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Abstract

Objectives: To determine whether ComBat harmonization improves multi-class radiomics-based 

tissue classification in technically heterogeneous MRI datasets, and to compare the performances 

to two ComBat variants.

Materials and Methods: One-hundred patients who had undergone T1-weighted 3D GRE 

Dixon MRI (two scanners/vendors; 50 patients each) were retrospectively included. Volumes 

of interest (2.5 cm3) were placed in three disease-free tissues with visually similar appearance 

on T1 Dixon water images: liver, spleen, and paraspinal muscle. Gray-level histogram (GLH), 

co-occurrence matrix (GLCM), run-length matrix (GLRLM), and size-zone matrix (GLSZM) 

radiomic features were extracted. Tissue classification was performed on pooled data from the 

two centers (1) without harmonization; (2) after ComBat harmonization with empirical Bayes 

estimation (ComBat-B); and (3) after ComBat harmonization without empirical Bayes estimation 

(ComBat-NB). Linear discriminant analysis (LDA) with leave-one-out cross-validation was used 

to distinguish between the three tissue types, using all available radiomic features as input. In 

addition, a multi-layer perceptron neural network with a random 70:30% split into training and test 

datasets was used for the same task, but separately for each radiomic feature category.

Results: LDA-based mean tissue classification accuracies were 52.3% for unharmonized, 66.3% 

for ComBat-B harmonized, and 92.7% for ComBat-NB harmonized data. For MLP-NN, mean 

classification accuracies for unharmonized, ComBat-B-harmonized, and ComBat-NB-harmonized 

test data were: 46.8, 55.1, and 57.5% for GLH; 42.0, 65.3, and 71.0% for GLCM; 45.3, 78.3, and 

78.0% for GLRLM; and 48.1, 81.1, and 89.4% for GLSZM. Accuracies were significantly higher 

for both ComBat-B- and ComBat-NB-harmonized data than for unharmonized data for all feature 

categories (at P=0.005, respectively). For GLCM (P=0.001) and GLSZM (P=0.005), ComBat-NB 

harmonization provided slightly higher accuracies than ComBat-B harmonization.
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Conclusions: ComBat harmonization may be useful for multi-center MRI radiomics studies 

with non-binary classification tasks. The degree of improvement by ComBat may vary between 

radiomic feature categories, between classifiers, and between ComBat variants.
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INTRODUCTION

Radiomics, an analysis technique that extracts quantitative features from medical images, 

has gathered considerable attention within the last decade.1,2 Radiomics has been applied 

to the entire spectrum of diagnostic imaging techniques, but most prominently, MRI, CT, 

and PET, with a focus on disease characterization as well as outcome prediction and 

prognostication.3–8

A major obstacle for the translation of radiomics to clinical practice is the dependence 

of radiomic feature values on image acquisition protocols as well as image processing, 

and associated repeatability.9–13 One strategy to at least partially address this issue is the 

prospective standardization of image acquisition and reconstruction parameters. However, 

the latter is mainly feasible for prospective research projects that include a limited numbers 

of collaborating centers, but less so in a real-world clinical setting where vendor-supplied 

standard protocols are used. In addition, for MRI, which is also widely used in private 

practices, differences in magnetic field strength and radiofrequency receiver coils affect 

signal intensity, adding further complexity.

Therefore, as a more practical and easy to apply approach, mathematical harmonization 

techniques, which work directly on the calculated radiomic feature values rather than 

on images, have been proposed. ComBat, which is the most widely used harmonization 

technique at present, has been shown to remove, or at least decrease, the “batch effect” 

–e.g., the influence of acquisition protocol differences between centers and scanners– 

from radiomic features, while preserving their underlying biological and pathophysiological 

associations.14,15 For clinical MRI data, ComBat has so far predominantly been used 

for binary classification tasks, i.e., separation of just two tissue, lesion, or outcome 

classes.3,5,6,15–21

In the present study, our aim was therefore to determine the value of ComBat harmonization 

of clinical MRI radiomic data from two centers for non-binary tissue classification by 

machine learning. Further, we aimed to compare the performances of two ComBat variants, 

as well as the effects of harmonization on radiomic features of different categories.

MATERIALS AND METHODS

Patients and design

A clinical database search was performed at two tertiary care centers (A and B) to 

identify and retrospectively include 100 patients who had undergone whole-body MRI for 

routine clinical purposes between 01/2019 and 12/2021. The study was approved by the 
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Institutional Review Boards of the two centers; informed consent was waived. Inclusion 

criteria were: MRI performed on two specified 3.0 Tesla scanners from different vendors; 

MRI protocol including a high-resolution T1-weighted 3D gradient-echo (GRE) Dixon 

sequence (see protocol below); no evidence of disease (malignant or other) in the liver, 

spleen, or paraspinal musculature, according to routine clinical PET/MRI reports as well 

as additional evaluation by a board-certified radiologist specializing in hybrid imaging. The 

single exclusion criterion was the presence of severe MRI artifacts, e.g. due to motion or 

metal implants, obscuring tissues of interest, as verified by a board-certified radiologist.

MRI protocols

At center A, whole-body MRI from the vertex to the upper thighs was performed on a Signa 

PET/MR (GE Healthcare, Waukesha, USA) as part of routine PET/MRI examinations. The 

MRI protocol included an axial 2-point Dixon 3D T1-weighted LAVA-Flex (liver acquisition 

with volumetric acceleration-flexible) sequence, which was obtained with breath-holding 

and covered the entire scanned anatomy. Acquisition parameters were: repetition time (TR), 

4.06 ms; echo times (TE), 1.67 and 2.23 ms; one acquisition; a 12° flip angle; and a voxel 

size of 0.98 × 0.98 × 3.8 mm3.

At center B, whole-body MRI from the vertex to the upper thighs was performed on a 

Biograph mMR (Siemens, Erlangen, Germany) as part of routine PET/MRI examinations. 

The MRI protocol included an axial 2-point Dixon 3D T1-weighted VIBE (volume 

interpolated breath-hold) sequence, which covered the entire scanned anatomy. Acquisition 

parameters were: repetition time (TR), 4.02 ms; echo times (TE) 1.23 and 2.46 ms; one 

acquisition; 10° flip angle; and a voxel size of 1.34 × 1.34 × 3.0 mm3.

At both centers, Dixon water images were reconstructed from the T1-weighted in- and out-

of-phase images, and used for further analysis. These images show relatively low contrast 

between the three tissues of interest (liver, spleen, muscle), making them visually more 

difficult to separate (see Fig. 1), and thereby providing a scenario where radiomics is 

typically applied.

Image analysis and radiomic feature harmonization

Radiomic feature extraction was performed by a board-certified radiologist, using the 

International Biomarker Standardization Initiative (IBSI)-compliant22 open-source software 

LIFEx version 7.3.0 (https://lifexsoft.org).23 Manually defined 2.5-cm3 spherical volumes 

of interest (VOI) were placed in the liver, spleen, and paraspinal musculature, avoiding 

large vessels and other macrostructures (Fig. 1). The three tissues were chosen because 

they are relatively homogeneous, meaning that variations in VOI placement are not 

expected to have a relevant impact on feature values, and because they are sufficiently 

large to allow placement of VOIs of identical size and shape. Prior to feature extraction, 

intensity discretization using a fixed bin size, and spatial resampling to 2.0 × 2.0 × 

2.0 mm3 voxels were performed. Thirty-three radiomic features from four frequently 

used feature categories were calculated: gray-level histogram (GLH, n=5); gray-level co-

occurrence matrix (GLCM, n=6); gray-level run-length matrix (GLRLM, n=11), and gray-

level size-zone matrix (GLSZM, n=11; named gray-level zone-length matrix in LIFEx). 
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For heterogeneity features derived from the GLCM, GLRLM, and GLSZM, individual 

feature values were automatically calculated by LIFEx as arithmetic means for different 

3D orientations and intervoxel distances. For a list of computed features and corresponding 

equations, see the LIFEx documentation at https://lifexsoft.org/index.php/resources/texture/

radiomic-features.

To eliminate or reduce the impact of systematic differences between the MRI datasets 

of centers A and B while at the same time improving separation of the three tissues, 

two variants of ComBat harmonization –with and without empirical Bayes assumption 

(ComBat-B and ComBat-NB)– were applied to the pooled unharmonized radiomic data, 

separately for the individual tissues analyzed. In brief, ComBat is a data-driven technique 

originally developed to remove the batch effect (i.e., effects caused by the measurement 

technique, device, or the sample itself) from genome microarray expression data.24 ComBat 

works on numerical radiomic feature values without taking actual images, image acquisition 

parameters, or phantom measurements into account.14 R scripts for the two ComBat variants 

are available at https://github.com/Jfortin1/neuroCombat_Rpackage/.

Tissue classification and statistics

Linear discriminant analysis (LDA), which reduces feature dimensionality, was performed 

with leave-on-out cross-validation (LOOCV), taking pooled cases from the two centers and 

features from all radiomic categories as input. Mean accuracies for separation of the three 

tissue classes were calculated, independently for unhamonized, ComBat-B-harmonized, and 

ComBat-NB-harmonized data, and scatterplots based on the LDA functions were used to 

visualize effects of ComBat harmonization.

In addition, cases were randomly assigned to a training dataset (70%) and a test 

dataset (30%); case assignments were identical for unharmonized and harmonized 

datasets. Separately for unharmonized, ComBat-B- and ComBat-NB-harmonized data, and 

independently for the different feature categories (GLH, GLCM, GLRLM, GLSZM), a 

multi-layer perceptron neural network (MLP-NN)25 with one hidden layer and a minimum 

of three neurons was trained to distinguish between liver, spleen, and muscle. These 

additional experiments were performed because, contrary to LDA, MLP-NN can solve 

non-linear classification tasks, and because the data split into training and test datasets is 

the generally recommended strategy to assess model generalizability identify overfitting. 

Because MLP-NN classification starts with an initial guess at the network parameters, mean 

accuracies and accuracy ranges based on ten-fold iteration of MLP-NN classification were 

calculated, separately for training and test datasets, and Wilcoxon signed rank tests were 

used to assess significant differences between unharmonized and harmonized datasets. Areas 

under the receiver operating characteristic (ROC) curves (AUC) were calculated for test data 

using a pair-wise (i.e., 1-versus-2 tissues) approach. All tests were performed using SPSS 

28.0.1 (IBM, Armonk, USA). The specified level of significance was P<0.05.
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RESULTS

The cohort comprised 100 patients: 50 from center A (23 women and 27 men; mean age 

44.4 ± 15.7 years), and 50 from center B (24 women and 26 men; mean age 48.6 ± 16.2 

years); 300 VOIs (100 per tissue type) were analyzed.

For pooled unharmonized radiomic data from the two centers, tissue classification based 

on LDA, which reduced the initially 33 dimensions to two, was overall unsatisfactory, with 

a mean accuracy of 52.3%. Clearly higher LDA-based mean accuracies were observed for 

ComBat-B and, even more so, ComBat-NB, at 66.3% and 92.7%, respectively. Scatterplots 

based on LDA scores also demonstrate markedly superior clustering of data points to the 

three tissues post harmonization (see Fig. 2).

Tissue classification based on unharmonized data remained unsatisfactory when MLP-NN 

was applied, with mean accuracies ranging from 42.0–50.1% for the different feature 

categories (Table 1). This was also confirmed by ROC curves for 1-versus-2 tissue 

discrimination (Fig. 3). Again, ComBat harmonization markedly improved results: MLP-

NN-based mean accuracies differed significantly between unharmonized and ComBat-B, 

and between unharmonized and ComBat-NB data, at P=0.005 for all features categories, 

respectively. Improvement was, however, less pronounced for GLH, with a test dataset 

mean accuracy difference of +8.3 percentage points (p.p.) for ComBat-B, and +10.7 p.p. 

for ComBat-NB, relative to unharmonized data. The greatest improvement was observed 

for GLSZM features, with a test dataset mean accuracy difference of +33.0 p.p. for ComBat-

B, and +41.3 p.p. for ComBat-NB. These trends were confirmed by 1-versus-2 tissue 

discrimination experiments (Fig. 3), where almost perfect discrimination based on GLSZM 

features was achieved following harmonization.

A direct comparison between the two ComBat variants revealed no significant differences 

in MLP-NN-based accuracy between ComBat-B and ComBat-NB for GLH (P=0.21) and 

GLRLM features (P=0.66). However, ComBat-NB was superior to ComBat-B when using 

GLCM (tests dataset mean accuracy difference, +5.7 p.p; P=0.008) or GLSZM (+8.3 p.p.; 

P=0.005) features.

DISCUSSION

Our results demonstrate that ComBat harmonization can markedly improve MRI radiomics-

based tissue classification in technically heterogeneous datasets, even in a multi-class 

setting, which is becoming increasingly common in radiomics research.2 Contrary to 

unharmonized radiomic data, for which, with accuracies close to 50%, tissue classification 

essentially failed, classification based on ComBat harmonized data was clearly more 

successful (Table 1, Figs. 2 and 3). However, feature harmonization did not improve 

classification results to the same degree for the different radiomic feature categories 

included. For first-order, histogram-based features (GLH), which capture relatively basic 

gray-level statistics such as the mean gray-level value and gray-level percentiles, ComBat 

led to slightly improved, but still unsatisfactory levels of classification accuracy. On the 

other hand, for second-order features that reflect the spatial distribution of voxel pairs with 
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pre-defined gray-level values (GLCM), ComBat led to classification accuracies of up to 71% 

in the test dataset. For higher-order radiomic features (GLRLM, GLSZM) that capture the 

distribution of runs and areas (zones) of voxels with pre-defined gray-level values, tissue 

classification after ComBat harmonization was satisfactory, with accuracies up to 89% in the 

test dataset.

Different variants of ComBat have been proposed for radiomic feature 

harmonization,14,15,26–28 of which two were evaluated in our study: the “standard” variant 

with empirical Bayes estimation (ComBat-B) that has been used in several MRI radiomics 

studies;29–33 and a variant without empirical Bayes estimation (ComBat-NB),32,34 which 

has been used less frequently,34 but which may be preferable for instance if the number 

of features is substantially smaller than the number of participants, or if standard ComBat 

does not fit the data well (see https://github.com/Jfortin1/neuroCombat_Rpackage/). While 

both variants improved tissue classification, regardless of the classifier used, ComBat-NB 

was overall superior in our dataset, as evidenced by LDA results that reflecting linear 

data separability, as well as MLP-NN results for two radiomic feature categories (Table 

1), reflecting more sophisticated, non-linear data separability. LDA in particular showed an 

accuracy difference of +26.4 p.p. in favor of ComBat-NB (Fig. 3). These findings highlight 

the dependency of perceived harmonization performance on the choice of classifier, and 

may in part explain why some studies did not report improved classification performance 

following ComBat harmonization.32

Contrary to binary classification, i.e., separation of only two classes, such as benign 

and malignant lesions,5,33 or prediction of locoregional spread or control,17,18 treatment 

response or relapse at a given time-point,19–21,30 for which ComBat has been successfully 

used, our use of three tissue types with visually similar signal intensity and homogeneity 

on MRI makes the classification task more complex. Classification was further made 

difficult by our choice of T1-weighted Dixon images for radiomic feature extraction, where 

signal intensities showed only minor visible differences between tissues of interest. This 

is probably also the reason for the poor classification results based on histogram features 

(GLH), which remained unsatisfactory despite the use of ComBat. Since we extracted 

radiomic features from disease-free organs, our VOIs were of identical size, thereby 

eliminating the effect of VOI size differences on radiomic feature values that has previously 

been observed, and that led to misinterpretation of the impact of radiomics in the past.35 

Also, the number of measurements (VOIs) was the same for each tissue class (100 per 

tissue), eliminating class imbalance as a factor that may impact model performance.36

Our study has several limitations. Our sample size was moderate, and therefore, we included 

three, rather than more tissue types. Also, images from only two centers were included, 

which, however, used scanners from different vendors, and slightly different pulse sequence 

designs and acquisition parameters, resulting in visible differences between MR images 

(Fig. 1). We limited our evaluation to a T1-weighted Dixon sequence, since it provides high 

resolution, which impacts radiomic feature values and improves classification.9,37 Notably, 

spatial resampling to an isotropic voxel size of 2 × 2 × 2 mm3 was used to partly compensate 

for differences in slice thickness (4 mm in center A and 3 mm in center B); interpolation 

by factor 2 in this direction was chosen because the results of a previous phantom study 
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suggested that higher interpolation factors may not improve radiomics-based classification 

further, and may possibly even have negative effects.37 In addition, this pulse sequence 

is frequently used in clinical practice, for example for whole-body assessment of cancers 

such as myeloma,38 or for PET/MRI, where it is used for both diagnostic purposes and 

for PET attenuation correction. Finally, we exclusively evaluated ComBat, but not other 

harmonization techniques, such as z-scores, which have previously been utilized for a 

similar task.39 However, a direct comparison between the two harmonization techniques 

suggested several advantages (such as preservation of the original range of values) of 

ComBat over z-scores,14 and therefore, we did not explore the use of z-scores further in our 

study.

In conclusion, the results of our study confirm the benefit of applying ComBat 

harmonization to MRI radiomics, and show that it performs well even for more challenging, 

non-binary classification tasks. However, our data suggest that the degree of improvement 

may vary, in part substantially, between different radiomic feature categories, between 

classifiers, and between ComBat variants. Therefore, different combinations of these factors 

should be evaluated at the training stage of multi-center MRI radiomics studies dealing with 

multi-class data, to determine the optimal approach.
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Figure 1. 
Examples for T1-weighted Dixon MR images from the two centers and volumes of interest 

for the three tissues of interest (liver, red; spleen, green; and paraspinal muscle, red).
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Figure 2. 
Scatterplots based on feature space dimensionality reduction by linear discriminant 

analysis. ComBat harmonization, and ComBat-NB (without empirical Bayes assumption) 

in particular, clearly improve separation of the three tissues of interest.
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Figure 3. 
Receiver operating characteristic (ROC) curves for 1-versus-2 tissue classifications, 

with respective areas under the curve (AUC). Harmonization markedly improves tissue 

classification for all feature categories, although not to the same degree.
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TABLE 1.

Tissue classification accuracies (%) with and without harmonization for four radiomic feature categories, 

based on MLP-NN

Unharmonized ComBat-B ComBat-NB

Mean Range Mean Range Mean Range

GLH:

 Accuracy–training 48.9 45.6–51.1 69.3 61.1–78.9 69.8 64.4–77.8

 Accuracy–test 46.8 43.3–50.5 55.1 51.4–61.0 57.5 53.8–63.8

GLCM:

 Accuracy–training 46.0 42.2–52.2 79.6 71.1–87.8 83.3 81.1–85.6

 Accuracy–test 42.0 38.0–47-1 65.3 62.4–68.1 71.0 66.7–75.2

GLRLM:

 Accuracy–training 48.5 41.1–56.7 89.7 81.1–97.8 89.7 81.1–97.8

 Accuracy–test 45.3 39.5–49.0 78.3 64.8–82.4 78.0 72.9–82.4

GLSZM:

 Accuracy–training 50.1 41.1–57.8 95.7 88.9–100 98.6 93.3–100

 Accuracy–test 48.1 46.2–50.5 81.1 74.8–87.1 89.4 86.2–91.9

GLH, gray-level histogram; GLCM, gray-level co-occurrence matrix;

GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix
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