Skip to main content
. 2022 Oct 5;50:159–176. doi: 10.1016/j.jare.2022.09.013

Table 1.

Nano-assembly of pure small molecules isolated from natural plants.

Molecule 1 Molecule 2 Morphology Interaction forces of self-assembly Bioactivity Research level Refs.
Berberine Baicalin Nanosphere Electrostatic and hydrophobic interactions Antibacterial activity/ Treatment of diarrhea In vitro/
Zebrafish model/
Mice model
[21], [22]
Berberine Wogonoside Nanofiber Electrostatic and hydrophobic interactions Antibacterial activity In vitro/
Zebrafish model
[21]
Berberine Cinnamic acid Nanosphere Hydrogen bond/
π-π stacking interaction
Antibacterial activity In vitro/
Zebrafish model
[24]
Berberine 3,4,5-Methoxycinnamic acid Nanosphere Hydrogen bond/
π-π stacking interaction
Antibacterial activity In vitro [26]
Berberine Rhein Nanosphere π-π interaction/
Electrostatic interaction
Antibacterial activity In vitro/
Zebrafish model
[29]
Berberine Aristolochic acid Network nanofiber Electrostatic interaction/
π-π interaction
Neutralizing acute nephrotoxicity In vitro/
Zebrafish model/
Mice model
[31]
Berberine alkylation Rhamnolipid Nanosphere Electrostatic and hydrophobic interactions Antibacterial activity In vitro/
Mice model
[32]
Paclitaxel dimer None Nanovesicle Hydrophobic interaction Antitumor In vitro/
Mice model
[37]
Paclitaxel Indomethacin Nanosphere π-π stacking/
H-bonding/
Hydrophobic interaction
Antitumor In vitro/
Mice model
[40]
Cabazitaxel Dasatinib Nanosphere π-π stacking/
hydrogen bonding/
Van der Waals interaction
Antitumor In vitro/
Mice model
[43]
Camptothecin/
Camptothecin derivative
None Helical nanoribbon/
Flat nanoribbon/
Cylindric nano-rod
π-π interaction/
Hydrogen bond
Antitumor In vitro/
Mice model
[45], [46], [47], [48], [49]
Irinotecan/
Topotecan
Curcuminoids Nanosphere Intermolecular non-covalent interactions Antitumor In vitro/
Mice model
[51]
10-Hydroxycamptothecin Doxorubicin Nanosphere π-π stacking/ Hydrophobic interactions Antitumor drug resistance In vitro [52], [53]
Oleanolic acid Paclitaxel Nanosphere Hydrogen bonding/ Hydrophobic interaction Antitumor In vitro/
Mice model
[59], [60]
Lupeol None Nanosphere with nanofiber interspersed Hydrogen bonding/ Van der Waals force/ π-π stacking Drug delivery vehicle In vitro/
Mice model
[59], [63]
Betulinol Ursolic acid Nanosphere Hydrogen bonding/ Van der Waals force/ π-π stacking Drug delivery vehicle In vitro [59], [60]
Betulinic acid Paclitaxel Nanofiber Hydrogen bond/ Hydrophobic interaction Antitumor In vitro/
Mice model
[64]
Ergosterol Chlorin e6 Clavate-shaped nanoparticle π-π stacking/
Hydrophobic interaction
Antitumor In vitro/
Mice model
[66]
Dehydrotrametenolic acid Paclitaxel Nanosphere Hydrogen bonding/ Van der Waals force/ π-π stacking Antitumor In vitro/
Mice model
[63]
Celastrol Doxorubicin Nanosphere π-π stacking/ Electrostatic interaction Antitumor drug resistance In vitro [69]
Ginsenoside Ro Saikosaponin a Nanosphere Virtual prediction [72], [73]
Glycyrrhizic acid Paclitaxel/
Baicalein
Virtual prediction/
Preparation and characterization
[79], [80]
Glycyrrhetinic acid None/
Oleanolic acid and/or Paclitaxel
Nanosphere with fibrillar network Hydrogen bonding/ Van der Waals force/ π-π stacking Antitumor In vitro/
Mice model
[59], [81], [82]
Ursolic acid Aspirin Nanosphere Hydrogen bond/ Hydrophobic interaction Tumor metastasis therapy In vitro/
Mice model
[86]
Ursolic acid Indocyanine
green and lactobionic acid
Nanosphere π-π stacking/ Hydrophobic interaction/ Electrostatic interaction Tumor theranostics In vitro/
Mice model
[87]
Ursolic acid Doxorubicin/
Paclitaxel
Nanosphere Electrostatic interaction/
π-π interaction/ Hydrophobic interaction
Antitumor In vitro/
Mice model
[88], [89], [90]
Doxorubicin Indocyanine green and tannic acid Nanosphere π-π interaction/ Electronic interaction Antitumor In vitro/
Mice model
[94]
Rhein None Network nanofiber π-π interaction/
Hydrogen bond/
Electrostatic interaction
Treating neural
inflammation
In vitro [100]

-Not applicable.