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Abstract

Purpose of review—This review highlights advances in HIV transcription and epigenetic 

latency mechanisms and outlines current therapeutic approaches to eliminate or block the HIV-1 

latent reservoir.

Recent findings—Novel host factors have been reported to modulate HIV-1 transcription and 

latency. Chromatin affinity purification strategies followed by mass spectrometry (ChAP-MS) 

identified the chaperone protein p32 to play an important role in HIV-1 transcriptional regulation 

via interactions with the viral transcriptional activator Tat. Similarly, an shRNA screen identified 

the methyltransferase SMYD5 contributing to HIV-1 transcriptional activation also by modulating 

Tat activity. These new factors, among others, represent potential druggable targets that could be 

explored in the “block-and-lock” or “shock-and-kill” approaches.

Summary—The HIV-1 latent reservoir is established early after infection, persists during 

antiretroviral therapy, and is the source of viral rebound after treatment interruption. An HIV 

cure requires either eliminating this reservoir or blocking latent proviral reactivation in the absence 

of antiretroviral therapy (ART). Understanding the mechanisms and key-players modulating HIV 

transcriptional and reactivation may facilitate therapeutic advancements. Here we summarize, the 

latest findings on host factors’ roles in HIV transcriptional regulation.
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INTRODUCTION

In 2021 alone, 1.5 million new HIV-1 diagnoses added to the 38 million individuals 

worldwide living with the virus (1). Despite its life-saving benefits, ART is not curative 

and a pool of latently infected CD4+T cells persists triggering widespread viral replication 
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upon ART interruption (2–6). People living with HIV (PLWH) must remain on lifelong 

therapy since eradication of this pool of cells has proven extremely challenging and remains 

the primary HIV cure obstacle (7–10). A cure can entail either a total elimination of cells 

carrying HIV proviruses, or else, disabling the virus ability to reactivate without ART. 

In the latter, known as a functional cure, the provirus persists in cells, but is unable to 

make viral RNA/proteins, transmit or cause immunodepression without therapy. Further 

knowledge on mechanisms regulating transcription from integrated HIV-1 proviruses is 

needed to guide viral eradication or functional cure efforts. We review recent findings on 

HIV-1 transcriptional regulation, latency, and current HIV cure strategies hinging on HIV 

transcriptional modulation.

HIV-1 TRANSCRIPTION AND LATENCY REGULATION

HIV-1 transcriptional activation

A sequential network of viral and cellular factors, as well as the chromatin environment 

surrounding the provirus, regulate HIV-1 transcription. The viral promoter, the 5’-long 

terminal repeat (5’-LTR), irrespective of the host integration site, displays a typical 

nucleosomal (Nuc) organization with Nuc-0 and Nuc-1 framing the transcription start site 

(TSS). The 5’LTR contains multiple binding sites for host transcription factors (TFs) that 

help regulate transcription (11, 12). The general mechanism (Figure 1A) by which HIV-1 

transcription is controlled has been described as follows: i) pre-initiation complex (PIC) 

formation at the HIV LTR starts with the assembly of the TATA-binding protein (TBP), 

other general TFs such as TFIIA, TFIIB and TFIIF at the core promoter (13, 14), also 

regulated by interactions with the nuclear factor kappa B (NF-κB) and specificity protein 

1 (Sp1) (15–17). Then, RNA polymerase II (RNAPII) and the general transcription and 

DNA repair factor II human (TFIIH) are recruited (18). TFIIH’s cyclin dependent kinase 7 

(CDK7), phosphorylates the carboxy-terminal domain of RNAPII (RNAPII-CTD) at Ser5 

residues triggering promoter clearance (19). ii) RNAPII typically stalls after transcribing the 

transactivation response element RNA (TAR), which forms a dynamic hairpin secondary 

structure (20). RNAPII is paused by its association with the negative elongation factor 

(NELF) and 5,6-dichloro-1-β-ribofuranosylbenzimidazol (DRB) sensitivity-inducing factor 

(DSIF), and Nuc-1 obstruction just downstream from the TSS. iii) Tat, the HIV-1 

transactivator protein, releases RNAPII pausing by recruiting the positive transcriptional 

elongation factor b (P-TEFb), composed of CDK9 and cyclin T1 (21), to the nascent TAR. 

P-TEFb phosphorylates DSIF, NELF and RNAPII CTD at Ser2. Phosphorylated NELF 

dissociates from the complex, allowing DSIF to act as an elongation factor (22, 23). The 

production of full-length HIV mRNAs hinges on association/dissociation cycles between 

P-TEFb and Tat, CDK9 phosphorylation events, and chromatin remodeling by Tat-recruited 

polybromo-associated BRG1 or hbrm-associated factor (PBAF) (24–26). Furthermore, the 

Tat/P-TEFb complex interacts with the super elongation complex (SEC) composed of the 

scaffold protein (AFF1/4), the co-factors (ENL and AF9) and the positive elongation factor 

(ELL2) (27, 28). Tat binding to AFF4, increases binding affinity of SEC with Cyclin 

T1 and sequestration of ELL2 into the SEC. This cooperative association with P-TEFb 

triggers RNAPII pause release and transcriptional elongation (29–31). HIV-1 transcriptional 
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activation is a multistep complex process and further research is needed to understand this 

biological network and roles of each key host player.

Recent studies uncovered novel host factors involved in HIV-1 transcription. In a selective 

and unbiased approach, Li et al. used chromatin immunoprecipitation (ChIP) via dCas9/

gRNA specific enrichment followed by mass-spectrometry ChAP-MS to identify host 

factors directly associated with latent and active HIV-1 promoters (32, 33). ASF/SF2 

splicing factor-associated protein (p32), the far upstream element binding protein 3 

(FUBP3), and the proliferation-associated 2G4 (PA2G4) (33) were found enriched in 

actively transcribing promoters. While research on FUBP3 and PA2G4 is ongoing (personal 

communication), p32 was found to directly bind the HIV-1 promoter and genome, in a Tat 

dependent manner (33). p32 is a multifunctional and multicompartmental protein involved 

in infection, inflammation and cancer (34), known to interact with some HIV-1 proteins, 

but had never been implicated in HIV-1 transcription (35–38). Li et al. showed p32 binds 

Tat’s basic domain stabilizing Tat’s half-life, and likely due to p32’s scaffolding abilities, 

facilitates Tat-TAR/P-TEFb/RNAPII interaction enhancing HIV transcription.

A small short hairpin RNA (shRNA) screen identified the methyltransferase Su(var)3–

9, enhancer-of-zeste, and trithorax (SET) and myeloid, Nervy, and DEAF-1 (MYND) 

domain-containing protein 5 (SMYD5) as a new host co-activator required for HIV 

transcription (39, 40). SMYD5 binds and activates the HIV-1 LTR significantly enhanced 

by Tat. This study suggests that SMYD5 assists Tat recruitment of P-TEFb to RNAPII 

and TAR, by prominently methylating Tat in vitro. The authors found deubiquitinating 

enzyme USP11 to increase SMYD5 expression, proposing that Tat and USP11 stabilizes 

SMYD5 protein levels and co-dependently SMYD5 methylates Tat, enhancing HIV-1 

transcription. However, Tat methylation and SMYD5 ubiquitination sites remain unknown, 

and additional work is needed to elucidate SMYD5 participation in Tat- transactivation 

of the HIV-1 LTR. Recently, the tripartite-motif containing protein 24 (TRIM24) was 

also found to interact with TFII-I (41). This TF selectively regulates gene expression of 

TATA box-containing promoters and together with USF1 and USF2 plays a role during 

HIV-1 reactivation upon Jurkat T-cell activation (41–45). TFII-I seems to recruit TRIM24 

to promote transcription elongation through enhanced CDK9 and Ser2 RNAPII CTD 

phosphorylation (41). Furthermore, inhibition of the TRIM24-C terminal bromodomain 

using the small molecule IACS-9571 (46, 47), in combination with the PKC agonist PEP005 

(48), promotes HIV-1 reactivation in primary CD4+ lymphocytes, suggesting their potential 

use as latency reversing agents (LRAs) (49). A CRISPR/Cas genome-wide screen in Jurkat 

T cells identified novel host factors and pathways contributing to HIV expression (50), 

including UBE2M, FBXW7, SLC39A7 or ING3 (50, 51), but their specific roles in the 

HIV-1 life cycle remains to be elucidated. In summary, numerous approaches are being used 

to gain insight into host protein involved in HIV transcriptional regulation and additional 

work is needed towards depth in their mechanism of action in cells and tissues.

HIV-1 latency state

The latent HIV-1 reservoir consists of long-lived memory CD4+T cells harboring integrated 

latent proviruses. The switch between latent and active HIV transcription is highly 
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dependent on Tat’s positive feedback loop (52, 53). Before Tat accumulates, viral 

transcription is very limited due to inefficient transcriptional elongation (54, 55). At this 

stage, the HIV promoter is heavily influenced by its local chromatin environment and 

availability of TFs. T cell activation triggers production of a few short transcripts that result 

in Tat production (54, 55), which results in exponential HIV transcription by recruitment 

of pTEFb to RNAPII CTD, and thus viral rebound (56–58). Latency usually correlates 

with limited Tat levels, but additional mechanisms contribute to HIV latency. For instance, 

the chromatin remodeler Brg1-associated factor (BAF) complex maintains Nuc-1 in an 

unfavorable position downstream of the TSS blocking transcription. Additionally, histone 

deacetylases (HDACs) and histone methyltransferases (HMTs) add repressive epigenetic 

modifications at the HIV promoter. Low-levels of TFs also limit transcription (Figure 

1B) (26, 59, 60), e.g., during HIV latency, inactive P-TEFb associates with the 7SK 

RNP complex, composed of the small non-coding RNA 7SK (7SK snRNA), a homo- 

or heterodimer of the CDK9-inhibitory protein hexamethylene bisacetamide (HMBA)-

inducible 1 or 2 (HEXIM 1/2), the methylphosphatase capping enzyme (MePCE), and the 

La ribonucleoprotein domain family member 7 (LARP7) (29). P-TEFb sequestration by 

7SK RNP inhibits CDK9 activity blocking transcriptional elongation (61, 62), Tat releases 

P-TEFb by interacting with 7SK snRNA, which displaces HEXIM-1. HEXIM-1 and Tat 

share a similar RNA binding domain competing for 7SK RNA binding and thus P-TEFb 

(29). Tat then recruits free P-TEFb to TAR promoting HIV transcriptional elongation (21).

The chromatin environment surrounding HIV integration dictates transcriptional activity, 

since nucleosome positioning controlled by the activity of chromatin regulatory factors 

(CRFs) determines accessibility of TFs and PIC formation (63). CRFs have three main 

enzymatic activities: i) ATPase-driven chromatin remodeling that actively slide, deposit, or 

eject nucleosomes (64); ii) post-translational modification (PTM) of histone N-terminal tails 

including methylation, acetylation, crotonylation, and ubiquitination, that alter nucleosome 

dynamics and provide docking sites for other transcriptional modulators (24, 65); and 

iii) methylation of CpG islands, promoting recruitment of transcriptional repressors and 

blocking recruitment of positive TFs (66). A detailed review of these epigenetic modulations 

is provided elsewhere (12, 24).

The discovery of chromatin modulators involved in HIV transcription has gained significant 

attention. Recently the chromodomain helicase DNA-binding protein (CHD9) was shown to 

promote HIV-1 latency via direct association with the 5’LTR (67). Knock-down of CHD9 

with shRNAs in J-Lat A2 and J-Lat 11.1 cells resulted in significant reversal from latency 

(67). ChIP experiments showed that CHD9 was enriched at the HIV-1 LTR in latent 11.1 

J-Lat cells and displaced upon PMA stimulation suggesting a role in maintaining HIV-1 

latency (67). How CHD9 is recruited to the HIV-1 LTR will require additional research.

A genome-wide CRISPR inhibition screen in Jurkat T cell clones identified 18 new HIV-1 

latency factors including the scaffold attachment factor B-like transcription modulator 

(SLTM) (68). SLTM is an epigenetic and transcriptional modulator known to inhibit 

estrogen receptor signaling but not previously reported to affect HIV-1 transcription (68, 69). 

SLTM knockdown in HIV-1-infected T Jurkat cell clones increased HIV transcription and 

chromatin accessibility, highlighting SLTM repressor functions in HIV transcription. The 
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chromatin regulatory mechanisms that control HIV-1 latency hold promise as therapeutic 

targets, and further research is needed to understand detailed mechanisms of action and 

develop of specific small molecule modulators.

A recent longitudinal study focused on the transformation of the HIV-1 reservoir at the 

chromatin level in individuals on long-term ART revealed the role of chromatin compaction 

in HIV transcription (70). This analysis of cells from PLWH on long-term ART revealed 

that intact HIV-1 proviruses integrated in repressive chromatin regions are more likely to 

persist and evade immune recognition and elimination compared to those integrated in 

permissive chromatin (70). This selection becomes more prominent in the second decade of 

suppressive ART with an attenuated viral reservoir profile with reduced potential for viral 

rebound, potentially contributing to ART free control of HIV-1 (70). Clinical studies are 

now needed to fully understand the extent of these findings and its clinical implications. 

Similarly, single-cell latent reservoir studies uncovered novel insights into the mechanisms 

of HIV-1 latency. For instance, we know that HIV-1 integrates in various genomic locations 

resulting in diverse proviral transcriptional activities (71, 72). Einkauf et al. suggest 

that ART positively selects proviruses with lower transcriptional activity, since highly 

active proviruses are vulnerable to host immune clearance (73). Modulation of proviral 

transcriptional behavior may thus enhance susceptibility to immune-mediated elimination 

offering novel avenues for HIV-1 control without continuous ART (73). Additional studies 

are needed to understand the effects of transcriptional modulation on infected cells to 

determine the vulnerabilities and susceptibilities of HIV-1 reservoir cells.

CURRENT THERAPEUTIC STRATEGIES TO CURE HIV

The block-and-lock strategy

The realization that HIV proviruses act as a hibernating threat, triggering rapid viral rebound 

when ART is interrupted sparked research efforts in functional or remission cures, akin 

approaches used in cancer treatment (74, 75). An HIV remission entails the long-term, 

durable suppression of viral expression without therapy, effectively preventing disease 

progression and transmission despite the presence of integrated proviruses (76). Over the 

years, our group has provided evidence that contributed to the introduction of the “block-

and-lock” concept for an HIV remission. This approach harnesses the combined power 

of ART and latency promoting agents (LPAs), such as HIV Tat inhibitors, transcription 

initiation inhibitors, or epigenetic modulators, to establish a state of deep and irreversible 

latency, which persists without treatment (Figure 2A) (77–79). Epigenetic silencing, a 

common phenomenon in the human genome, restricts expression of large fractions of our 

genetic repertoire, with only approximately 8,000 genes actively expressed per cell out 

of around 20,000 human genes (80, 81). Similarly, most human endogenous retroviruses 

(HERVs) which make up approximately 8% of our genome, are persistently silenced (81–

87).

The nexus for this approach was demonstrated with the Tat inhibitor, didehydro-Cortistatin 

A (dCA) (88, 89). By specifically binding the basic domain of Tat, dCA disrupts Tat’s 

interaction with TAR, blocking HIV transcriptional elongation at nanomolar concentrations 

without cell-associated toxicity (88, 90). In vitro studies and humanized mice models of 
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HIV infection have shown that treatment with ART and dCA significantly reduces HIV 

transcription levels that persist under ART by inhibiting RNAPII recruitment to the HIV 

promoter (78, 89). As such, inhibition of HIV transcription by dCA gradually leads to 

epigenetic silencing (91). Notably, even in the presence of potent LRAs, dCA effectively 

blocks or delays viral reactivation observed after treatment interruption (78, 89). The lack of 

clinically available HIV transcriptional inhibitors has hindered clinical testing of block-and-

lock approaches. It remains thus uncertain whether long-term transcriptional inhibition can 

permanently epigenetically suppress HIV in vivo and whether multiple latency-promoting 

agents (LPAs) targeting different aspects of HIV transcription are necessary to achieve 

this goal. Nevertheless, trickling transcription from HIV reservoirs during suppressive 

ART contribute to immune activation, inflammation, comorbidities, and accelerated aging 

in PLWH, thus combining transcriptional inhibitors to ART may improve these clinical 

outcomes (92, 93).

Spironolactone (SP), an FDA approved drug for the treatment of hypertension and heart 

failure, was reported to degrade the XPB subunit of TFIIH and inhibit HIV transcription 

(94–96). TFIIH is involved in DNA opening at the TSS and RNAPII promoter escape 

during transcriptional initiation (97, 98). SP inhibits both HIV-1 and HIV-2 infection in 

primary cells which correlates with its ability to degrade XPB (95). SP treatment or shRNA 

knockdown of XPB limits RNAPII recruitment to the HIV locus blocking viral transcription, 

without affecting cellular mRNA expression (96). However, contrary to what was observed 

for dCA, SP interruption and the reemergence of XPB jumpstarts HIV transcription (96). 

This study identified XPB as an important host factor for HIV transcription and SP 

as a novel LPA. HIV transcriptional inhibitors have unique potential in block-and-lock 

approaches, and exploring the newly discovered roles of host factors in HIV transcription 

regulation opens novel avenues to be explored for HIV functional cure.

The shock-and-kill strategy

The shock-and-kill strategy aims to fully eradicate all latently infected cells (99). This 

approach involves induction of viral protein expression with LRAs (“shock”), with ART 

to blocks viral reinfection, and subsequent elimination (“kill”) of infected cells through 

cytopathic mechanisms or by cytotoxic CD8+T cells (Figure 2B). LRAs can be classified 

into four categories: i) epigenetic modulators (e.g. DNA methyltransferase inhibitors); ii) 

TF activators (e.g. protein kinase C activators); iii) bromodomain and extra-terminal domain 

inhibitors (e.g. BRD4 inhibitors); and iv) inhibitor of apoptosis proteins (IAPs) (e.g. second 

mitochondrial-derived activator of caspases mimetics) (100–102). Clinical trials testing this 

approach have unfortunately been unsuccessful in reducing the proviral reservoir (103). 

Reasons for this failure include immune dysfunction in PLWH and thus limited clearance 

of reactivated cells, inadequate LRA efficacy and LRA toxicity in immune cells (104–109). 

Furthermore, as discussed above, many factors affect transcriptional reactivation such as 

proviral integration sites, host factor availability and immune selection during ART. Work is 

ongoing to develop novel potent and specific LRAs, without off target activity, and strategies 

to enhance CD8+T cell competence that declines in PLWH over years on ART.
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A combination of LRAs is likely needed to improve specific reactivation of proviruses and 

host immune response. In vitro studies using cell line models of HIV-1 latency and ex 
vivo studies of patient derived CD8+ and CD4+T cells has shown promise (110–112). For 

instance, immune check point inhibitors and cytokine (IL15) associated with protein kinase 

C agonist (prostratin) led to efficient HIV reactivation followed by natural killer (NK) cell 

clearance (113). A similar study using prostratin in combination with a pan-caspase inhibitor 

successfully induced HIV-1 latency reversal in NK infected cells (114). However, though 

the “shock” increased cell associated viral RNAs, the ‘kill’ may have been limited by the 

caspase inhibitor block of cell death. Finally, nanomedicine drastically improves delivery 

and efficacy of drugs, and may be applied in both shock-and-kill and block-and-lock 

approaches to treat HIV-1 (115).

SUMMARY AND CONCLUSION

The viral latent reservoir forms early during acute HIV infection and virus promoter activity 

and transcriptional activity is regulated via a complex network of viral and host factors. 

Elimination of this reservoir has been extremely challenging and is the main obstacle 

to an HIV cure. We reviewed recent discoveries of host factors and CRFs involved in 

HIV-1 transcription, as well as discoveries on the chromatin environment modulating HIV 

expression in PLWH. Recent advances on cure strategies exploiting HIV transcriptional 

modulation, such as the block-and-lock and the shock-and-kill approaches, were also 

summarized. We propose that a combinatorial approach may be needed for a successful 

HIV cure, first easy to reactivate provirus may be cleared via shock-and-kill, followed by 

the irreversibly silencing of proviruses already buried in unfavorable chromatin regions 

and difficult to reactivate by block-and-lock approaches. By expanding our knowledge on 

HIV transcription, we can pave the way for more effective therapeutic interventions and 

ultimately HIV-1 eradicate.
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KEY POINTS

• Transcription from the HIV-1 latent reservoir, formed early after infection, is 

regulated by complex mechanisms that involve cellular transcription factors, 

the viral Tat protein, chromatin remodelers and epigenetic modifications.

• Recent studies using ChAP-MS, shRNA or CRISPR-based screening 

approaches identified host factors p32, SLTM or SMYD5 playing important 

roles in HIV transcription and latency.

• Multiple therapeutic strategies take advantage of HIV transcriptional 

modulation to tackle HIV: the block-and-lock approach aims to epigenetically 

silence HIV-1 and the shock-and-kill strategy to activate and promote immune 

clearance of the viral reservoir.
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Figure 1. Summary of HIV-1 transcriptional activation and latency regulation.
A) Initially, transcriptional activators (such as NF-κB, SP1, etc.) are recruited to form the 

pre-initiation complex (PIC). Histone acetyltransferases (HATs) are then responsible for 

inducing chromatin opening and recruiting the PBAF complex. The PBAF complex, in 

turn, facilitates the displacement of Nuc-1, relocating it downstream from the transcription 

start site (TSS), thereby enhancing accessibility for host factors at the TAR RNA-RNAPII 

complex. TFIIH phosphorylates the serine residues at position 7 and 5 of the RNA 

polymerase II (RNAPII) C-terminal domain (CTD), which activates transcription. CDK9, 

associated with P-TEFb, further phosphorylates the CTD of RNAPII at serine 2, inducing 

full-length transcription of HIV-1 and the expression of Tat. Additionally, HATs acetylate 

Tat at lysine 50, facilitating its binding to the secondary structure of the newly formed 

TAR RNA. Furthermore, it is believed that SMYD5 plays a role in HIV-1 transcription 

both independently and through its interaction with Tat and USP11. p32 serves to stabilize 

Tat’s interaction with RNAPII, P-TEFb, and TAR. Finally, Tat recruits additional factors, 

thereby further promoting transcription and creating a positive feedback loop that increases 
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HIV transcription and consequently enhances Tat expression. B) The chromatin environment 

contributes to latency through various mechanisms. It enhances nucleosome-DNA affinity, 

reduces DNA accessibility, and recruits repressive factors like the SWI/SNF chromatin 

remodeling BAF complex. Factors such as CBF and YY-1 bind to DNA, enabling the 

recruitment of HDACs and HMTs. HDACs remove acetyl groups from nucleosomes, while 

HMTs replace them with methyl groups. DNMTs are believed to hypermethylate the two 

CpG islands, leading to HDAC recruitment. Lastly, P-TEFb, crucial for HIV transcription, 

is sequestered through its association with 7SK snRNP. Abbreviations: DHS, DNase 

hypersensitive regions; DNMTs, DNA methyltransferases.
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Figure 2. Principles of the block-and-lock and shock-and-kill approaches.
A) To trigger epigenetic silencing, various targets can be explored for inhibition or 

modulation. This may involve examining members of the PIC to impede transcription 

initiation, components of the Tat-transactivation complex to block transcription elongation, 

and ultimately, factors that regulate the chromatin environment to hinder and prevent HIV 

transcription. B) The objective of the shock-and-kill strategy is to completely eliminate the 

proviral latent reservoir. This is achieved by initially reactivating dormant infected cells 

using LRAs, followed by the elimination of these cells through either cell cytolysis or 

immune clearance. Simultaneously, ART is administered to prevent new infections.
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