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Single-cell analysis of multiple invertible promoters
reveals differential inversion rates as a strong
determinant of bacterial population heterogeneity
Freeman Lan1†, Jason Saba1,2,3†, Yili Qian1, Tyler Ross1,4, Robert Landick1,2*,
Ophelia S. Venturelli1,2,4,5*

Population heterogeneity can promote bacterial fitness in response to unpredictable environmental conditions.
A major mechanism of phenotypic variability in the human gut symbiont Bacteroides spp. involves the inversion
of promoters that drive the expression of capsular polysaccharides, which determine the architecture of the cell
surface. High-throughput single-cell sequencing reveals substantial population heterogeneity generated
through combinatorial promoter inversion regulated by a broadly conserved serine recombinase. Exploiting
control over population diversification, we show that populations with different initial compositions converge
to a similar composition over time. Combining our data with stochastic computational modeling, we demon-
strate that the differential rates of promoter inversion are a major mechanism shaping population dynamics.
More broadly, our approach could be used to interrogate single-cell combinatorial phase variable states of
diverse microbes including bacterial pathogens.
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INTRODUCTION
Gene regulation in bacteria is shaped by stochastic and determinis-
tic processes. When faced with changing and uncertain conditions,
establishing a phenotypically diverse population a priori to “hedge”
against different environmental stresses can promote population
survival. For example, the establishment of persister populations
in specific bacterial pathogens can promote survival in response
to antibiotic treatment (1). The composition (fraction of the popu-
lation occupying each state) of these heterogeneous populations is
influenced by the underlying regulatory mechanisms at the genetic,
transcriptional, or post-transcriptional levels. Understanding how
bacteria regulate the phenotypic heterogeneity at the population
level can reveal important insights into mechanisms of survival
and adaptation.
Phase variation involves the reversible and heritable variation in

the levels of expression of specific genes (typically switching
between ON and OFF). This mechanism is ubiquitious in bacteria
and can generate extensive phenotypic heterogeneity in host-asso-
ciated bacteria such as pathogens and symbionts (2–8). Phase var-
iation works through diverse genetic mechanisms, such as reversible
DNA recombination, to create subpopulations with distinct pat-
terns of gene expression (9). For example, in the abundant and prev-
alent genus in the human gut microbiome, Bacteroides, phase
variation of capsular polysaccharide (CPS) generates specialized
and multifunctional subpopulations having alternative propensities
for biofilm development (10), resistance to antibiotics (11), and
protection from diverse phages (11, 12).

Despite the importance of phase variation to bacterial fitness in
diverse environments, limitations in technology have hindered a
fundamental understanding of the landscape of single-cell genetic
states generated by the simultaneous phase variation of multiple loci
(combinatorial phase variation). For example, previous studies of
phase variation used fluorescent reporters that disconnect the loci
from their natural genetic context and limit the number of loci that
can be observed simultaneously (4, 13–15). Furthermore, fluores-
cent reporters produce signals that are temporally disconnected
from phase variation due to time delays in fluorescent protein mat-
uration and decay (16).
In Bacteroides spp., a broadly conserved serine recombinase con-

trols promoter inversion at 7 to 13 CPS biosynthetic loci (16–18).
Bacteroides fragilis, a key human gut symbiont, has seven invertible
CPS loci (A, B, D, E, F, G, and H). The orientations of these promot-
ers determine the potential for CPS expression in single cells
(Fig. 1A). An eighth CPS promoter C is locked in the ON state to
inhibit formation of lower fitness acapsular subpopulations (19).
The promoter orientations do not directly translate into a given

CPS phenotype. The CPS phenotype depends additionally on
downstream transcriptional regulation by UpxY antiterminators
and UpxZ inhibitors of heterologous operons to limit concomitant
CPS expression (20, 21). However, our understanding of the
network of UpxY-UpxZ interactions is incomplete and limited by
our ability to profile concomitant CPS phenotypes at the single-cell
level. Despite this regulation, previous studies have observed CPS
coexpression (16, 22). It remains unresolved whether the observed
coexpression of CPS arises from phenotypic lag (i.e., CPS coexpres-
sion arising from time delays in mRNA or protein decay/dilution as
the cell switches from one CPS state to another) or regulated stable
coexpression. Since the CPS cannot be actively expressed if its pro-
moter is in the OFF state, combinatorial promoter inversions play a
pivotal role in defining expression possibilities for single cells.
Using bulk population methods, in vitro cultured B. fragilis ex-

hibited consistent ON or OFF states (e.g., Polysaccharide F oriented
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OFF for >95% of biological replicate cultures) (23). This consistent
pattern suggests that regulation plays a major role in determining
CPS promoter orientations. In the absence of known selective pres-
sures for specific CPS states in vitro, these patterns could arise from
differential inversion rates of the promoters. Our understanding of
the role of regulation and stochastic processes is limited by the lack
of methods to profile a large number of single cells. More broadly,

mechanisms controlling combinatorial genotypic heterogeneity in
any bacteria remain largely unexplored.
A fundamental question is how recombinases targeting multiple

genomic loci (e.g., promoters) for inversion can shape the dynamics
of combinatorial promoter states across a population (Fig. 1B). Are
there one or more favored population composition states as a func-
tion of time or is the system dominated by stochastic processes such
that no particular population composition is strongly favored? Can

Fig. 1. High-throughput single-cell sequencing of CPS promoters in B. fragilis reveals subpopulations defined by combinatorial promoter orientations. (A)
Summary schematic of B. fragilis CPS loci. (B) Cartoon schematic of potential population composition landscapes under continuous growth. Populations could (1) con-
verge to a single stable state, (2) converge to multiple stable states, (3) exist in a continuum of stable states, or (4) remain in flux with no stable states. (C) Cartoon
representation of the ultrahigh-throughput single-cell targeted sequencing workflow for B. fragilis CPS promoters. We first premix cells from a colony or liquid
culture with barcode oligos, high-fidelity PCR mix, and target locus primers (14 primers for the seven invertible CPS promoters) containing adaptor sequences that
overlap the barcode oligo. Cells and barcodes in this mix are then encapsulated into picolitre emulsion droplets at limiting dilution so that most droplets contain 1
or 0 cell/barcode according to a Poisson distribution. Droplets that contain both a barcode oligo and a cell are selectively amplified and linked to genomic loci via
overlap extension PCR (see fig. S1 for details). The cell is lysed during the initial PCR denaturing step. Sequencing reveals the promoter orientations of all targeted
loci for thousands of cells. Right: Promoter orientation heatmap for three representative cells. The “ON” orientation for a particular CPS promoter is green. Dashes
(“-”) represent promoters that are oriented OFF. (D) The CPS promoter states of a single colony of B. fragilis, shown as a bar plot. Data points represent two technical
replicates. (E) Heatmaps as described in (C) for thousands of cells, with groups of rows clustered to reflect subpopulations with alternative combinatorial promoter
orientations. A control strain with the primary recombinase gene (mpi) deleted displays a population with 100% of cells having the expected promoter configuration
(A--E--H) for this particular isolate. WT, wild-type.
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differences in the ON and OFF inversion rates for each CPS pro-
moter explain observed patterns in promoter-state compositions?
What is the time scale of promoter inversion and population diver-
sification? To address these knowledge gaps, we use high-through-
put bacterial single-cell sequencing to investigate the contribution
of promoter inversion rates to combinatorial CPS promoter states in
B. fragilis. A more detailed and quantitative understanding of this
system could provide insights into the contributions of stochastic
processes, regulatory network architectures, and the role of
history dependence in shaping the dynamics of phenotypic diversi-
fication via combinatorial phase variation.

RESULTS
High-throughput single-cell sequencing of multiple
invertible promoters
To investigate B. fragilis population diversification at the single-cell
level, we used an ultrahigh-throughput, single-cell sequencing
method referred to as droplet targeted amplification sequencing
(DoTA-seq) (24). DoTA-seq can analyze combinations of genes
in diverse Gram-positive and Gram-negative bacteria at the
single-cell level. Here, we simplified the protocol for profiling the
seven CPS promoter ON/OFF states in B. fragilis (Gram-negative)
(see Materials and Methods). Briefly, single B. fragilis cells and
random barcode oligos are encapsulated at limiting dilution into
water-in-oil droplets at ~10 kHz along with multiplex polymerase
chain reaction (PCR) primer sets (Fig. 1C).Multiplex PCR amplifies
the seven CPS promoters tagged separately with a barcode sequence
unique to each droplet to generate a single-cell amplicon sequenc-
ing library (fig. S1). The primer-annealing sites flank the inverted
repeat sequences where promoter inversion occurs for each
operon (17). Thus, each of the seven pairs of primers report the
ON/OFF status of their respective promoter through the unique se-
quence of the amplicon generated (see Materials and Methods for
detailed description of the quality control and analysis pipeline and
table S1 for the number of cells sequenced and passing quality con-
trols for each library).
To determine the technical reproducibility of this method, we

sequenced a single colony grown for 48 hours on an agar plate in
technical replicates (~5000 cells per replicate). We detected 55 of
128 (43%) possible single-cell combinatorial promoter states
within this population (Fig. 1D). Combinatorial variants are
labeled as discrete ON/OFF states of promoters of distinct CPS syn-
thesis operons (e.g., A-E--- denotes A and E in the ON state and B,
D, F, G, and H in the OFF state while omitting promoter C for con-
ciseness in labeling). In a modified strain with the recombinase
(mpi) responsible for inversion deleted [deletion mutant 8
(mpi8)] (17), the entire population displayed the same single-cell
promoter state (100% of ~9000 cells) (Fig. 1E). These DoTA-seq
results are consistent with the expected promoter state for this
strain (17). The variation between technical replicates was low for
most single-cell promoter states but increased for states with low
relative abundance. Consistent with this result, the coefficient of
variation for technical replicates displayed a negative correlation
with the number of cells sequenced for each subpopulation (fig.
S2). This implies that some of the technical variation in low abun-
dance populations could be attributed to random variation due to
sampling (i.e., low abundance subpopulationsmay be inconsistently
observed). As a corollary, sequencing larger numbers of cells would

likely reduce the measurement variance of lower abundance
subpopulations.

Patterned development of population composition in wild-
type B. fragilis colonies
After establishing the robustness of the method, we investigated the
variation in population-level promoter compositions across multi-
ple colonies (populations derived from single cells) (Fig. 1A). To
this end, we examined single-cell promoter states in five wild-type
colonies picked at random, representing five independent popula-
tions (Fig. 2A). Across all five colonies, we observed a total of 77 of
128 promoter combinations. Each colony displayed markedly dif-
ferent population compositions with 0 to 4 invertible promoters ori-
ented in the ON state (Fig. 2B). This substantial colony-to-colony
heterogeneity highlights the importance of picking multiple colo-
nies (i.e., biological replicates) for experimental studies. To under-
stand the global properties of the population compositions across
each colony, we used the single-cell data to generate an undirected
network that represents the relationships between combinatorial
promoter states (Fig. 2C and fig. S3). Each combinatorial promoter
state is represented by a node proportional in size to its relative
abundance in the population. Nodes are connected if their
Hamming distance (HD) is equal to one (i.e., separated by a
single promoter inversion). For example, the HD between combina-
torial states A–E--- and A-DE--- is one.
Analysis of the networks for all colonies revealed patterns in pro-

moter composition. Subpopulations with many (5–7) promoters
turned off were frequently observed. However, subpopulations
with many promoters simultaneously ON were rare, suggesting
that B. fragilis limits concomitant promoter-ON orientations. In ad-
dition, all observed subpopulations (accounting for ~22 to 34% of
possible single-cell states) are connected (one HD away) to at least
one other observed subpopulation. This is consistent with the pos-
sibility that the rates of inversion are much slower than the rate of
cell division. Further, larger (i.e., higher abundance) subpopula-
tions had many (>6) immediate neighbors (HD = 1) (Fig. 2D).
For comparison, most other lower abundance subpopulations
were connected to ~3 to 5 immediate neighbors (fig. S4). This
pattern is consistent with the notion that high-abundance popula-
tions arose earlier in population development and gave rise to their
lower-abundance neighbors. In further agreement with this hypoth-
esis: (i) Higher abundance subpopulations were closer (i.e., lower
HD) to the most abundant subpopulation (Fig. 2E, Spearman’s
rho = −0.65, P < 2.2 × 10−16 between subpopulation size and
HD); and (ii) most of the cells were only one promoter inversion
away from the most abundant promoter state for each population
(i.e. main promoter state) (Fig. 2, B and E). The consistent patterns
in population-level promoter-state networks could arise from one
of two possibilities. The population composition could reflect a
snapshot in early stages of a diversifying population, where the
major subpopulations are more closely related to the single-cell pro-
moter state of the initial founding cell. Alternatively, each colony
could have converged to unique stationary combinatorial promoter
distributions from different initial states.

Populations with different initial promoter-state
compositions display converging trajectories over time
To determine whether these populations are in early stages of diver-
sification or reflect different unique steady-state population
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Fig. 2. High-throughput single-cell sequencing of promoter states in B. fragilis colonies reveals diverse compositions with similar features. (A) Cartoon repre-
sentation of experiment. A single glycerol stock was streaked onto an agar plate, and five colonies were picked for sequencing after 48 hours of growth. (B) Promoter
states for fivewild-type colonies. Top: Histogram of cells having n promoters simultaneously oriented on. The light gray bar represents the size of themost abundant state
(i.e., main subpopulation). Bottom: Heatmaps of single cell promoter states for each colony. (C) Representative network representation of single-cell promoter states for
colony 1. By connecting subpopulations with an HD of 1 (i.e., separated by a single promoter inversion event), we can generate a undirected network representation of
the subpopulations. Each node represents one subpopulation. Node size represents relative abundance. For network graphs of all colonies, see fig. S2. (D) Violin plot of
the distribution of subpopulations with different numbers of neighbors (where HD = 1). All colonies show the characteristic main subpopulation surrounded by pro-
gressively lower abundance subpopulations. (E) Violin plot of the distribution of subpopulations versus the distance from the most abundant subpopulation. This shows
that most of the large populations are found close (lower HD) to the main subpopulation.
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compositions, we individually cultured the five colonies (Fig. 2B)
over a period of 2 weeks in liquid media. The cultures were
diluted every 8 and 16 hours alternately with different inoculum
volumes to prevent the cultures from entering late stationary
phase (see Materials and Methods). To track the temporal diversi-
fication process, we performed DoTA-seq on the populations on
days 3, 7, and 14 (Fig. 3A). In all populations over the entire time
course, new and distinct single-cell promoter states arose, and the
population became more evenly distributed among different com-
binatorial promoter states. This is evidenced by an increasing trend
in Shannon diversity (Fig. 3B). By day 14, each population exhibited
on average of 89 ± 9 unique single-cell states and displayed a total of
117 unique single-cell states across all colonies (table S2). Although
these populations had not yet reached steady state (i.e., population
compositions were still changing over time), the population compo-
sitions became increasingly similar to each other as time progressed
(Fig. 3C). This implies that populations from different initial start-
ing states may eventually converge to a single promoter composi-
tion at steady state. On the basis of the trends in the data, we
estimate that the time to convergence appears to be on the scale
of weeks using this culturing procedure. Therefore, weak forces
shape convergence over time of the population composition
toward a single stationary distribution. In addition, the large
number of single-cell promoter states detected in the populations
on day 14 highlights the diverse repertoire of promoter states avail-
able to B. fragilis populations.
The population dynamics and the steady-state population com-

position could be driven by regulation (e.g., promoter inversion
rates), variation in subpopulation fitness, or a combination of
these factors. We first considered the contribution of the recombi-
nase-mediated promoter inversion rates to the population dynam-
ics. In many bacterial species, the rates of phase variation can
change in response to environmental cues (4). In B. fragilis specif-
ically, expression of the Mpi recombinase may be regulated by ad-
ditional phase variation mechanisms (25). To eliminate these
potential additional layers of regulation, we constructed a strain en-
abling inducible expression of the recombinase. To this end, we in-
troduced a tightly regulated (i.e., low leaky expression),
anhydrotetracycline (aTc)–inducible mpi at an ectopic location on
the genome in anmpi deletion background in B. fragilis. In the pres-
ence of aTc, mpi expression is turned on and the population diver-
sifies (Fig. 3D).
We used this inducible system to generate and isolate phase-

locked variants (fig. S5) in different locked promoter states
(A–E---, -B---G-, and --D---H) in the absence of aTc. Before induc-
tion with aTc, >97 to 99% of the tested populations (A--E--- and
-B---G-, respectively) were in a single combinatorial promoter
state (table S2). In the presence of aTc, recombinase expression is
turned on, and the promoter states can diversify across the popula-
tion as a function of time. To investigate the diversification process
over time, we cultured the phase-locked strains to mid–exponential
phase, induced recombinase expression and then sampled these
populations over time after induction (Fig. 3D). Mirroring the
trends observed for the wild-type populations, the induced popula-
tions showed converging trajectories (Fig. 3E) and approached a
single promoter state composition 24 hours following induction
of the recombinase (Fig. 3F). Thus, induced expression of recombi-
nase resulted in rapid convergence of the populations to a single sta-
tionary distribution (Fig. 3G).

To evaluate the contribution of fitness differences for each
variant to the observed population dynamics, we determined the
growth rates of the phase-locked variants under our culturing con-
ditions. We did not observe statistically significant differences in
growth rates between multiple different CPS locked strains when
grown in our culturing medium [P > 0.19, one-factor analysis of
variance (ANOVA)] (fig. S6). However, we cannot rule out the pos-
sibility that minor fitness differences exist below the detection limit
or other promoter combinatorial states beyond those tested could
display fitness differences. Overall, our results suggest that variation
in subpopulation fitness did not contribute substantially to the ob-
served population dynamics over these time scales.

Computational modeling reveals a major mechanism
governing population dynamics
Computational modeling is a powerful way to gain mechanistic in-
sights into complex biological systems (26). However, the develop-
ment of computational models can be challenged by the complexity
of biological systems combined with the lack of high-quality data
needed to sufficiently constrain model parameters. Single-cell
data can constrain parameters of stochastic models better than
bulk measurements (27). On the basis of our observations that pop-
ulations with different initial promoter combinatorial states con-
verge to a single steady-state composition, we constructed a
stochastic mechanistic model with this property to describe the
population dynamics. In this model, promoters flip independently
at different rates and stochastically at the single-cell level. This
process is represented as a continuous-time chemical master equa-
tion (CME) model consisting of 128 discrete states (Fig. 4A and the
Supplementary Materials). The parameters of this model were esti-
mated by fitting the analytical solution of the CME to the time-
series single-cell data (see Materials and Methods).
The goodness of fit of the model to the single-cell time series

data provided insights into the contribution of promoter inversion
rates to the observed population dynamics. This model fit the time-
series promoter-state measurements of the inducible mpi strain ex-
tremely well (Spearman’s rho = 0.98, P = 2.57 × 10−275) (Fig. 4, B
and C, and fig. S7), suggesting that the assumptions of the model
were consistent with the experimental observations. To determine
whether the observed goodness of fit was due to the patterns ob-
served in the experimental data, we randomly shuffled the dataset
labels and refit the CME model. The model did not fit well to the
label-shuffled datasets (fig. S8). In addition, all model parameters
for the inducible strain were well constrained by the time-series
data except the promoter inversion rates FON and FOFF (fig. S9).
The posterior parameter distributions for the parameters of F dis-
played coefficients of variation greater than 5%, indicating that
these parameters were not sufficiently constrained (table S3). This
is likely due to the high bias for the OFF orientation of this promot-
er, resulting in consistently low fractions (and, therefore, high tech-
nical variation) of populations with promoter F in the ON state. In
sum, the population dynamics of the induciblempi strain are driven
primarily by the independent and differential promoter inversion
rates as described by our model.
To investigate the longer-term behavior of the population

beyond the experimentally measured time points, we analyzed the
stationary distribution of the CME model (Fig. 4D). In the model,
trajectories from different initial combinatorial promoter states
converge to a single stationary distribution over time. The
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Fig. 3. Population-level promoter-state composition converges to a single steady-state composition over time. (A) Cartoon schematic of the experiment. The five
colonies characterized in Fig. 2 were grown in liquidmedium for 14 days and diluted periodically to prevent the culture from reaching late stationary phase. Samples were
taken and promoter states were characterized using high-throughput single-cell sequencing at multiple time points. (B) Line plot of Shannon diversities of the five wild-
type populations originating from individual colonies over time. Shannon diversity increases with time for all colonies. Day 0 represents the populations as colonies on a
plate. (C) The populations show a converging trajectory over time to a single steady state. Right: Population-level promoter-state compositions are visualized by principal
components analysis (PCA). Marker shapes represent different populations. Marker colors represent different time points. Left: The pairwise Euclidean distance between
all five populations at each time point. The trend of decreasing Euclidean distance shows a converging trajectory of the populations to a single steady state. (D) Cartoon
representation of the induced promoter inversion experiment. The native recombinase gene (mpi) responsible for promoter inversions was driven by a TetR-regulated
and aTc-inducible promoter. Inversion is induced in phase-locked variants during log phase by the addition of aTc (100 ng/μl) into the cultures. (E) aTc-induced cultures
also showa converging trajectory based on PCA. Marker shapes represent different cultures. Marker colors represent different time points. (F) Pairwise Euclidean distances
between the three aTc-induced populations originating from different initial promoter states at different time points after induction. By 24 hours, the three populations
converged to the same steady state. (G) Bar plot of the percent of promoter-ON abundances for each promoter of the three initial phase-locked populations at 48 hours
after aTc induction.
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stationary distribution could vary in response to different growth
conditions as a consequence of growth selection and/or other reg-
ulatory mechanisms that shape promoter inversion rates. Using the
fitted model, the predicted stationary distribution exhibits high di-
versity, with most single cells displaying 0 to 2 invertible promoters
simultaneously ON. The dominance of populations with promoters
turned OFF or A or E in the ON state across the population is re-
flected in the inferred promoter inversion rates, where only promot-
ers A and E display more similar ON and OFF rates than the other
promoters (Fig. 4E). By contrast, the inferred OFF rate is

substantially higher for promoter F than the inferred ON rate.
This is consistent with previously reported promoter orientation
measurements in a bulk population (23). The observed differences
in promoter inversion rates could reflect different roles that CPS
plays in the biology of the bacterium. For example, Polysaccharide
A has been shown to be essential for colonization (19) and patho-
genesis (28) and was found to be promoter-oriented ON in a large
proportion of wild-type populations in in vivo and in vitro condi-
tions. By contrast, promoter F, which had disproportionately high
OFF rates, was mostly oriented OFF under all measured conditions

Fig. 4. A stochastic dynamic model of promoter inversions demonstrates that promoter inversion rates shape the trajectory of population diversification. (A)
Schematic (only two promoters) of the stochastic dynamic computational model for capturing temporal changes in single-cell promoter states. In the simplified repre-
sentation, the cell transitions between four different states by inverting promoters ON and OFF with different kinetic rate parameters. A and B represent different operon
promoters in the ON state, and “-” represents the promoter in the OFF state. In themodel, there are 7 promoters, 14 kinetic parameters, and 128 different states. (B) Scatter
plot of promoter-state relative abundance of the 128 possible promoter combination states predicted by model versus experimentally measured for each time point of
the aTc-inducible experiment. Spearman’s rho represents the Spearman correlation coefficient. (C) Model predictions and experimental data visualized using PCA. (D)
Undirected network graph of the model’s prediction of the single steady-state promoter l composition (stationary distribution) that all populations eventually converge
to. Subpopulations are connected by an edge if their HD is equal to one. Node size represents relative abundance of the subpopulation. (E) Inferred kinetic parameters for
promoter inversions derived from the model fitted to the aTc-inducible time-series data. Error bars represent 1 SD of the Markov chain Monte Carlo parameter distri-
bution. Posterior parameter distributions are shown in fig. S7. (F) Scatter plot of promoter-state relative abundance of the 128 possible promoter combination states
predicted bymodel versus experimentally measured for each time point for the 14-daywild-type experiment. (G) Categorial scatter plot of the Spearman’s correlation of a
model fit to the label shuffled controls versus wild-type time-series data.
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in vivo and in vitro (17, 23). In summary, the inferred promoter in-
version rates are in agreement with previous studies characterizing
the prevalence of different promoter orientations in the wild-
type strain.
To evaluate the contribution of promoter inversion rates to the

population dynamics of wild-type B. fragilis, we fit the CME model
to time-series measurements of the five wild-type populations with
different initial states (Fig. 3A). Themodel displayed a reasonable fit
to these data (Spearman’s rho = 0.79, P = 3.40 × 10−132) (Fig. 4F),
and the fit was substantially better than the label-shuffled control
data (P = 4.1 × 10−60, one-sample t test) (Fig. 4G). This implies
that the independent rates of promoter inversion could explain a
portion of the dynamics of the wild-type strain. The posterior dis-
tributions for certain parameters (DOFF and FOFF) exhibited multi-
modality and were not well constrained (parameter distribution of
>5% coefficient of variation) (table S3 and fig. S9B). The higher pa-
rameter uncertainty may stem form the lack of observations with D
or F turned ON at high proportions in our dataset. As a result, the
inferred rates of inversion from the ON to OFF state for promoters
D and F were based on low-abundance subpopulations with elevat-
ed measurement noise (fig. S1). This could be remedied by identi-
fying colonies with initially high D and F populations (founding cell
of the colony contained D or F turned ON). Additional factors
beyond those captured in the model, such as temporally changing
recombinase levels or fitness differences between combinatorial
promoter states that accumulate over long-term passaging, could
contribute to the observed wild-type population dynamics.
Further, Mpi may interact with other regulatory proteins to modu-
late inversion at different loci, providing an additional layer of reg-
ulation over specific CPSs (19). Further work is required to elucidate
these potential layers of regulation of promoter inversion rates, es-
pecially in physiologically relevant environmental contexts (25).
In sum, the model’s excellent fit to time series measurements of

the induciblempi strain indicates that independent promoter inver-
sion rates are a major mechanism driving the population-level CPS
promoter-state dynamics of B. fragilis populations. By contrast, the
model’s moderately good fit to the wild-type data suggests that ad-
ditional factors not captured in our model may influence the dy-
namics in wild-type populations.

DISCUSSION
Phase variation is a wide-spread mechanism for generating popula-
tion heterogeneity in diverse bacteria (3, 4). However, we have a
limited quantitative understanding of the diversification process,
the landscape of single-cell states, and the driving regulatory mech-
anisms. By profiling the phase variable CPS loci in B. fragilis pop-
ulations at the single-cell level over time and by combining these
data with a stochastic dynamic computational model, we uncovered
the quantitative contribution of promoter inversion rates to the ob-
served temporal changes in combinatorial promoter states. The
population dynamics are fundamentally shaped by different ON
and OFF rates of promoter inversion, which influences the
system’s long-term combinatorial promoter-state distribution and
the time to reach steady state. Other gene regulatory networks
strongly influenced by interlinked positive and negative feedback
loops can exhibit environmentally tunable bistable behavior (29).
Future work will investigate the tunability of the stationary

distribution of combinatorial CPS promoter states as a function
of key physiologically relevant environmental parameters.
With a deeper understanding and control over the CPS phase

variation system, we are now poised to explore the roles of the
diverse promoter-state variants in the natural life cycle of B. fragilis.
For example, DoTA-seq can be used to track change in the popula-
tion compositions of natural B. fragilis populations, perhaps signal-
ing changes in selective pressures or internal regulation. In addition,
using this novel method of studying phase variation, our findings
can be extended to other diverse bacteria, including pathogens,
that use phase variation in their life cycle (2, 30–37). In addition,
methods could be developed to link the combinatorial promoter
states to CPS phenotypes at the single-cell level to understand the
contributions of other regulatory factors such as UpxY and UpxZ
(21). Thus, our results set the stage for studying how population het-
erogeneity is used by bacteria to respond to environmental pertur-
bations such antibiotic stress, microbial warfare, phage, and host
immune cell attack.

MATERIALS AND METHODS
Plasmids and strains
B. fragilis NCTC 9343 was obtained from American Type Culture
Collection. Lyophilized culture was resuspended in supplemented
basal medium (SBM) and frozen in 25% glycerol. All B. fragilis cul-
tures were grown at 37°C in an anaerobic chamber (Coylabs) with
an atmosphere of 2.5 ± 0.5% H2, 15 ± 1% CO2, and balance N2. We
note that production of a stock following outgrowth single colony,
rather than directly from lyophilized culture as done here, will gen-
erate a stock with significantly lower initial diversity.
To generate the inducible recombinase strains locked under dif-

ferent promoter orientations, we integrated chromosomally thempi
recombinase gene under the control of a tetracycline inducible pro-
moter in ampi deletion strain. pNBU2_erm-TetR-P1T_DP-GH023
was a gift from A. Goodman used for creating the tetracyline-induc-
ible recombinase strain (Addgene plasmid # 90324; http://n2t.net/
addgene:90324; RRID: Addgene_90324). Briefly, we cloned mpi
(also known as ssr2) into pNBU2_erm-TetR-P1T_DP-GH023 via
Gibson assembly, transformed into Escherichia coli strain RL1752
via electroporation, and sequence-verified using whole-plasmid se-
quencing (pJS041). pJS041 was next transformed via electropora-
tion into the donor strain E. coli BW29427 and plated on LB agar
containing ampicillin (100 μg/ml) and 150 μM 40,6-diamidino-2-
phenylindole (DAP). Overnight cultures were created by inocula-
tion of a single colony of donor (pJS041/E. coli BW29427) or recip-
ient (Δmpi M44) colonies into LB containing ampicillin (100 μg/
ml) and 150 μM DAP or SBM, respectively. In the morning, 10 μl
of overnight donor culture was used to inoculate 5 ml of LB contain-
ing the same supplements, while 250 μl of overnight recipient
culture was used to inoculate 20 ml of SBM [2% proteose
peptone, 0.5% yeast extract, 0.5% NaCl, and 1.5% agar, supplement-
ing 0.5% glucose, 0.5% K2HPO4, 0.05% cysteine, hemin (5 μg/ml),
and vitamin K1 (0.25 μl/100 ml) after autoclaving]. The donor
culture was grown to mid-late log phase, while recipient culture
was grown mid-log phase and then the donor culture was pelleted
by centrifugation at 4000g for 5 min, washed by resuspension in 5
ml of LB and centrifugation. The donor pellet was then resuspended
with 20 ml of recipient culture, pelleted at 3000g for 10 min, then
resuspended in 1 ml of standard Super Optimal browth with
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catabolite repression (SOC) medium containing hemin (5 μg/ml)
and 5.5 μM vitamin K1 (SOC + HK), spotted on Brain Heart Infu-
sion-Supplemented (BHIS) [37 g/liter with hemin (5 μg/ml) and
vitamin K1 (0.25 μl/100 ml)] agar containing 150 μM DAP, and in-
cubated upright, overnight, and aerobically at 37°C. The next day,
matings were scraped from plates and resuspended in 2ml of SOC +
HK. Dilutions were plated on BHIS agar containing gentamicin
(200 μg/ml) and erythromycin (5 μg/ml). Colonies were screened
for their ability to express mpi under induction of anhydrotetracy-
cline (100 ng/μl) by SDS–polyacrylamide gel electrophoresis (Coo-
massie Blue staining; mpi induction was obvious compared to an
uninduced sample). We gained further confidence in the control
of our system when orientation-specific PCR revealed extensive
promoter flipping after addition of aTc to cultures of phase-
locked variants.

Plating and harvesting of B. fragilis colonies
Cells were streaked out directly from frozen glycerol stock at the lab-
oratory bench on to SBM agar plates, and the plates were incubated
for 2 days (>36 hours) before colonies were harvested using a sterile
pipette tip and resuspended in phosphate-buffered saline (PBS) +
0.1% Tween 20 by pipetting up and down.

Long-term culturing of B. fragilis populations
Five colonies were resuspended in 30 μl of PBS + 0.001% Tween 20.
Ten microliters of each suspension was used to inoculate separate 1
ml of overnight cultures. The remaining suspension was used for
microfluidic analysis of colonies. In the morning, time points
were taken from each of the five cultures: Each culture was briefly
vortexed, and then two 100 μl of aliquots were mixed with equal
volumes of 50% glycerol (technical replicates) and flash-frozen in
a dry ice-ethanol bath. Each day for 2 weeks, cultures were passaged
twice: In the morning (16 hours after inoculation), 10 μl of the over-
night culture was used to inoculate 1 ml of SBM (1:100); in the
evening (8 to 9 hours later), 1 μl of saturated culture was used to
inoculate 1 ml of SBM (1:1000).

Growth curves of wild-type and CPS promoter
locked strains
Overnight cultures of each strain are inoculated from frozen glycer-
ol stocks into SBMmedium. The next day, the optical density at 600
nm (OD600) of each overnight culture is measured on the Nanodrop
One (Thermo Fisher Scientific) using the cuvette setting, a 96-well
flat bottom assay plate (MidSci, #781602) is prepared with 200 μl of
SBM medium, and each culture is added to two wells to an initial
OD600 of 0.01. The plate is incubated in a Tecan F-200 plate reader
at 37°C in the anaerobic chamber, taking an OD600 reading every 30
min for 48 hours.

Fitting of growth curves to data
The raw OD600 readings are truncated to remove the death phase
and the values normalized to between 0 and 1 for each individual
curve. This is to account for potential differences in OD600 per cell
for each CPS variant. A logistic growth Ordinary Differential Equa-
tion (ODE) model {d[X ]/dt = X*(r + αX)}, where X is the normal-
ized abundance, r is the growth rate, and α is the self-inhibitory
parameter, is fit to these data using the least-squares fit function
in Python. The growth rate is taken as the exponential growth

parameter in the logistics model. Scripts used in this analysis can
be found on GitHub (see Data and materials availability).

Fabrication of microfluidic droplet maker
Microfluidic masters were fabricated in a clean room using soft li-
thography (38). SU-8 3000 photoresist (MicroChem) was spun on a
silicon wafer (University Wafers) to achieve a thickness of 30 μm.
Photolithography masks (see the Supplementary Materials) were
ordered from CAD/ART and used to pattern the photoresist
using an ultraviolet light-emitting diode (ThorLabs) for 1 min
and 45 s. The patterned photoresist was baked for 5 min at 95°C,
then developed using SU-8 developer [Propylene glycol methyl
ether acetate (PGMEA)] for 2 min, and then baked at 200°C for
2 min.
Polydimethylsiloxane (PDMS) devices were created by curing

PDMS elastomer (Sylgard-184) at a 1:11 cross-linker to elastomer
ratio over the silicon master. These devices were cut out using a
scalpel and holes punched using a 0.75-mm reusable biopsy
punch (World Precision Instruments). PDMS devices were
bonded to glass slides using a plasma cleaner (Harris Plasma) and
then treated with Aquapel (Aquapel Glass Treatment) to render
them hydrophobic.

Single-cell sequencing of B. fragilis populations
B. fragilis cells were pelleted by centrifugation, washed with 1 ml of
PBS + 0.1% Tween 20, and then resuspended in 100 to 500 μl of PBS
+ 0.1% Tween 20. OD600 readings were taken of the resuspension
using the pedestal mode of the Nanodrop One (Thermo Fisher Sci-
entific), which is used as proxy for cell concentrations for input into
the DoTA-seq workflow.
A PCR reaction mix is prepared as follows: 25 μl of Q5 Ultra II

PCR Master Mix, 1 μl of primers mixture consisting of Illumina P7
(10 μM)–BarAmp Rev (1 μM), 0.7 μl of Inverton targeting primers
mixture (20 μM total), 0.5 μl of DoTA–Bar (1 pM) that has been
freshly diluted from 500 pM with Tris-EDTA (TE) buffer. See
table S4 for a list of oligonucleotides used in this paper.
This PCR mixture is combined with 25 μl of cells diluted with

preinjection buffer [10 mM Hepes (pH 7.5), 25 mM NaCl, 0.1
mM EDTA, and 2% (v/v) Tween 20] such that the final OD of
cells in the final mixture is 0.0025. This mixture is then injected
into the droplet making microfluidics device using syringe pumps
(New Era) and 1-ml syringes (BD) at a flow rate of 400 and 800 μl/
hour of Bio-Rad Evagreen droplet making oil (Bio-Rad) to generate
droplets.
Droplets are collected into a PCR tube (Thermo Fisher Scientific,

#14222292) and thermo-cycled in a Bio-Rad CX-100 thermocycler
as follows: 98°C for 2 min and 40 cycles of 98°C and 30 s at 65°C for
5 min, followed by 72°C for 10 min and hold at 12°C.
After PCR, the coalesced droplets were removed using a pipette,

and the emulsion was broken on ice by adding 20 μl of 500 mM
EDTA and 20 μl of perfluoro-octanol (Sigma-Aldrich, 370533)
and then vortexed, followed by a spin pulse centrifugation. The
aqueous phase was transferred to another tube by pipette and
cleaned up using a Zymo cleanup and concentrator kit [Zymo
Research, D4013 (https://www.zymoresearch.com/products/dna-
clean-concentrator-5)] and then subject to size selection using
SPRI-select beads (Beckman Coulter, B23317) using 0.7× volume
of beads. A further round of size selection was performed in 100
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mMNaOH, 10% ethanol, and 1.4× volume of beads to increase the
purity of the library.
All libraries were sequenced on the MiSeq using V3 150 cycle

kits with custom sequencing primers (table S4), using 155 cycles
for read 1, 18 cycles for the I7 index, and 8 cycles for the I5 index.
This workflow is a simplified version of a single-cell sequencing

workflow suitable for many types of microbes (24). Please refer to
the manuscript of the original workflow for a detailed step-by-step
protocol and additional guidelines.

Analysis of sequencing data
The raw sequencing reads are obtained from the MiSeq. Read 1 rep-
resents the targeted amplicons. The first index read represents the
unique cell barcode. The second index read is used to multiplex li-
braries from different experiments. Demultiplexing of different li-
braries (index 2) is performed by the MiSeq software. Cell barcode
demultiplexing and quality control are performed using a custom
Python script (R4-parser.py). The filtered reads were mapped to
custom-built reference databases containing B. fragilisCPS promot-
er sequences and is available on GitHub (see Data and materials
availability) using Bowtie2 V2.3.4.1 (39) using “--very-sensitive”
presets. The mapped reads were analyzed using custom scripts as
follows: The mapped reads are organized into read groups consist-
ing of reads with the same unique cell barcode representing ampli-
cons from the same droplet. Read groups with too few reads are
removed. The filtered groups are transformed into a table contain-
ing the barcode and a tally of the number of reads that are mapped
to each target (SAM-analysis.py). We further filtered the reads by
removing the read groups if the reads mapping to any promoter
(sum of ON and OFF orientation) are less than 1% of total reads
for that group. Subsequently, if reads in any promoter orientation
were less than 1% of total reads for the barcode, then we set the value
to 0; this accounted for expected noise. We next discretized the data
by replacing values with 1 or 0, corresponding to ON or OFF, re-
spectively. We removed barcodes if neither orientation was found
for any promoter (i.e., if ON + OFF values = 0). We also removed
read groups if both orientations were found for any locus (ON +
OFF = 2). The set of remaining read groups are used to determine
the frequencies of each promoter-state combination in the popula-
tion (CPS-analysis.R). This processed list of frequencies for each
promoter state is available in table S2. All scripts and descriptions
of them are available in scripts.zip and on GitHub (see Data and
materials availability).

Computational modeling of promoter inversion dynamics
For a single cell, the promoter flipping process is represented math-
ematically as a continuous-time Markov process consisting of 128
discrete states. In an infinitesimal time interval, the propensity for a
cell to switch from state x to state y with a single promoter change is
a product of (i) the flipping rate constant of that promoter and (ii)
the probability that the cell is currently in state x. We assume that
this stochastic flipping process is ergodic: The frequency of a sub-
population at time t represents the probability of an individual cell
to be in this state. This assumption allows us to fit the analytical sol-
ution of this model to experimental subpopulation frequencies to
infer the flipping rate constants. Parameter inference is performed
using a Markov chain Monte Carlo approach, which accounts for
uncertainties in measurements of subpopulation frequencies (i.e.,
subpopulations close to stochastic limit of detection). For a detailed

description of the modeling workflow, please see the Supplementa-
ry Materials (Inversion-modelling.pdf ). All scripts are available
on GitHub.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Legends for tables S1 to S4
Legend for Droplet-maker-mask.dwg
Legend for Inversion-modelling.pdf

Other Supplementary Material for this
manuscript includes the following:
Tables S1 to S4
Droplet-maker-mask.dwg
Inversion-modelling.pdf
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