
Journal of Advanced Research 50 (2023) 159–176
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Review
Carrier-free nanoplatforms from natural plants for enhanced bioactivity
https://doi.org/10.1016/j.jare.2022.09.013
2090-1232/� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Cairo University.
⇑ Corresponding authors.

E-mail addresses: cpu_lykong@126.com (L. Kong), hanchao@cpu.edu.cn (C. Han).
Zhongrui Li a,b, Xiao Xu a, Yun Wang a, Lingyi Kong a,⇑, Chao Han a,⇑
a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical
University, 24 Tong Jia Xiang, Nanjing 210009, PR China
bDepartment of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
h i g h l i g h t s

� Carrier-free nanoplatforms with self-
assembly from natural plants.

� Nano self-assembly of pure small
molecules for enhanced bioactivity.

� Extracellular vesicles containing
active substances from fresh plants.

� Charcoal nanocomponents with
carbon skeleton structure from
charred plants.

� Nanoaggregate particles with wide
curative effects from decoction of
plants formulae.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 15 June 2022
Revised 15 September 2022
Accepted 28 September 2022
Available online 5 October 2022

Keywords:
Natural plants
Carrier-free nanoplatform
Extracellular vesicle
Charcoal nanocomponent
Nanoaggregates
a b s t r a c t

Background: Natural plants as well as traditional Chinese medicine have made outstanding contributions
to the health and reproduction of human beings and remain the basis and major resource for drug inno-
vation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic compo-
nents have attracted increasing attention due to their advantages of improved pharmacodynamics/
pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms
produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic
modalities. Notably, these nanoplatforms based on the interactions of components from different natural
plants improve efficiency and depress toxicity.
Aim of Review: In this review, different types of self-assembled nanoplatforms are first summarized,
mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular
vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and
nanoaggregates from plants formulae decoctions.
Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biolog-

ical activity and modes of action. Finally, a future perspective of existing challenges with respect to the
clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to
further develop effective carrier-free nanoplatforms from natural plants in the future.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contents
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Carrier-free nanoplatforms of pure natural molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Plant alkaloid-based nano self-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2022.09.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jare.2022.09.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cpu_lykong@126.com
mailto:hanchao@cpu.edu.cn
https://doi.org/10.1016/j.jare.2022.09.013
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare


Z. Li, X. Xu, Y. Wang et al. Journal of Advanced Research 50 (2023) 159–176
Natural triterpene-based nano self-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Other natural molecule-based nano self-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Extracellular vesicles from fresh plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Zingiber plant-derived EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Citrus plant-based EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Vitis plant-derived EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Other plant-based EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Charcoal nanocomponents from charred plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

CNs with hemostatic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
CNs with anti-inflammatory and antioxidant activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CNs with anti-gout effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CNs with other bioactivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Nanoaggregates from plants formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Introduction

In the course of fighting against disease, mankind first apply
natural plants to relieve pain [1]. Therefore, in the early history
of various ancient civilizations, there is no lack of records of herbal
medicines. In particular, working Chinese people have accumu-
lated rich experience in the processes of long-term production
practices and fighting against diseases and have gradually formed
unique traditional Chinese medicine (TCM) [2]. Natural plants have
made outstanding contributions to the health and reproduction of
all mankind. Furthermore, natural ingredients from medicinal
plants are characterized by abundant scaffold diversity and struc-
tural complexity, which have played important roles in drug dis-
covery [3]. Among the 1,881 drugs approved by the U.S. Food
and Drug Administration from 1981 to 2019, approximately 65 %
were natural products or natural product-based drugs [4]. Some
well-known drugs, including artemisinin, paclitaxel, camptothecin,
Guanfu base A, and huperzine A, have all been discovered in natu-
ral plants. Recently, natural active molecules have been used for
the treatment of coronavirus disease 2019 [5,6]. Therefore, natural
plants are receiving increasing attention in treating diseases. Dis-
covery of natural lead compounds from plants has been, and will
continue to be, the frontier of fundamental research of biological
medicine and a promising path to drug research and development.

Nanodrug delivery and targeting systems have provided
advanced opportunities in recent years and can significantly
improve therapeutic efficacy for the treatment of human diseases
[7,8]. The drug molecules are loaded into nanocarriers and ulti-
mately released to the diseased region after active or passive tar-
geting. Thus, nanotechnology is widely used to deliver active
ingredients from natural plants to improve their solubility and
chemical stability and prolong their blood circulation time [9,10].
However, the preparation of nanocarriers is too laborious for clin-
ical translation, and most nanocarriers pose the risks of undesir-
able immune responses and carrier-related toxicity. Moreover,
their low drug-loading capacity and premature drug leakage
restrict their therapeutic efficacy. Fortunately, carrier-free
nanoplatforms completely self-assembled from pure drugs or ther-
apeutic components in the absence of exotic nontherapeutic carri-
ers have been developed [11–13]. No additional nanocarriers are
involved in the preparation, which can enhance drug-loading effi-
ciency (even up to 100 %), avoid toxicity of nanocarriers, and facil-
itate large scalable production and clinical translation. Therefore,
carrier-free nanoparticles have been developed as an emerging
promising platform for treating diseases [14–16].
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Natural medicinal plants are inclined to cure some certain dis-
eases and can be a source for potential drugs, which are increas-
ingly recognized by researchers and clinicians [1,3,4]. Thus, the
emerging carrier-free nanoplatforms with self-assembly from nat-
ural plants over the past decade urgently need to be summarized
and reviewed. In this review, an emphasis will be placed on four
types of nanoplatforms (Fig. 1): (i) nanoassembly of pure small
molecules isolated from different plants; (ii) extracellular vesicles
separated from fresh plants; (iii) charcoal nanocomponents
obtained from charred plants; and (iv) nanoaggregates from the
decoction of plant formulae. We will focus on the sources of small
molecules, the self-assembly mechanisms, the compositions, and
the biological activities. Finally, we discuss the prospects and
future challenges of carrier-free nanoplatforms from natural
plants.

Carrier-free nanoplatforms of pure natural molecules

Plant alkaloid-based nano self-assembly

Natural alkaloids, which are widely distributed in plants, are a
group of important bioactive ingredients containing basic nitrogen
atoms that exhibit multiple biological activities [17,18]. Berberine
(BBR), a famous natural isoquinoline alkaloid, is isolated from Cop-
tis chinensis and other Coptis species plants. BBR possesses remark-
able antibacterial action and other pharmacological activities
[19,20]. Lei’s group [21] discovered that BBR could interact with
baicalin (BA) to form nanoparticles (BA-BBR) by self-assembly,
while wogonoside (WOG) interacted with BBR to form nanofibers
(WOG-BBR) by self-assembly (Fig. 2A). BA and WOG are flavonoid
glycosides which are the main active components from Scutellaria
baicalensis. BA-BBR displayed significantly enhanced bacteriostatic
activity, whereas WOG-BBR showed a weaker effect than BBR. This
was because BA-BBR formation was governed by electrostatic and
hydrophobic interactions to orient hydrophilic glucuronic acid
toward the outside. Thus, BA-BBR were attached much easier onto
bacteria and sustained release BBR in large quantities, thereby
inducing the collapse of the bacterial population and the decrease
in biofilm. As for WOG-BBR, they were difficult to attach onto bac-
teria owing to their hydrophobic properties. Furthermore, it was
found [22] that BA-BBR nanoparticles could promote a synergistic
effect on diarrhea-predominant irritable bowel syndrome mice
compared with simple mixing. This synergistic effect might be
related to brain-gut peptides, immune inflammation, and intesti-
nal flora, which are important interrelated components of the



Fig. 2. (A) Self-assembly between berberine (BBR) and flavonoid glycosides (baicalin/wogonoside) for antibacterial application. Reproduced with permission from Ref. [21].
Copyright 2019, American Chemical Society; (B) Self-assembly between cinnamic acid (CA) and BBR for inhibiting multidrug-resistant Staphylococcus aureus. Reproduced
with permission from Ref. [24]. Copyright 2020, American Chemical Society; (C) Self-assembly between rhein (RHE) and BBR for antibacterial activity. Reproduced with
permission from Ref. [29]. Copyright 2020, Elsevier Publishing Group; (D) Self-assembly between aristolochic acid (AA) and BBR for neutralizing acute nephrotoxicity.
Reproduced with permission from Ref. [31]. Copyright 2021, American Chemical Society.

Fig. 1. Carrier-free nanoplatforms from natural plants with enhanced bioactivity.

Z. Li, X. Xu, Y. Wang et al. Journal of Advanced Research 50 (2023) 159–176
microbiota–gut–brain axis. Cinnamic acid (CA) is a representative
compound from Cinnamomum cassia [23]. CA could also directly
self-assemble into nanoparticles with BBR by hydrogen bonds
and p � p stacking interactions [24]. Compared with first-line
antibiotics (norfloxacin, amoxicillin, and tetracycline), CA-BBR
nanoparticles showed a better inhibitory effect on multidrug-
resistant Staphylococcus aureus, owing to their preferential adher-
ence to the surface of S. aureus leading to synergetic converging
bacterial attack (Fig. 2B). Next, 3,4,5-methoxycinnamic acid
(3,4,5-TCA), a derivative of CA, was isolated from Polygala tenuifolia
as an effective antibacterial agent with a phenylpropanoid skeleton
[25]. 3,4,5-TCA-BBR nanoparticles [26] were almost uniform spher-
ical particles, and their size (diameter: 92.6 nm) was larger than
that of CA-BBR (diameter: 66.0 nm).
161
Rheum palmatum is a medicinal plant with purgation effects. Its
main active ingredient is rhein (RHE), which has an anthraquinone
skeleton [27,28]. Tian et al. [29] found that RHE could also interact
with BBR to accomplish nano self-assembly (Fig. 2C). In spherical
RHE-BBR particles, RHE served as a layered framework by hydro-
gen bonding interactions, and BBR was inserted into the backbone
by electrostatic interactions. RHE-BBR nanoparticles had stronger
inhibitory effects on S. aureus than single components. Aristolochic
acid (AA), from Aristolochia debilis, has been shown to cause a vari-
ety of severe side effects, such as acute kidney injury, AA
nephropathy, and liver cancer [30]. AA and BBR can assemble into
linear heterogeneous supramolecules in aqueous solution [31]. The
hydrophilic groups were inside and the hydrophobic groups were
outside in the AA-BBR nanostructure, which might play an impor-
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tant role in blocking the toxic site of AA (Fig. 2D). In vivo assays
showed that AA-BBR supramolecules significantly reduced AA-
induced acute kidney injury compared with AA. This method
offered a novel strategy to overcome the toxicity problems of
medicinal plants containing AA. Hu’s group [32] further found that
BBR alkylation (BBRA) could form nanodrugs with rhamnolipids
(RHL) via self-assembly. Four types of BBRA-RHL nanoparticles
with RHL shielding of positive charge and increasing hydrophilicity
were successfully obtained. BBRA-RHL nanoparticles could pene-
trate the mucus barrier and effectively eradicate Helicobacter pylori
biofilms to achieve antibacterial activity. Moreover, the authors
discovered that BBRA nanoparticles exerted antitumor effects by
activating mitochondrial apoptosis pathways [33]. Next, BBR was
linked together with paclitaxel (PTX) by a disulfide bond to obtain
a drug-drug conjugate (PTX-ss-BBR) [34]. This conjugate could be
self-assembled to form nanoparticles through p-p stacking and
hydrophobic interactions. PTX-ss-BBR nanoparticles exerted a syn-
ergistic antitumor effect due to BBR’s mitochondria-targeting
delivery and GSH-responsible drug release, which dissipated mito-
chondria membrane potential and upregulated ROS levels to
induce apoptosis of cancer cells. In conclusion, BBR provided a
new template for small molecules to self-assemble into nanostruc-
tures to enhance bioactivity. The main driving force of the forma-
tion of self-assembly between BBR and small molecules in
aqueous solution is the electrostatic interaction and p-p stacking.
After the formation of one-dimensional structure, they continue
to form three-dimensional nanostructures under the action of
hydrogen bonding and p-p stacking. Thus, these small molecules
should include carboxyl group which can interact with the quater-
nary ammonium ion of BBR. Besides, the aromatic structure of
small molecules is also essential, which can interact with isoquino-
line ring of BBR. However, whether small molecules can self-
assemble with BBR needs further experimental verification.

PTX, first separated from Taxus chinensis, is a widely applied
chemotherapy agent with an extensive spectrum of antitumor
activity [35,36]. Pei et al. [37] synthesized a PTX dimer (PTX-S-
PTX) via a mono thioether linker. PTX-S-PTX nanovesicles, formed
by self-assembly, exhibited effective cytotoxicity and served as
Fig. 3. (A) Self-assembly between indomethacin (IDM) and paclitaxel (PTX) for synerge
American Chemical Society; (B) Schematic illustration of self-assembly between cabazi
permission from Ref. [43]. Copyright 2021, Ivyspring International Publisher; (C) Illust
hydroxycamptothecin (HCPT) and doxorubicin (DOX). Reproduced with permission from
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carriers to load fluorescent molecules for simultaneous bioimag-
ing. Indomethacin (IDM) is a nonsteroidal anti-inflammatory drug
that restrains the synthesis of prostaglandin E2 and increases the
proinflammatory macrophage ratio and immune response to can-
cer cells [38,39]. Zhang et al. [40] built carrier-free IDM-PTX
nanocrystal self-assemblies (Fig. 3A). In the IDM-PTX nanostruc-
ture, PTX nanocrystals were cast with IDM, similar to a ‘‘brick
cement” architecture. IDM-PTX assemblies showed enhanced syn-
ergetic antitumor effects based on chemotherapy and
immunotherapy. Cabazitaxel (CTX) [41], a derivative of PTX, is a
hydrophobic drug, while dasatinib (DAS) [42], a polytyrosine
kinase inhibitor, is an amphiphile. Therefore, Chen et al. [43]
assembled nanoparticles constructed from CTX and DAS (Fig. 3B).
DAS-CTX nanoparticles showed enhanced synergetic antitumor
efficiency and alleviated systemic toxicity. Meanwhile, DAS exhib-
ited aggregation-induced emission that could be surveyed for
bioimaging.

Camptothecin (CPT), isolated from Camptotheca acuminata, is a
typical quinoline-based alkaloid. It has been widely proven to inhi-
bit the DNA topoisomerase I enzyme and exhibit prominent antitu-
mor activity against various cancers [44]. CPT could self-assemble
into helical nanoribbons, whereas CPT derivatives (10-hydroxy CPT
and carboxylic CPT) self-aggregated into flat nanoribbons and
cylindric nanorods, respectively [45]. CPT-based self-assemblies
with J-type patterns were stable in aqueous solution, which could
avoid hydrolysis of CPT-based drugs to increase their antitumor
activity. Zhou et al. [46] synthesized an aminated CPT prodrug
(CPT-NH2), which could self-assemble into nanofibers with length
of several micrometers and width of 100 nm. These CPT-NH2 nano-
fibers could rapidly enter cancer cells and efficiently release the
active CPT to exhibit cytotoxicity. Next, amphipathic CPT deriva-
tives were designed and synthesized, and these CPT derivatives
could self-assemble into nanocapsules for drug self-delivery. A
CPT-floxuridine conjugate amphiphile with a hydrolysable ester
linkage was developed to prepare liposome-like nanocapsules
(CFNs) [47]. CFNs showed high drug loading and no premature
drug release owing to the highly stable codelivery without the
need for any carrier. In vivo delivery of CFNs resulted in longer
tic antitumor effect. Reproduced with permission from Ref. [40]. Copyright 2019,
taxel (CTX) and dasatinib (DAS) for combination cancer therapy. Reproduced with
ration of different intracellular drug accumulation of nano-assembly between 10-
Ref. [52]. Copyright 2015, American Chemical Society.



Z. Li, X. Xu, Y. Wang et al. Journal of Advanced Research 50 (2023) 159–176
blood circulation, higher tumorous accumulation of drugs, and
enhanced efficacy in murine tumor models. Pei’s group [48,49]
established a lactose-modified CPT amphiphile that self-
assembles into a carrier-free supramolecular structure for targeted
drug delivery. These CPT amphiphiles were synthesized with ROS-
or GSH-responsive bonds to target the release of CPT in cancer
cells. More importantly, the assembled supramolecular structure
could load other chemotherapeutics or fluorescent molecules to
exert synergistic therapy or enable theranostics. Curcuminoids
are extracted from Curcuma longawith the traditional effect of acti-
vating blood circulation [50]. Xiao et al. [51] constructed carrier-
free self-delivery systems based on curcuminoids and CPT deriva-
tives (irinotecan and topotecan) for targeted cancer therapy. The
surface charges of nanoparticles changed by approximately
� 10 mV under neutral conditions to + 40 mV under acidic
environments. Next, Liang’s group [52] used a simple ‘‘green”
reprecipitation procedure to fabricate dual-drug nano self-
assemblies. 10-Hydroxycamptothecin (HCPT) could interact with
doxorubicin (DOX), a common clinical chemotherapy drug, by
self-nanocrystallization (Fig. 3C). HCPT-DOX nanoparticles showed
enhanced synergistic antitumor effects due to the increased accu-
mulation of HCPT in the nucleus, while HCPT and DOX directly
mixed and exhibited antagonistic effects. Further study [53]
showed that HCPT-DOX nanoparticles improved the intracellular
drug retention of DOX to as much as 2-fold in drug-resistant
MCF-7R breast cancer cells to resist P-glycoprotein (P-gp) efflux
and enhanced synergistic antiproliferation efficiency against
drug-resistant cancer cells.

Natural triterpene-based nano self-assembly

Natural triterpenoids consisting of six isoprene units are widely
distributed in plants and have a range of useable biological effects
[54]. Recent studies [55,56] showed that triterpenoids could self-
assemble into supramolecular structures with a variety of shapes,
such as nanofibers, nanotubes, vesicles, and spheres. Cyclic triter-
penes have rigid skeletons and many chiral carbon atoms, and
the position and number of hydroxyl groups are also different.
They can be assembled into organogels by p-p stacking, inter-
molecular van der Waals force, hydrogen bond, hydrophobicity,
dipole and other non-covalent bond interactions. In the one-
dimensional direction, long fibrous, ribbon-like, tubular or helical
Fig. 4. (A) Combination mode diagram and molecular simulation of interaction between b
Copyright 2020, Elsevier Publishing Group; (B) Schematic representation of self-assemb
Ce6 nanoparticles. Reproduced with permission from Ref. [66]. Copyright 2019, Americ
reversing drug resistance in tumor cells. Reproduced with permission from Ref. [69]. Co
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nanostructures are formed. These longer structures are then
wound to form a three-dimensional network structure in space,
and the organic solvent is captured in this spatial structure, which
usually shows the assembly morphology of fiber, sheet, vesicle and
so on. These phenomena could be applied to the areas of drug
delivery to enhance drug stability, solubility, and bioactivity.
Oleanolic acid (OA), which exists in Ligustrum lucidum, has remark-
able antioxidant and antitumor activity [57,58]. OA could self-
assemble into nanospheres with sizes of < 200 nm, and the diam-
eter increased slightly when loaded with other molecules [59–61].
When the OA carrier interacting with molecules became saturated,
the excessive molecules coexisted in a physically mixed form with
the nanospheres. Thus, OA nanosphere had a complete multilayer
spherical shell nanostructure, which could be used as ideal drug
delivery vehicle. Lupeol (Lup), betulinic acid (BTA), and betulinol
(Bet) are lupine-type pentacyclic triterpenoids and are separated
from Lupinus luteus [62]. Lup nanoparticles showed a nanospheri-
cal structure with interspersed nanofibers [59,63]. BTA- and Bet-
based nanoparticles showed nanofibers or slab-like shapes with
sizes of greater than 500 nm, of which all surface charges were
slightly negative [59,60]. Furthermore, Wang et al. [64] con-
structed a supramolecular structure formed by BTA and PTX via
hydrogen bonding and hydrophobic interactions (Fig. 4A). BTA-
PTX nanoparticles exhibited biosafety and low toxicity and exhib-
ited synergistic enhancement of antitumor efficacy. BTA induced
Bcl-2 down-regulation or p53 up-regulation to block the cell cycle
in the S phase, while PTX prompted microtubule polymerization to
mediate the induction of apoptosis. Phytosterols such as stigmas-
terol (Sti), ergosterol (Erg), and b-sitosterol (BS) are important sec-
ondary metabolites in many medicinal plants [65]. Sti and Erg
could form nanorods in aqueous solution, while BS nanoparticles
showed irregular morphology [59,63]. Compared with Sti- and
BS-based nanoplatforms, Erg was the ideal carrier molecule to load
the photosensitizer chlorin e6 (Ce6) [66]. The Erg-Ce6 nanodrugs
(Fig. 4B) could increase reactive oxygen species (ROS) generation
by promoting type I photoreactions for cancer therapy. Poricoic
acid A is a tricyclic triterpenoid, and dehydrotrametenolic acid
(DTA) and dehydrotumulosic acid are tetracyclic triterpenoids that
are separated from Poria cocos. These triterpenoids could self-
assemble into gel scaffolds, which showed excellent controlled
gelation, sustained release, and good safety [63]. Yang et al. [63]
assembled oral PTX-loaded DTA nanoparticles through hydrogen
etulinic acid (BTA) and paclitaxel (PTX). Reproduced with permission from Ref. [64].
ly behavior of ergosterol (Erg) and molecular stacking models of co-assembled Erg-
an Chemical Society; (C) Schematic diagram of celastrol-doxorubicin nanoparticles
pyright 2018, The Royal Society of Chemistry.
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bonding. These nanoparticles could penetrate the gastrointestinal
tract by hijacking the apical sodium-dependent bile transporter-
based intestinal transport system, thereby treating disease through
oral drug delivery. Liquidambaric acid (LA), separated from Liq-
uidambar formosana, exhibits excellent anticancer activity [67].
Celastrol (CST), a friedelane-type pentacyclic triterpenoid [68], is
isolated from Tripterygium wilfordii. Xiao et al. [69] assembled
carrier-free nanoparticles with CST and DOX to overcome DOX
resistance for synergistic combination chemotherapy (Fig. 4C).
The spherical CST-DOX nanoparticles could significantly increase
cellular DOX accumulation by restraining nuclear factor kappa-B
to depress P-gp expression and then led to autophagy and apopto-
sis of multidrug-resistant cells via the ROS/JNK signaling pathway.

Panax ginseng is used for reinforcement of vital energy in its tra-
ditional functions [70,71]. Ginsenoside Ro (Ro), an active ingredi-
ent of ginseng, could increase the solubility of saikosaponin a
(SSa), which is derived from Bupleurum chinense [72]. Ro preferen-
tially formed nanovesicles with SSa. Moreover, some hydrophobic
molecules without hydrophilic groups (such as quercetin and cou-
marin) were mainly inserted into the hydrophobic layer of the Ro
vesicle, and molecules including both hydrophilic and hydrophobic
fragments (such as BA and SSa) were located in the palisade layer
of the Ro vesicle [73]. Next, interactions between other ginseno-
sides (Rb1 and Rg1) from ginseng with SSa were further explored
[74]. Rg1 could form spherical micelles with SSa in aqueous med-
ium. Compared with Rg1, a greater number of sugars in Rb1 estab-
lished more binding sites with SSa. Thus, worm-like micelles were
formed by Rb1 and SSa molecules. Platycodin, isolated from Platy-
codon grandiflorum, was forecasted to be an ideal carrier in phar-
maceutical fields to increase the solubility of hydrophobic
molecules [75]. The concentration-dependent structural variation
of platycodin was observed, and the platycodin-based aggregate
morphologies included spherical, elliptical, tubular, oblate, and
necklace-like micelles and multilamellar and multicompartment
vesicles.

Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are found in
Glycyrrhiza uralensis [76]. In terms of chemical structure, GL is an
amphiphilic molecule with a hydrophilic glucuronic acid residue
and hydrophobic triterpenoid aglycone (GA residue). Zhao et al.
Fig. 5. (A) Self-assembly between oleanolic acid (OA) and glycyrrhetinic acid (GA). Repro
(B) Schematic illustration of formation of aspirin-ursolic acid (Asp-UA) nanoparticles and
[86]. Copyright 2018, American Chemical Society; (C) Illustration of self-assembly betwee
Reproduced with permission from Ref. [90]. Copyright 2017, American Chemical Societ
referred to the web version of this article.)
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[77,78] found that GL could form an injectable low-molecular-
weight hydrogel with anisotropic nanoclusters in aqueous solu-
tion. The GL hydrogel could restrain the growth of Gram-positive
S. aureus, while it showed no effect on Gram-negative Escherichia
coli. Similar to other triterpene glycosides, GL could also form
host–guest complexes by self-assembly, thereby being used as a
carrier to improve the water-solubility of hydrophobic drugs.
Molecular dynamics simulation [79] showed that GL aggregation
occurred with PTX to form GL-PTX clusters at a ratio of 3:1 with
a size of approximately 10 nm. Next, baicalein-loaded GL nanomi-
celles [80] were also prepared, which improved the solubility of
baicalein in water by more than 4,500 times and generated a
sustained-release effect of baicalein. GA is the aglycone of GL.
Bag et al. [81] reported that GA could form nanosized spherical
and flower-like nanostructures by self-assembly with fibrillar net-
works, yielding thermoreversible gels. Wu et al. [82] considered
dipole–dipole interactions between sodium and carboxylates to
be the main driving force for the formation of GA hydrogels. Fur-
thermore, the GA hydrogel exhibited the properties of adsorption
and sustainable release of some fluorescent dyes. Yang’s group
[59] reported a nanomedicine-cum-carrier drug delivery system
with GA and OA (Fig. 5A). GA-OA nanoparticles, established
through noncovalent interactions, not only showed high drug load-
ing and excellent stability but also exhibited a synergistic antitu-
mor effect. In addition, PTX was loaded into GA-OA nanoparticles
to further improve the antitumor effect. Compared with free drugs,
GA-OA-PTX nanoparticles could reduce liver damage caused by
chemotherapy drugs via upregulating key antioxidant pathways,
enhance pharmacological activity, and improve the antitumor
efficacy.

Ursolic acid (UA) is discovered in many natural plants, including
Rosmarinus officinalis, Cornus officinalis, and Prunella vulgaris, which
show a wide range of biological properties, such as antitumor, anti-
inflammatory, and antidiabetic properties [83,84]. Fan et al. [85]
established a carrier-free nanodrug by the self-assembly of UA.
UA nanoparticles could cause apoptosis in A549 cells by decreasing
the expression of COX-2/VEGFR2/VEGFA and offer the potential for
liver disease prevention. Additionally, the nanoparticles could also
increase immunostimulatory activity to improve the activation of
duced with permission from Ref. [59]. Copyright 2020, American Chemical Society;
their inhibitory effect on tumor metastasis. Reproduced with permission from Ref.
n UA, paclitaxel (PTX), and indocyanine green (ICG) for synergistic antitumor effect.
y. (For interpretation of the references to colour in this figure legend, the reader is
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CD4 + T cells, which proved the potential of UA nanoparticles for
immunotherapy. Next, UA interacted with aspirin (Asp), an anti-
inflammatory drug, to assemble nanodrugs, which displayed out-
standing physicochemical characteristics, such as a controlled
release rate, suitable mean diameter, and good surface zeta poten-
tial [86]. Asp-UA nanoparticles inhibited tumor metastasis with
low toxicity (Fig. 5B). Zhao et al. [87] developed multimodal
nanoparticles with UA, indocyanine green (ICG), and lactobionic
acid (LBA). UA-LBA-ICG nanoparticles not only exhibited anti-
proliferative activities on HepG2 cells by increasing ROS, but also
self-monitored nanodrugs targeting tumors by a by near-infrared
(NIR) laser. Jiang et al. [88] developed a carrier-free dual-drug nan-
odelivery system with UA and DOX, which was further modified
with a HER2 aptamer. These coassembled nanodrugs increased
the tumor targeting of drugs and significantly inhibited tumor
growth in HER2-overexpressing cancers. In addition to DOX, a flu-
orophore dye was also assembled into UA-DOX nanoparticles for
cancer treatment and diagnosis [89]. PTX could also interact with
UA to establish a ‘‘self-contained bioactive nanocarrier” system
[60]. The hydrophobic interactions and hydrogen bonding played
leading roles in the formation of UA-PTX nanoparticles. Reduction
of hydrogen bonding sites and increased steric hindrance could
influence drug loading capacity. Similarly, the fluorescent molecule
ICG was also loaded in UA-PTX nanoparticles to establish a thera-
nostic nanoplatform [90]. The developed nanodrugs showed effi-
cient accumulation in the tumor sites of subcutaneous H22 cell
xenograft mice through enhanced permeability and retention
effects; this accumulation was then imaged by NIR fluorescence
of ICG (Fig. 5C). Finally, UA-PTX-ICG nanoparticles synergistically
suppressed tumor growth by photodynamic therapy, photothermal
therapy and chemotherapy. Zhang et al. [91] constructed a ‘‘core–
shell” carrier-free nanodrug with UA and epigallocatechin gallate,
which was modified by EpCAM-aptamer for hepatocellular carci-
noma treatment. The nanocomplex with low cytotoxicity and good
biosafety could activate innate immunity and acquired immunity,
leading to a synergistic therapeutic effect. Ou et al. [92] synthe-
sized poly(ursolic acid) (PUA) by polycondensation of UA. PUA
could self-assemble into nanoparticles with PTX. PUA-PTX
nanoparticles enhanced tumor accumulation, prolonged blood cir-
culation time, improved antitumor efficacy, and showed no obvi-
ous toxicity.
Fig. 6. (A) Illustration of carrier-free nanoplatform DTIG for improving tumor drug deliv
American Chemical Society; (B) Schematic depiction of neuroinflammatory prevention
Copyright 2019, Springer Nature Limited; (C) Schematic illustration of self-assembly
permission from Ref. [102]. Copyright 2020, Elsevier Publishing Group.
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Other natural molecule-based nano self-assembly

Wang et al. [93] prepared lollipop-like dual-drug-loaded
nanoparticles (GPDs), which were developed based on the self-
assembly of gossypol, polydopamine, and DOX via p–p stacking.
Polydopamine filled the gaps between DOX and gossypol to form
the super-compact long-circulating nanoparticles. Therefore, GPD
might broaden the therapeutic window of drugs for various
tumors, indicating great potential for the treatment of cancer. With
the aid of electronic interactions, DOX could also self-assemble
into a carrier-free nanotransformer (DTIG) [94] with tannic acid
[95] and ICG. DTIG first transitioned to oversized hydrophobic par-
ticles in acidic lysosomes to escape from lysosomes and then
rapidly returned to smaller hydrophilic particles to release drugs
in the cytoplasm (Fig. 6A). This reversible hydrophilic-
hydrophobic conversion and reassembly process showed enhanced
antitumor efficacy and an obvious advantage for prognosis. Epigal-
locatechin gallate (EGCG), a condensed tannin isolated from green
tea, has shown therapeutic effects against tumors [96]. The
nanoplatform [97] combining EGCG and melittin, derived from
the venom of Apis mellifera [98], induced ROS generation to offer
a new strategy for cancer therapy. Emodin, a natural anthraqui-
none similar to RHE, could fabricate a kidney-specific nanocomplex
with chitosan and metal ions by coordination-driven assembly,
which manifested obvious attenuation of fibrotic progression in
mice [99]. On the other hand, RHE could self-assemble into nano-
fiber network-based hydrogels without structural modifications or
the use of any carriers [100]. The RHE hydrogels, with little cyto-
toxicity, accomplished dephosphorylation of IjBa, restrained
nuclear translocation of p65 in the NF-jB cellular signaling path-
way, and alleviated neuroinflammation with a long-lasting effect
(Fig. 6B). Luteolin (Lut), a flavonoid separated from Lonicera japon-
ica [101], possesses multiple pharmacological activities. Liu et al.
[102] reported a coordination-driven assembly strategy to con-
struct Lut-based nanoparticles in combination with ferric ions
(Fe3+) (Fig. 6C). These Lut/Fe3+ nanoparticles not only notably
enhanced Lut’s solubility but also broadened the absorption spec-
trum to the NIR region, which achieved efficient antitumor effects
with chemotherapy and photothermal therapy. Quercetin, which
exists in Sophora japonica, has a powerful antioxidant capacity
[103]. Shang et al. [104] developed a quercetin-mediated self-
ery programmatically. Reproduced with permission from Ref. [94]. Copyright 2020,
induced by rhein nano-assembly. Reproduced with permission from Ref. [100].
of luteolin and Fe3+ with proposed supramolecular structure. Reproduced with



Z. Li, X. Xu, Y. Wang et al. Journal of Advanced Research 50 (2023) 159–176
assembly nanomedicine consisting of DOX and ferrous ions (Fe2+).
This nanomedicine increased accumulation of DOX at tumor sites
and exhibited effective synergistic antitumor effects on triple-
negative breast cancer cells via the mitochondrial damage path-
way. Quercetin with powerful antioxidant capacity could relieve
the cardiotoxicity of DOX. All-trans retinoic acid (ATRA), an acyclic
diterpenoid, has been clinically used for the treatment of acute
promyelocytic leukemia [105]. Aggregation or deposition occurred
after stirring ATRA in aqueous solution. Therefore, retinoic hydrox-
amic acid (RHA), a hydroxamic derivative of ATRA, was obtained,
which contained a lipophilic hydrocarbon backbone and hydrophi-
lic hydroxamic group. These functional groups could prompt RHA
to form nanoparticles by self-assembly [106]. Thereafter, RHA
nanoparticles showed potent antitumor effects against A-375 mel-
anoma cells.
Extracellular vesicles from fresh plants

Similar to the exosomes secreted into the extracellular space by
mammalian cells [107], fresh natural plant-derived extracellular
vesicles (EVs) are membranous vesicles that contain a lipid bilayer
as a skeleton and can load various proteins, miRNAs, polysaccha-
rides, and other active substances [108–110]. EVs can serve as
extracellular messengers to regulate cell–cell and interspecies
communication. In recent years, EVs from fresh plants have been
regarded as natural therapeutics against a variety of human dis-
eases and nanoplatforms to efficiently deliver specific drugs
[111–113].
Zingiber plant-derived EVs

Ginger (Zingiber officinale) has been used to treat a diversity of
health issues, such as colds, migraines, nausea, and gastrointestinal
disorders [114]. Zhang et al. [115] isolated ginger-derived EVs
(GEVs) and demonstrated their efficient colon targeting through
oral administration. GEVs with a negative zeta potential and a size
of 230 nm involved lipids, proteins, microRNAs, and some active
compounds (such as 6-gingerol and 6-shogaol). GEVs could
enhance anti-inflammatory cytokines (IL-10 and IL-22) and reduce
proinflammatory cytokines (TNF-a, IL-6 and IL-1b), thus reducing
acute colitis and preventing colitis-associated cancer. Next, GEVs
contained microRNAs that targeted various genes in Lactobacillus
Fig. 7. (A) Ginger-derived extracellular vesicles regulating gut microbiota composition
Reproduced with permission from Ref. [116]. Copyright 2018, Elsevier Inc.; (B) Ginger-de
with permission from Ref. [118]. Copyright 2019, American Chemical Society; (C) Ginsen
reprogramming cold tumor microenvironment. Reproduced with permission from Ref. [
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rhamnosus [116] or showed anti-inflammatory effects in intestinal
Caco-2 cells [117]. GEV-RNAs or indole-3-carboxaldehyde (I3A)
were sufficient to induce the production of IL-22; thus, GEVs could
ameliorate mouse colitis through IL-22-dependent mechanisms by
reshaping the gut microbiota (Fig. 7A). Chen et al. [118] studied the
inhibitory effects of GEVs against the activation of the nucleotide-
binding domain and leucine-rich repeat-containing family pyrin
domain-containing 3 (NLRP3) inflammasome in macrophages
(Fig. 7B). The lipids in GEVs block the assembly of the NLRP3
inflammasome and restrain pathways downstream of inflamma-
some activation including caspase cleavage, secretion of IL-1b
and IL-18, and pyroptotic cell death. Together, GEVs could be con-
sidered new potent agents to block NLRP3 inflammasome assem-
bly and activation in disease settings. Zhuang’s group [119]
found that oral GEVs could protect mice against alcohol-induced
liver damage. GEVs participated in the activation of nuclear factor
erythroid 2-related factor 2 (Nrf2), which resulted in the expres-
sion of some liver detoxifying/antioxidant genes and inhibited
ROS production. The active ingredient in GEVs, shogaol was shown
to play a role in the induction of Nrf2 in a TLR4/TRIF-based manner,
which further contributed to liver protection. Moreover, the
authors [120] proved that GEVs could be selectively recognized
by the periodontal pathogen Porphyromonas gingivalis through
interactions between phosphatidic acid (PA) in GEVs and hemin-
binding protein 35 (HBP35) on the surface of P. gingivalis. In addi-
tion, the degree of unsaturation of PA played an important role in
the GEV-mediated interaction with HBP35. The cargo molecules in
GEVs interacted with multiple pathogenic factors in P. gingivalis
simultaneously, and GEVs were deemed to prevent/treat chronic
periodontitis.

Next, GEVs were used as a delivery platform for DOX to treat
colon cancer [121]. In addition to loading with DOX, GEVs were
decorated with folic acid. The nanoparticles could be efficiently
taken up by colon cancer cells, had an excellent pH-based DOX-
release profile compared with DOX liposomes, and increased the
inhibition of tumor growth compared with free DOX. Next, GEVs
were used to deliver siRNA against CD98 (siRNA-CD98) to colon
tissues [122]. SiRNA-CD98 reduced the expression of CD98, and
this reduction played a crucial role in colitis and colitis-
associated cancer. The siRNA-loaded GEVs were effectively tar-
geted to the colon and reduced the expression of CD98, which
offers great promise as an efficient siRNA-delivery vehicle. There-
fore, GEVs are not just an attractive treatment strategy for human
and host physiology, thereby enhancing gut barrier function to alleviate colitis.
rived extracellular vesicles inhibiting NLRP3 inflammasome activation. Reproduced
g-derived extracellular vesicles enhancing immune checkpoint antibody efficacy by
140]. Copyright 2022, The American Society of Gene and Cell Therapy.
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diseases but also potential lipids to deliver active molecules, siRNA,
and even proteins to different types of cells [123]. Moreover, GEVs
showed multiple benefits, such as low toxicity, tissue-specific tar-
geting, and minimal hazardous effects on the environment.

Citrus plant-based EVs

Citrus plants, such as Citrus reticulata, Citrus aurantium, and
Citrus grandis, are widely used as medicinal plants to regulate the
flow of vital energy. Pocsfalvi et al. [124] isolated EVs from the fruit
juice of C. aurantium, in which patellin-3-like, clathrin heavy chain,
HSP70, 14–3-3 protein, G3PD and FBA6 were highly expressed. EVs
with a size of 50–70 nm from Citrus limon [125–127] containing
citrate, vitamin C, and miRNAs had a significant protective effect
against oxidative stress on mesenchymal stromal cells. C. limon
EVs could also inhibit cell proliferation through the TRAIL-
mediated pathway in different tumor cell lines. Lei et al. [128] dis-
covered an elegant three-way interaction between gut microbes,
bile, and C. limon-derived EVs. Daily consumption of these EVs
increased the percentage of probiotic Lactobacillus rhamnosus GG
in the small intestine by enhancing bile resistance.

Xiao et al. [129] obtained EVs from grapefruit (Citrus paradisi),
and they found that highly expressed miRNAs in EVs could poten-
tially regulate the expression of inflammatory cytokines and
cancer-related genes in vitro. Grapefruit EVs could be selectively
taken up by intestinal macrophages [130] and then inhibit the pro-
duction of IL-1b and TNF-a and increase the expression of heme
oxygenase-1. Therefore, grapefruit EVs ameliorated dextran sulfate
sodium-induced colitis in mice. Stanly et al. [131] demonstrated
that grapefruit EVs specifically inhibited the proliferation of lung,
skin and breast cancer cells. Grapefruit EVs reduced the expression
of cyclins B1 and B2, intercellular cell adhesion molecule-1,
cathepsins and cleaved PARP-1 to inhibit Akt and ERK signaling.
Grapefruit EVs also served as nanovehicles to deliver chemothera-
peutic agents, proteins, and short interfering RNAs to different
types of cells [132–135]. MiR-18a encapsulated in grapefruit EVs
possessed an antimetastatic effect. The miR-18a-mediated macro-
phage IFNc was necessary for the subsequent induction of IL-12,
and then IL-12 activated natural killer T cells to inhibit colon
tumour liver metastasis. Next, miR17 could also be carried by
grapefruit EVs for rapid delivery to the mouse brain via intranasal
administration. These EVs were selectively taken up by GL-26
tumor cells, and showed therapeutic efficacy in mouse brain
tumors.

Vitis plant-derived EVs

Grape (Vitis vinifera) was used to relieve muscle pain and pro-
mote eruption in ancient China. EVs separated from grape contain
proteins, lipids, and microRNAs [136]. Grape EVs can be taken up
by intestinal macrophages and then induce the expression of the
antioxidation gene heme oxygenase-1 and the anti-inflammatory
cytokine IL-10 [137]. Thereafter, Wnt signaling is activated, which
is critical for maintaining intestinal homeostasis. Grape EVs can
also be taken up by intestinal stem cells by penetrating the intesti-
nal mucus barrier [138]. These EVs caused significant induction of
Lgr5hi intestinal stem cells via the Wnt/b-catenin pathway. Oral
administration of grape EVs resulted in protection of mice from
dextran sulfate sodium-mediated colitis through induction of
intestinal stem cells.

Other plant-based EVs

Cao’s group [139,140] isolated EVs from fresh roots of ginseng
that contained lipids, nucleotides, proteins, and active molecules
(such as ginsenoside Rg3). Ginseng EVs could promote polarization
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of M2 to M1-like macrophages through the Toll-like receptor-4/
myeloid differentiation antigen 88 signaling pathway and then
increase ROS production to lead to apoptosis of mouse melanoma
cells. The authors also explored a combinatorial strategy with both
ginseng EVs and PD-1 monoclonal antibody, which showed the
ability to alter the cold tumor microenvironment to enhance
immune checkpoint inhibitor antitumor treatment (Fig. 7C). Sepa-
rated from Asparagus cochinchinensis, mushrooms, and broccoli,
EVs inhibited the proliferation of hepatocellular carcinoma cells,
alleviated liver damage in mice, and inhibited mouse colitis by
activating dendritic cell AMP-activated protein kinase, respectively
[141–143]. Perut et al. [144] isolated EVs from strawberry juice,
which had a high content of anthocyanins, folic acid, flavonols,
and vitamin C. Fragaria-derived EVs prevented oxidative stress in
a dose-dependent manner in human mesenchymal stromal cells.
Thus, Fragaria-derived EVs might be used in food with potential
health-promoting activity. Tea flower-derived EVs contain large
amounts of functional proteins, polyphenols, flavonoids, and lipids
[145]. In vitro and in vivo experiments revealed that these EVs
induced ROS amplification to trigger mitochondrial damage and
arrest the cell cycle, resulting in anti-proliferation and anti-
invasion activities. Next, cabbage- and cucumber-derived EVs
could be used as alternative drug delivery vehicles to load lipophi-
lic molecules to manifest biological activities [146,147]. Further-
more, EVs can also be isolated from Dendropanax morbifera [148],
coconut water [149], and sunflower [150]. D. morbifera-derived
EVs were deemed to act as an anti-melanogenic agent to promote
the development of natural cosmetics.
Charcoal nanocomponents from charred plants

Charred plants have a history of more than 2,000 years and are
still widely used in clinical practice because of their special thera-
peutic effects. Charred plants are referred to as charcoal drugs in
TCMs and possess extensive pharmacological effects, especially
for hemostasis, and are formed by carbonization at similar high
temperatures. In recent years, many scholars have separated char-
coal nanocomponents (CNs) from charred plants [151,152]. These
CNs contain a carbon skeleton structure with a size of < 10 nm,
which is similar to the structure and properties of carbon quantum
dots [153] in nanomaterials.
CNs with hemostatic effects

The Cirsium plants Cirsium setosum and Cirsium japonicum are
clinically used for cooling blood and hemostasis in traditional func-
tions. Luo et al. [154] separated CNs from charred C. setosum, which
had a nearly spherical shape with a diameter of 2.6 nm and lumi-
nescence and fluorescence emission properties. These CNs could
activate the fibrinogen system and stimulate the extrinsic blood
coagulation system. Next, CNs from charred C. japonicum with
diameters of 2–11 nm showed remarkable inhibition of hemor-
rhage induced by mouse tail amputation or liver scratching
[155]. Charred pollen of Typha angustifolia (CPTA) is a type of cal-
cined drug that has been used to promote hemostasis for thou-
sands of years. CPTA-CNs could increase fibrinogen to activate
partial thromboplastin time [156]. Furthermore, transformation
rules of flavonoids during the heating process of CPTA could be
used to control the quality, and seven minutes was determined
to be the optimal processing time with a heating temperature of
272 �C [157,158]. Charred Juncus effusus (CJE) is the charcoal-
processed product obtained by high-temperature heating of dried
stem pith of J. effusus and has been used to treat hemorrhagic con-
ditions. Cheng et al. [159] separated hydrophobic CJE-CNs from
CJE. CJE-CNs not only showed outstanding hemostatic effects but
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also protected against hemorrhage-induced liver injury. Mean-
while, CJE-CNs reduced the serum levels of biochemical indicators
of liver damage, such as total bilirubin, direct bilirubin, alanine
amino transferase, aspartate aminotransferase, and alkaline phos-
phatase. Qu and Zhao’s group [160–164] studied a series of CNs
for hemostasis from charred Phellodendron chinense, charred Schi-
zonepeta tenuisfolia, charred spica of S. tenuisfolia, and charred Sela-
ginella tamariscina. CNs derived from these charcoal plants
presented similarities and differences in structural features,
physicochemical properties and hemostatic bioactivity. All derived
CNs showed remarkable hemostatic effects in tail amputation and
liver scratch models, which increased fibrinogen and platelet con-
tents and decreased prothrombin time by activating the fibrinogen
system and stimulating the extrinsic blood coagulation system.
Further studies [165,166] showed that flavonoids were the main
active ingredients in charcoal plant-derived CNs, and the key pro-
teins related to hemostatic diseases might include SERPINC1, FVIII,
FX, FII and FXII [167]. The hemostatic mechanism might reverse
the imbalanced metabolites through alanine, aspartate and gluta-
mate metabolism and the citrate cycle pathway [168]. These
results provide new insights into the material basis of charred
plants for hemostatic bioactivity.

CNs with anti-inflammatory and antioxidant activities

CNs exist in charred flowers of Lonicera japonica (CFLJ), ranging
from 1.0 to 10.0 nm in diameter [169]. CFLJ-CNs alleviated
lipopolysaccharide-induced inflammation by reducing the expres-
sion of tumor necrosis factor-a, IL-1b, and IL-6 and relieved the
fever and hypothermia caused by inflammation. Similarly, charred
mulberry silkworm cocoon-derived CNs exhibited remarkable
anti-inflammatory activity, which was likely mediated by the inhi-
bition of TNF-a and IL-6 [170]. Hu et al. [171] separated CNs from
the charred root of Sophora flavescens (CRSF). CRSF-CNs showed
anti-inflammatory and antioxidative effects, which could reduce
the levels of NF-jB, TNF-a, IL-6, glutathione, superoxide dismu-
tase, catalase, malondialdehyde, glutathione peroxidase, and indu-
cible nitric oxide synthase to inhibit ethanol-induced acute gastric
ulcers. Zhao et al. [172] found that CNs from charred roots of Paeo-
nia lactiflora could increase superoxide dismutase levels and
reduce malondialdehyde in a carbon tetrachloride-induced acute
liver injury model. Therefore, the CNs could inhibit free radical-
induced liver cell lipid peroxidation and scavenge oxygen free rad-
icals to exhibit hepatoprotective effects.

CNs with anti-gout effect

Pueraria lobata is commonly used for dispelling wind and
removing heat in TCM. CNs from the charred root of P. lobata
(CRPL) were nearly spherical with diameters of approximately
5 nm [173]. CRPL-CNs reduced blood uric acid levels in rat models
by inhibiting the activity of xanthine oxidase and reduced the
degree of swelling and pathological damage in gouty arthritis.
Most interestingly, CRPL-CNs were able to increase the water solu-
bility of BA [174]. Finally, charred fruit of Citrus aurantium-derived
CNs could also relieve gouty arthritis induced by monosodium
urate crystals, and lowered serum uric acid by restraining xanthine
oxidase activity [175].

CNs with other bioactivities

Jiaosanxian (JSX) is a ‘‘blind” medicine in TCM and is obtained
by the carbonization of three plants, including the fruit of Crataegus
pinnatifida, the fruit of Hordeum vulgare, and Massa medicata fer-
mentata. JSX-CNs were proven to regulate blood sugar levels
[176]. Moreover, CNs from charred fruit of C. pinnatifida also
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exerted hypoglycemic effects and thus might act as disaccharidase
inhibitors to restrain the bioactivities of sucrase and maltase [177].
Glycyrrhiza uralensis-based CNs with a spherical structure and size
of 2–10 nm were synthesized by an environmentally-friendly-one-
step pyrolysis process and possessed an explicit anti-GU effect
[178]. Zhao et al. [179] synthesized environmentally-friendly fluo-
rescent Forsythia-derived CNs (F-CNs) in a one-pot method. F-CNs
showed natural anti-wood rot fungus activity against two fungi
(G. trabeum and C. versicolor), which indicated thst F-CNs might
be used as environmentally protective wood preservatives.
Charred leaves of Artemisia argyi-derived CNs (CLAA-CNs) obtained
by a smoking simulation method exhibited the antibacterial ability
of Gram-negative bacteria by inhibiting cell wall activity and
changing the enzymatic secondary structure [180]. However,
CLAA-CNs showed no significant antibacterial function against
Gram-positive bacteria. On the other hand, CLAA-CNs could
strengthen anti-frostbite ability by reducing the concentrations
of IL-1bk and TNF-a and decreasing the levels of blood glucose
caused by frostbite [181]. Qu’s group [182] found that CNs from
charred root of Zingiber officinale had remarkable analgesic effects
in thermal and chemical stimulus tests, which were possibly medi-
ated by 5-hydroxytryptamine levels and opioid-like mechanisms.
They [183] also found that CNs from cigarette mainstream smoke
exhibited anti-anxiety and sedative effects, which might be associ-
ated with the reduction in glutamate and dopamine and the
increase in norepinephrine in the mouse brain and serum. Finally,
GL-based and curcumin-based CNs were also prepared by high-
temperature heating of GL and curcumin, respectively [184,185].
These small molecule-based CNs could inhibit the propagation of
some viruses, such as porcine reproductive and respiratory syn-
drome virus, enterovirus 71, pseudorabies virus, and epidemic
diarrhea virus.
Nanoaggregates from plants formulae

Plant formulae are one of the most widely used dosage forms of
TCMs in the clinic. A variety of complex chemical and physical
changes often occur in the process of decoction. Recently, nanoag-
gregate particles (NAs) with nanometer sizes and different dis-
persed states with wide curative effects have been discovered in
plant formula decoctions, which usually contain proteins, polysac-
charides, and micromolecules [186–188].

Bai-Hu decoction (BHD), a traditional Chinese decoction used
for the treatment of fever, contains three medical plants and one
mineral, including the root of Anemarrhena asphodeloides, the root
of Glycyrrhiza uralensis, Japonica rice, and gypsum. NAs from BHD
with a size of 97 nm were formed through cooperation of the
chemical constituents of these four herbs [189,190]. Liquiritin from
licorice and polysaccharides from Japonica rice could enhance the
solubility of mangiferin and neomangiferin from A. asphodeloides,
while inorganic ions, including Ca2+, Mg2+, and Zn2+ in gypsum,
acted as zeta potential modifiers. BHD-NAs exhibited remarkable
antipyretic effects by inhibiting the expression of IL-1b, TRPV4,
NF-jB, and TNF-a. Ke and Rao’s group [191] isolated NAs from
Ma-Xing-Shi-Gan decoction (MXSGD) and detected their inhibition
of cell proliferation. MXSGD, which contains four herbs (Ephedra
sinica, the seed of Prunus armeniaca, the root of Glycyrrhiza uralen-
sis, and gypsum), has been used for clearing lung and relieving
asthma for thousands of years in TCM. The formation of MXSGD-
NAs was dependent on the interaction of amphiphilic molecules
(ephedrine and pseudoephedrine), which could further interact
with other molecules through ionic or hydrophobic interactions.
Next, Ge-Gen-Qin-Lian decoction (GGQLD)-derived NAs [192]
exhibited stronger hypoglycemic and antioxidant activities, which
could promote the permeation of active monomers (e.g., BA) into



Fig. 8. (A) Self-assembled phytochemical complex with naturally-occurring modality in Huang-Lian-Jie-Du decoction. Reproduced with permission from Ref. [194]. Copyright
2021, Elsevier Publishing Group; (B) Illustration of promotion mechanisms of particle aggregates in Coptis chinensis decoction on absorption of berberine in small intestine.
Reproduced with permission from Ref. [198]. Copyright 2020, The Royal Society of Chemistry; (C) Scheme of immune efficacy of herbal decoction based on nano-aggregate
particles. Reproduced with permission from Ref. [201]. Copyright 2018, Elsevier Publishing Group; (D) Formation of nano-aggregate particles in boiling Isatis indigotica
decoction. Reproduced with permission from Ref. [202]. Copyright 2017, Elsevier Publishing Group.
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cells. Naoluo Xintong Decoction (NXD), consisting of six herbs and
one animal medicine, is a clinically proven prescription used to
treat ischemic stroke. NXD-derived NAs with typical characteris-
tics of 200 nm size were mainly composed of polysaccharides, pro-
teins, and saponins [193]. They could improve nerve function, have
brain-protective effects, reduce oxidative stress, and inhibit cell
apoptosis.

Huang-Lian-Jie-Du decoction (HLJDD) contains the root of C.
chinensis, the bark of P. chinense, the root of S. baicalensis, and the
fruit of Gardenia jasminoides in a proportion of 3:2:2:3 and is
widely used for purging heat by removing toxins. HLJDD-NAs had
14 marker compounds, and BA and BBR were significantly higher
in NAs due to self-assembly complexation (Fig. 8A) [194–196].
HLJDD-NAs showed neuroprotective effects in cobalt chloride-
treated differentiated PC12 cells. Next, the NAs of licorice
protein-BBR were obtained in the decocting process of C. chinensis
and licorice [197], which could improve the antimicrobial activity
of BBR. Moreover, NAs were also achieved by decocting the root of
C. chinensis itself [198]. These NAs with sizes of 200–400 nm and
negative charges were mainly composed of polysaccharides and
small molecules, which promoted the absorption of BBR in the
intestine (Fig. 8B). Meanwhile, the NAs could also dynamically reg-
ulate intestinal tissue permeability and the expression of tight
junction proteins in intestinal epithelial cells by activating Peyer’s
patch-associated immunity [199]. Similar to C. chinensis, NAs could
also be obtained during the process of licorice decoction [200].
These NAs mainly contained licorice protein in contrast to C. chi-
nensis. Licorice-derived NAs solubilized astragaloside IV by encap-
sulation and promoted the proliferation of normal hepatocytes.
Iitsuka et al. [201] found that sugar-based NAs were also separated
in boiling licorice water extracts (Fig. 8C). Phagocytosis of sugar-
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based NAs could lead to immunostimulant effects by increasing
the expression of proteins and genes of inflammatory cytokines
in macrophage cells.

Zhou et al. [202] isolated protein-based NAs from a decoction of
the root of Isatis indigotica. Two glycated proteins (BLGP1 and
BLGP2) were identified in these NAs, and they could facilitate the
growth of normal cells and inhibit that of carcinogenic cells
(Fig. 8D). At the same time, six groups of NAs with sizes ranging
from 57 to 300 nm were successfully isolated from the I. indigotica
decoction [203]. All of the obtained NAs had a high contents of
polysaccharides and high similarities in other compositions. How-
ever, four of these six NAs showed significant antiviral activity
against influenza virus H1N1 and distinct cytotoxicity toward
MDCK cells in vitro. Furthermore, protein-based NAs could also
be obtained from decoction of the root of Pseudostellaria hetero-
phylla [204], Phaseolus angularis [205], and the seed of P. armeniaca
[206], which might be used to encapsulate hydrophobic drugs to
improve their efficacy. Li et al. [207] obtained heat-stable decocto-
somes from a decoction of the root of Rhodiola crenulata. These
decoctosomes comprised lipids, chemical compounds, proteins,
and sRNAs (e.g., HJT-sRNA-m7 and PGY-sRNA-6), which showed
potent antifibrotic and anti-inflammatory effects. The herbal
decoctosome provided an effective oral delivery route for nucleic
acid therapy.
Conclusions and perspectives

Natural plants as well as TCMs are attracting increasing atten-
tion from researchers and clinical scientists due to their effective
protection against illnesses with lower toxicity and higher syner-
gistic potential. Despite the appearance of chemically synthesized



Table 1
Nano-assembly of pure small molecules isolated from natural plants.

Molecule 1 Molecule 2 Morphology Interaction forces of self-
assembly

Bioactivity Research level Refs.

Berberine Baicalin Nanosphere Electrostatic and hydrophobic
interactions

Antibacterial activity/
Treatment of diarrhea

In vitro/
Zebrafish model/
Mice model

[21,22]

Berberine Wogonoside Nanofiber Electrostatic and hydrophobic
interactions

Antibacterial activity In vitro/
Zebrafish model

[21]

Berberine Cinnamic acid Nanosphere Hydrogen bond/
p-p stacking interaction

Antibacterial activity In vitro/
Zebrafish model

[24]

Berberine 3,4,5-
Methoxycinnamic
acid

Nanosphere Hydrogen bond/
p-p stacking interaction

Antibacterial activity In vitro [26]

Berberine Rhein Nanosphere p-p interaction/
Electrostatic interaction

Antibacterial activity In vitro/
Zebrafish model

[29]

Berberine Aristolochic acid Network nanofiber Electrostatic interaction/
p-p interaction

Neutralizing acute
nephrotoxicity

In vitro/
Zebrafish model/
Mice model

[31]

Berberine alkylation Rhamnolipid Nanosphere Electrostatic and hydrophobic
interactions

Antibacterial activity In vitro/
Mice model

[32]

Paclitaxel dimer None Nanovesicle Hydrophobic interaction Antitumor In vitro/
Mice model

[37]

Paclitaxel Indomethacin Nanosphere p-p stacking/
H-bonding/
Hydrophobic interaction

Antitumor In vitro/
Mice model

[40]

Cabazitaxel Dasatinib Nanosphere p-p stacking/
hydrogen bonding/
Van der Waals interaction

Antitumor In vitro/
Mice model

[43]

Camptothecin/
Camptothecin
derivative

None Helical nanoribbon/
Flat nanoribbon/
Cylindric nano-rod

p-p interaction/
Hydrogen bond

Antitumor In vitro/
Mice model

[45–49]

Irinotecan/
Topotecan

Curcuminoids Nanosphere Intermolecular non-covalent
interactions

Antitumor In vitro/
Mice model

[51]

10-Hydroxycamptothecin Doxorubicin Nanosphere p-p stacking/ Hydrophobic
interactions

Antitumor drug
resistance

In vitro [52,53]

Oleanolic acid Paclitaxel Nanosphere Hydrogen bonding/ Hydrophobic
interaction

Antitumor In vitro/
Mice model

[59,60]

Lupeol None Nanosphere with
nanofiber
interspersed

Hydrogen bonding/ Van der
Waals force/ p-p stacking

Drug delivery vehicle In vitro/
Mice model

[59,63]

Betulinol Ursolic acid Nanosphere Hydrogen bonding/ Van der
Waals force/ p-p stacking

Drug delivery vehicle In vitro [59,60]

Betulinic acid Paclitaxel Nanofiber Hydrogen bond/ Hydrophobic
interaction

Antitumor In vitro/
Mice model

[64]

Ergosterol Chlorin e6 Clavate-shaped
nanoparticle

p-p stacking/
Hydrophobic interaction

Antitumor In vitro/
Mice model

[66]

Dehydrotrametenolic acid Paclitaxel Nanosphere Hydrogen bonding/ Van der
Waals force/ p-p stacking

Antitumor In vitro/
Mice model

[63]

Celastrol Doxorubicin Nanosphere p-p stacking/ Electrostatic
interaction

Antitumor drug
resistance

In vitro [69]

Ginsenoside Ro Saikosaponin a Nanosphere – – Virtual
prediction

[72,73]

Glycyrrhizic acid Paclitaxel/
Baicalein

– – – Virtual
prediction/
Preparation and
characterization

[79,80]

Glycyrrhetinic acid None/
Oleanolic acid
and/or Paclitaxel

Nanosphere with
fibrillar network

Hydrogen bonding/ Van der
Waals force/ p-p stacking

Antitumor In vitro/
Mice model

[59,81,82]

Ursolic acid Aspirin Nanosphere Hydrogen bond/ Hydrophobic
interaction

Tumor metastasis
therapy

In vitro/
Mice model

[86]

Ursolic acid Indocyanine
green and
lactobionic acid

Nanosphere p-p stacking/ Hydrophobic
interaction/ Electrostatic
interaction

Tumor theranostics In vitro/
Mice model

[87]

Ursolic acid Doxorubicin/
Paclitaxel

Nanosphere Electrostatic interaction/
p-p interaction/ Hydrophobic
interaction

Antitumor In vitro/
Mice model

[88–90]

Doxorubicin Indocyanine green
and tannic acid

Nanosphere p-p interaction/ Electronic
interaction

Antitumor In vitro/
Mice model

[94]

Rhein None Network nanofiber p-p interaction/
Hydrogen bond/
Electrostatic interaction

Treating neural
inflammation

In vitro [100]

-Not applicable.

Z. Li, X. Xu, Y. Wang et al. Journal of Advanced Research 50 (2023) 159–176

170



Table 2
Nanoplatforms existed in fresh plants, charred plants, and plants formulae.

Nanoplatform Source Bioactivity Research level Refs.

Extracellular vesicles Zingiber officinale Anti-inflammatory/
Treating colitis-based cancer/
Liver protection/
Antibacterial activity

In vitro/
Mice model

[115–120]

Citrus aurantium – Isolation and characterization [124]
Citrus limon Antioxidative effect/

Antitumor
In vitro/
Mice model

[125–128]

Citrus paradisi Anti-inflammatory/
Antitumor

In vitro/
Mice model

[129–135]

Vitis vinifera Treating colitis In vitro/
Mice model

[136,138]

Panax ginseng Antitumor In vitro/
Mice model

[139,140]

Asparagus cochinchinensis Antitumor In vitro/
Mice model

[141]

Shiitake Mushroom Liver protection In vitro/
Mice model

[142]

Broccoli Treating colitis In vitro/
Mice model

[143]

Dendropanax morbifera Anti-melanogenic activity In vitro/
Mice model

[148]

Charcoal nano-components charred Cirsium setosum/
charred Cirsium japonicum/
charred Typha angustifolia/
charred Juncus effusus

Hemostatic effect In vitro [154–156,159]

charred Phellodendron chinense/
charred Schizonepeta tenuisfolia/
charred Selaginella tamariscina

Hemostatic effect In vitro [160–164]

charred Lonicera japonica/
charred Sophora flavescens/
charred Paeonia lactiflora

Antiinflammatory/
Antioxidant activity

In vitro/
Mice model

[169–172]

charred Pueraria lobata/
charred Citrus aurantium

Anti-gout effect In vitro/
Mice model

[173,175]

Jiaosanxian/
charred Crataegus pinnatifida

Hpyerglycemic activity In vitro/
Mice model

[176,177]

charred Artemisia argyi Antibacterial activity In vitro [180]
charred Zingiber officinale Analgesic effect In vitro/

Mice model
[182]

Nano-aggregates Bai-Hu decoction Antipyretic effect In vitro/
Mice model

[189,190]

Ma-Xing-Shi-Gan decoction Inhibiting cell proliferation In vitro [191]
Ge-Gen-Qin-Lian Decoction Antioxidant activity In vitro [192]
Huang-Lian-Jie-Du decoction Neuroprotective Effect In vitro [194–196]

-Not applicable.
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drugs, natural molecules remain the basis and major resource for
drug innovation. Currently, more than half of the drugs on the mar-
ket are based on natural products and related molecules. Artemisi-
nin, derived from Artemisia annua for the treatment of malaria, is a
notable example. Furthermore, the China National Medical Prod-
ucts Administration approved the inclusion of Jinhua Qinggan
granules, Lianhua Qingwen granules and capsules, and Xuebijing
injection among new treatments for coronavirus disease 2019.
Undoubtedly, natural plants or herbal medicines from TCMs are
receiving unprecedented attention and are now reaching a new
golden age.

Nanoassembly of pure small molecules isolated from natural
plants into nanomedicine without any carriers may open an alter-
native avenue and offer a new perspective for medicinal plant
research (Table 1). Natural pentacyclic triterpenoids are widely
studied for self-assembly through the intermolecular forces of
hydrogen bonds of carboxyl and hydroxyl groups, as well as the
interactions of the triterpenoid skeleton. In addition, some natural
alkaloids can be interacted with specific small molecules to assem-
ble nanoplatform. BBR, the most studied, can self-assemble into
nanoparticles with carboxyl-based natural molecules through elec-
trostatic interactions and p � p interactions. EVs separated from
fresh plants have also been used for therapeutic purposes for var-
ious diseases (Table 2). EVs can be obtained on a large scale from
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beneficial renewable plants and they may reduce cytotoxicity or
any other negative side effect due to being evolved in plant cells.
Furthermore, Plants-derived EVs have the potential as drug deliv-
ery nanocarriers which can be easily modified to target specific
ligands. Charred plants are one kind of distinctive TCM that have
been widely used to treat various bleeding syndromes in the clinic.
CNs isolated from charred plants are widely studied and found to
exhibit hemostatic, anti-inflammatory, antioxidant, and anti-gout
effects, as well as other activities. In addition, decoction of plant
formulae is another traditional clinical method of TCM. In particu-
lar, the combination spirit of TCM has been widely accepted in the
clinic. Complex interactions always occur at the time of the water
decoction process of plant formulae after dissolving active ingredi-
ents, and most significantly, they also generate NAs. The phe-
nomenon of NAs in water decoction may be caused by direct
noncovalent combination between the active ingredients or the
primary metabolites, such as proteins, polysaccharides, and nucleic
acids.

Despite the therapeutic benefits of natural plants-derived
carrier-free nanoplatforms, there are still some downsides.
Carrier-free self-assembly of pure natural molecules have shown
the potentiality for therapeutic activities. However, there are still
lots of problems to be solved for their successful clinical applica-
tion. The nanoassembly of other natural compounds from plants
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is still rare. The determination of whether a natural product can be
self-assembled or coassembled still relies on test screening. More-
over, modulating the proportions of multiple compounds within
one nanoplatform to improve the synergetic efficiency remains
challenging. Finally, how to increase the active targeting capability
of nanodrugs through surface modification is still an issue to be
considered. Although EVs separated from fresh plants were discov-
ered earlier, research on plant EVs is not in-depth enough, espe-
cially in the biomedical field, and most of them are in the
laboratory research stage. Studies on fresh plant-based EVs need
to be expanded further and are mainly focused on ginger at pre-
sent. There are regional and seasonal differences in plant herbs,
and whether EVs should be obtained in different regions and sea-
sons needs systematic evaluation. Especially when plant-based
EVs are used as therapeutic agents or drug carriers in the biomed-
ical field, the safety, effectiveness, stability and quality standards of
EVs need to be controlled. Moreover, many plant-based EVs are
derived from fresh juice, and how to preserve extracted EVs is
the limiting factor to determine suitability for large-scale process-
ing. There is still a lack of research in this area, and some reports
even include contrary aspects. The internal reasons for this neces-
sitate further research. As for charred plants-derived CNs, there has
not been a unified standard conclusion redarding the detailed
mechanism of the pharmacological action in clinic application. It
is only speculated that it may be related to the different structures
and properties of CNs formed by different medicinal plants in dif-
ferent preparation processes, and further principles remain to be
studied and discussed. Related studies on CNs must integrate mul-
tidisciplinary research ideas and explore more suitable research
technologies and methods for CNs to decode charred plants. As
for NAs from decoction of plants formulae, knowledge of the for-
mation mechanism of NAs is not sufficiently mature enough. In
particular, the energy changes and structural characteristics of
self-precipitation in the process of decoction still need to be further
explored. In addition, determination of whether NAs generated by
water decoction have special pharmacological effects and clinical
application value are also necessary directions of future research.
The synergistic effect of NAs are the future research highlights.

In summary, carrier-free nanoplatforms with self-assembly
from natural plants may be a promising alternative treatment
strategy for human diseases. With more research on plant-based
carrier-free nano self-assembly, we believe that there will be clin-
ical trials and even medical products in the near future, which can
be safely and reliably produced on a large scale.
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