scaling X ¼ 1=Λ1
4X and Y ¼ 1=Λ1=4Yand re-

defining α → α/Λ1/4, γx → γ/Λ1/2, and p → p/Λ1/2, we get Eq. 2.

Detailed derivation of the Ginzburg-Landau equation
Derivation of amplitude equation in the bulk
The amplitude equation obtained using a normal form analysis
constitutes an adequate tool for understanding pattern formation.
For the boundary conditions considered, the system creates a thin
boundary layer next to the upstream edge of the system. The effect
of this boundary layer can be neglected when focusing on regions
far from the edges. Let us consider first the linear problem for a per-
turbation of the homogeneous stable state u≪ 1 as b = b0 + u, where
b0 ¼ κþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � 2η

p
is the homogeneous cover. Introducing this

ansatz in Eq. 2 of the main text for the field b yields the linear
problem

ð∂t � LÞu ¼ 0

where the linear operator is defined as
L ; � ηþ 2κb0 � 3b20=2þ pr2 � b0ðα∂x þ γ∂2x þ ∂4xÞ. Linear
stability analysis for finite wavenumber k perturbations leads to
the growth rate of modes λ(k)

λðkÞ ¼ ReλðkÞ þ iΩðkÞ

¼ � ηþ 2κb0 �
3b20
2 � pk2 � b0ðiαk � γk2 þ k4Þ

The conditions ∂kReλ∣kc = 0 and Reλ(kc) = 0 determine the crit-
ical wavenumber k2c ¼ ðbcγ � pÞ=2bc and the critical aridity param-
eter, which satisfies � ηc þ 2κbc � 3b2c=2þ bck4c ¼ 0, where
bc ¼ κþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � 2ηc

p
. To obtain the amplitude equation for the crit-

ical mode, let us move slightly from the instability condition, using
as the bifurcation parameter η, as η = ηc + ϵ. Introducing the follow-
ing expansion

b ¼ b0 þ ϵ1=2AeikcxþiΩct þ ϵA½2� þ ϵ3=2A½3� þ :. . .þ c:c:

where A ≡ A(X, Y, T ) is the slowly varying envelope, with the scal-
ings X = ϵ1/2x, Y = ϵ1/2y, T = ϵt, and the parameter Ωc ≡ −bcαkc. A[n]
accounts for the terms of order n in the amplitudeA. At order (ϵ1/2),
we obtain

ð∂t � LcÞAeikcxþiΩctþλðkcÞt ¼ 0

where

Lc ¼ � ηc þ 2κbc �
3b2c
2
þ pr2 � bcðα∂x þ γ∂2x þ ∂4xÞ

At this order, the solvability condition is automatically satisfied.
For the sake of simplicity, let us define d̂ ; α∂x þ γ∂2x þ ∂4x, and
d(k) ≡ iαk − γk2 + k4. Then, performing expansions, up to order
ϵ, limiting to the case of small group velocities vg = ∂kΩ∣kc ∼
O(ϵ1/2), we get

ð∂t � LcÞA½2� ¼ κ � 3
2 bc

� �
ðA2e2ikcxþ2iΩct þ jA j2 þ c:c:Þ

� ðAeikcxþiΩct þ c:c:Þ ½AdðkcÞeikcxþiΩct þ c:c:�
ð6Þ

To solve the linear problem, the following inner product is intro-
duced

hf jgi ¼
ðXþ2πkc

X
dx
ðTþ2π

Ωc

T
dtf �g

valid over the periodic functions in space and time of period 2π/kc
and 2π/Ωc. The kernel of the operator (∂t − Lc)†, defined as the sol-
ution of (∂t − Lc)†ψ = 0, corresponds to ψ = e±i(kcx+Ωct). Then, apply-
ing the solvability condition, we find

A½2� ¼ a2A2e2ikcx þ b2jA j2 þ a2A
2e� 2ikcx

where

a2 ¼
κ � 3=2bc � dðkcÞ
2iΩc � λð2kcÞ

b2 ¼
2κ � 3bc � dðkcÞ � dð� kcÞ

� λð0Þ

Last, at order ϵ3/2, the solvability condition yields

∂TA ¼ μAþ ðaþ iβÞjA j2A
þ Dx ∂XXAþ Dy ∂YYA � αbc ∂XA

ð7Þ

with μ ¼ ð� 1þ 2κ∂ηb0 � 3=2∂ηb20 þ ð∂ηb0Þk
4
c þ bc∂ηk4c Þ jηc , (a +

iβ) = (2ηc − 3bc)(b2 + a2) − 3/2 − a2d(2kc) − a2d(−kc) − b2d(kc),
Dx ¼ 4bck2c , and Dy = p. This equation is the well-known Ginz-
burg-Landau equation with advection.
Boundary layer effect
To figure out the emission of dislocations from the boundary of the
system in the regime of decaying number of dislocations, we need to
consider the boundary layer effect arising from the Dirichlet boun-
dary conditions. We use the method suggested in (40). For this
purpose, we suppose that sufficiently near to the upstream edge,
one can write

b ¼ b0 þ ϵMðXÞ

whereM(X ) is a function that helps to connect the population state
b = b0 with the nonpopulation state b = 0 at the boundary and sat-
isfiesM(X ) → 0 when X → ∞. The analytical solution close to the
boundary is not known. Qualitatively, b(X) is a Monod function.
On the basis of this nonuniform b, a modified amplitude equation
is derived. Making straightforward calculations, one finds a similar
amplitude equation compared to Eq. 7 but with inhomogeneous
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linear terms

∂TA ¼ ½μþ μ1 ðXÞ þ iνðXÞ� Aþ ðaþ iβÞjA j2 A
þ Dx ∂XXAþ Dy ∂YYA � αbc ∂XA

ð8Þ

where the parameters depend on M(X ) as

μ1ðXÞ ¼ ð2κ � 3bc þ γk2c � k4c ÞMðXÞ

νðXÞ ¼ αkcMðXÞ

Both terms are proportional to the slow inhomogeneity M(X ),
so they asymptotically go to 0 as X → ∞. Hence, one recovers the
homogeneous Ginzburg-Landau Eq. 7. With the change of param-
eters and variables as X ¼

ffiffiffiffiffiffi
Dx
p

X, Y ¼
ffiffiffiffiffiffi
Dy

p
Y , A ¼ 1=

ffiffiffiffiffiffiffi
� a
p

A, β =
β/a, and ~α ¼ bcα=

ffiffiffiffiffiffi
Dx
p

, we get Eq. 9.

Amplitude equation description
The amplitude of migrating patterns A satisfies the complex Ginz-
burg-Landau equation with advection

∂tA ¼ ½μðxÞ þ iνðxÞ�A � ð1þ iβÞjA j2Aþr2A � ~α∂xA ð9Þ

The bifurcation parameter μ = μ(x) and detuning ν = ν(x) are
inhomogeneous as a consequence of the boundary layer. For the
sake of simplicity, we choose M(x) ∼ e−x, where x = 0 accounts
for the position of the upstream edge, cf. Fig. 5B.

Note that similarly to ecological models described above, the
amplitude Eq. 9 supports a permanent emission of dislocations
from the upstream edge caused by the inhomogeneous character
of μ and ν. The modulus, the phase field, and the dislocation distri-
bution for the nonturbulent and turbulent regimes are shown in
Fig. 5B. Both defect number laws N(x) are consistent with vegeta-
tion models’ predictions.

Defect counting in numerical simulations
Reconstructing the analytical signal of the migrating vegetation pat-
terns presented, dislocations are recognized as zeros of the ampli-
tude field. This is achieved by the binarization process of the
amplitude field and a particle detection algorithm, both available
in the Fiji software (28). This software gives the position of all the
particles (closed regions of zero amplitude) from whichN(x) is con-
structed. The permanent emission of dislocations enables us to
computeN(x). Using several snapshots of the time evolution for dif-
ferent initial conditions, the mean value of N(x) is obtained. Note
that dislocations start to be counted after the boundary layer region
where they are created.

Remote sensing data analysis
Image treatment
Satellite images are processed with Fiji (28). Grayscale images are
treated with a one-pixel width Gaussian blur to reduce inhomoge-
neities. Then, the subtract background algorithm with a rolling ball
of a radius of 10 pixels is applied. Last, the image is binarized and a
skeleton is constructed. Note that all the procedure is easily imple-
mented with prebuilt Fiji functions.
SRTM data analysis
SRTM data are obtained from the public database (25). The
netCDF4 files are analyzed in Python with the netCDF4 module.
The height maps are given with one–arc sec resolution in both

the azimuthal and polar angles; thus, localizing the bounding coor-
dinates of the regions of interest (with Google Earth software)
allows obtaining the topography of the desired regions. Then, the
gradient of the height map is calculated numerically to obtain the
steepest direction at each point. Last, this direction is averaged over
the region of interest, and the mean orientation 〈θ〉 is obtained. This
angle is used to rotate the previously obtained skeletons, aligning
the x direction (the steepest descent) with the horizontal or vertical
axis. This allows for an efficient way to count dislocations.
Defect counting
One needs to consider that the region of interest to analyze is not
rectangular as the ones obtained from numerical simulations. Thus,
a density of defects is computed to consider irregularities in the
region of interest boundaries. For example, consider that x and y
are aligned with the i and j indices of the matrix representing the
image, and then, for each j, we swept the i index in search of
defects to construct a density n(x, y). This is a binary function of
(x, y), with zero value if no dislocation is found and one if there
is a dislocation. Their distance is measured from the boundary of
the column analyzed, which is given by the mask of the region of
interest. Note that for a single column j, there can exist several
boundaries due to complex topography, if this is the case, subse-
quent intervals are treated as new columns. Last, we coarse grain
the density in tiles of one wavelength sides and average over the y
direction, obtaining N(x).
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