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� Structural variants (SVs) calling tools
are compared using real data.

� We compare at the genome level the
SVs detected by nanopore sequencing
and aCGH.

� We use coverage data for polishing
calls and improve consensus.

� Our method contributes to identify
SVs and filtering out erroneous SV
calls.
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Introduction: Whole-genome sequencing using nanopore technologies can uncover structural variants,
which are DNA rearrangements larger than 50 base pairs. Nanopore technologies can also characterize
their boundaries with single-base accuracy, owing to the kilobase-long reads that encompass either full
variants or their junctions. Other methods, such as next-generation short read sequencing or PCR assays,
are limited in their capabilities to detect or characterize structural variants. However, the existing soft-
ware for nanopore sequencing data analysis still reports incomplete variant sets, which also contain erro-
neous calls, a considerable obstacle for the molecular diagnosis or accurate genotyping of populations.
Methods: We compared multiple factors affecting variant calling, such as reference genome version,
aligner (minimap2, NGMLR, and lra) choice, and variant caller combinations (Sniffles, CuteSV, SVIM,
and NanoVar), to find the optimal group of tools for calling large (>50 kb) deletions and duplications,
using data from seven patients exhibiting gross gene defects on SERPINC1 and from a reference variant
set as the control. The goal was to obtain the most complete, yet reasonably specific group of large vari-
ants using a single cell of PromethION sequencing, which yielded lower depth coverage than short-read
sequencing. We also used a custom method for the statistical analysis of the coverage value to refine the
resulting datasets.
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Results: We found that for large deletions and duplications (>50 kb), the existing software performed
worse than for smaller ones, in terms of both sensitivity and specificity, and newer tools had not
improved this. Our novel software, disCoverage, could polish variant callers’ results, improving specificity
by up to 62% and sensitivity by 15%, the latter requiring other data or samples.
Conclusion: We analyzed the current situation of >50-kb copy number variants with nanopore sequenc-
ing, which could be improved. The methods presented in this work could help to identify the known dele-
tions and duplications in a set of patients, while also helping to filter out erroneous calls for these
variants, which might aid the efforts to characterize a not-yet well-known fraction of genetic variability
in the human genome.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Structural variants (SVs) are heterogeneous gross genetic
defects spanning more than 50 base pairs (bp) that include copy
number variations (CNVs), which can be either duplications or
deletions; and other rearrangements of DNA: insertions, inver-
sions, and translocations [1]. Despite the number of SVs in the gen-
ome being smaller than that of single nucleotide variations (SNVs)
and small insertions or deletions (indels), SVs account for a larger
number of variable bases [2] and are more likely to be pathogenic
than SNVs or indels [3]. Furthermore, the importance of SVs could
still be underestimated because of the limitations of the current
molecular detection methods [4]. Thus, there is an increasing inter-
est to identify and characterize SVs, particularly in biomedicine.

Current molecular algorithms used to identify pathogenic vari-
ants first recommend to rule out SNVs and indels by using short-
read sequencing [5]. SVs are usually screened in cases with no
SNVs or indels found. Nowadays, there is a relatively large range
of methods used for SV detection, both specific to a gene/region
(targeted scan) and genome-wide. Most of the specific methods
are based on PCR, such as a) long-range PCR, in which a high-
fidelity, high-processivity polymerase amplifies a region in the
order of kilobases (kb), and the fragments are then sequenced
[6]; b) real-time qPCR, where the results of a case are compared
to those of the control or to standard curves to determine the num-
ber of copies of a sequence [7]; c) multiple ligand probe amplifica-
tion (MLPA), which uses labeled probes, so multiple regions can be
amplified, and after amplification, the product is proportional to
the gene dosage, so again a control is needed for comparison [7];
and d) fluorescence in situ hybridization (FISH), which uses labeled
probes that hybridize against their target, without any amplifica-
tion. For resolutions in the range of kilobases, however, probes
must be used on stretched chromosome fibers, and experiments
on multiple targets are costly and time-consuming [7]. Non-
specific, genome-wide techniques include methods such as a)
Giemsa-banded karyotyping, for chromosomal alterations [8]; b)
comparative genome hybridization (CGH), which uses fluorescent
labels to quantify a sample against a control, and was adapted to
microarrays from [9] single nucleotide polymorphism (SNP) arrays,
used in a similar manner [7]; and c) optical genome mapping
(OGM), which measures the distance between labeled probes to
detect CNVs [10].

All of these methods present limitations to detect and charac-
terize SVs, such as scope, resolution, or the ability to discover novel
mutations, and none of them reaches nucleotide resolution. Next-
generation sequencing (NGS) also detects SVs; however, it lacks
sensitivity and fails to detect 30%–90% of the SVs, while still pro-
ducing high false positive rates [11,12], despite recent applications
reporting 86% sensitivity for CNVs and 100% for > 10-kb CNVs [12].

The development of third-generation sequencing technologies,
such as PacBio and Nanopore, has improved SV detection by means
of their kilobase-long reads, at the cost of a lower per-base accu-
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racy [1]. PacBio uses a DNA polymerase, a circular template with
the sequence of interest inserted, and fluorescently labeled
deoxyribonucleotide triphosphates (dNTPs) to produce reads in
the range of tens of kilobases [13]. In each polymerization step,
the fluorescent probe is excited, its emission recorded, and finally
cleaved before the next dNTP is added. In contrast, nanopore
sequencing does not rely on DNA polymerization; instead, linear
molecules of DNA are attached to an adapter and a motor protein.
These motor proteins unwind the DNA molecules, which go
through pores embedded on a membrane, disrupting the ionic cur-
rent in the pores. These disruptions are measured and analyzed to
determine the nucleotide sequence in real time [13]. The resulting
reads can reach several hundreds of kilobases in length, even
megabases (Mb). A key advantage of these sequencing technolo-
gies is the ability to locate the boundaries of SVs with single base
resolution, which is valuable information for running confirmation
experiments.

Numerous efforts have been made to develop analysis tools for
SV detection using data from Nanopore and PacBio [14]. Unfortu-
nately, the limitations of these methods still cause a fraction of
SVs to go undiscovered, while reporting false positives [1,15,16].
As we demonstrate, this seems to be worse for larger (>50 kb)
SVs. While these variants may be less common, they are linked
to neurological and rare diseases [17], are associated to blood
serum levels of biological compounds [18] and may be linked to
adaptations to different environments of human populations
[19]; therefore, detecting them accurately is of scientific interest.

In this work, we focused on improving the identification of large
CNVs by using one of the abovementioned technologies, nanopore
sequencing. To achieve this, we explored different pipelines vary-
ing in software and reference data to examine which one generated
the best set of SV calls. Then, we developed a new tool that ana-
lyzed the coverage data, allowing us to further polish calling and
improve consensus with other techniques. We applied this method
to a group of patients carrying different pathogenic SVs. The results
were compared with those obtained by applying CGH.

Our case study considered seven patients with antithrombin
(AT) deficiency, which is an autosomal, monogenic, dominant dis-
order that significantly increases the risk of thrombosis. AT defi-
ciency is mainly caused by defects in the coding gene (SERPINC1),
mostly SNVs or small indels [5]. However, up to 5% of the AT defi-
ciency cases with a molecular diagnosis are caused by SVs. Thus,
AT deficiency, as a monogenic disease already linked to SVs, is an
interesting disease as a starting point for an SV detection study,
as it presents a clear genotype and the genetic cause is located at
a particular gene. Most SVs causing AT deficiency are deletions
with variable length, but duplications and retrotransposon inser-
tions have also been found [20].

SVs causing AT deficiency are usually detected by MLPA,
although this method fails to detect some of the SVs causing AT
deficiency [21]. Furthermore, the length of the defect is not pre-
cisely defined, and no nucleotide resolution is obtained. Thus, in
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order to cover this limitation, the samples were evaluated using
CGH. CGH was initially introduced as a genome-wide method to
detect copy number gains and losses larger than 10 Mb [22], but
it has evolved to an array format (aCGH) that uses probes covering
the human genome [23].

In this study, by comparing at the genome level, CNVs detected
by aCGH and nanopore sequencing in patients with the AT defi-
ciency caused by a CNV affecting SERPINC1, we found that the per-
formance for detecting variants with a size greater than 50 kb was
worse. We tested this on a total of three aligners and four variant
callers, resulting in 11 variant sets per patient. To check these
results, we used a publicly available and extensive dataset as a
benchmark for our pipeline. With these results in mind, here, we
present a novel coverage analysis tool, disCoverage, which might
help in detecting large CNVs.
Materials and methods

Patient data

The study was conducted on seven patients with thrombosis
that had AT quantitative type I deficiency caused by a CNV affect-
ing SERPINC1. These SVs were detected by MLPA after negative
results of sequencing the whole gene [24]. The clinical, genetic,
and biochemical information of these patients is presented in
Table 1. P1-4 and P6-7 were described previously [21], with corre-
sponding identifiers P3, P4, P7, P1, P6, and P8; and P1-7 also were
described previously [25], with corresponding identifiers P6, P3,
P24, P25, P16, P35, and P20, respectively.
Ethics statement

All included subjects gave their informed consent to enter the
study, which was approved by the Ethics Committee (EST 31/18)
of Morales Meseguer Hospital, and performed in accordance with
the 1964 Declaration of Helsinki and their later amendments.
Genetic analysis

Long-read whole-genome nanopore sequencing (LR WGS) was
performed using a PromethION device. Basecalling was performed
with Guppy (3.0.4 e7dbc23 to 3.2.8 bd67289). P3 and P6 runs were
inefficient because of the low pore number during sequencing. For
P3, a second run was conducted, and both sets of results were
combined.
Table 1
Descriptive information of the study participants. Column 5 indicates whether the mutatio
CuteSV, NanoVar, Sniffles, and SVIM, in this order, found the mutation affecting SERPINC1 a
central sinovenous thrombosis WGD: whole SERPINC1 gene deletion, ex: exon, DEL: deletio
found with aCGH. NA19240 is external to the study and does not suffer, to the best o
antithrombin activity expressed as a percentage of the reference value obtained in a pool

Patient Thrombosis Anti-FXa
(%)

MLPA Detected by
aCGH

CNVs detected b
aCGH

P1 DVT (21 y.
o.)

42 WGD N 11

P2 ND 45 WGD Y 10
P3 ND 45 DEL ex. 1–

5
Y 14

P4 CSVT 30 DEL ex. 1 N 11
P5 Arterial 57 WGD N 7
P6 DVT 61 DUP ex.

1–5
N 17

P7 DVT 52 DEL ex. 2–
5

N 14
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Array comparative genome hybridization (aCGH) was per-
formed with high-density CytoScan� HD Array (Thermo Fisher Sci-
entific, Inc.), which includes 2.67 million markers for copy number
analysis, 750,000 SNP probes, and 1.9 million non-polymorphic
probes. Following hybridization, a laser scanner (GeneChip� 3000
Scanner) was used for scanning the arrays, and the images were
extracted and analyzed using the Affymetrix Gene Chip Command
Console software (version 4.0) and the Chromosome analysis soft-
ware (ChAS v.1.2/na33.2) (Fisher Scientific, Inc.), and interpreted
with the aid of the UCSC genome browser [26].
Nanopore data processing

The data processing pipeline for this study consisted of the fol-
lowing steps: (1) alignment against a reference human genome, (2)
variant calling, and (3) variant filtering and merging. After these
steps, (4) the obtained variants were compared with those
obtained using aCGH and (5) a coverage analysis was performed.
We will describe these steps next, and their connection is shown
in Fig. 1. The relevant tools are summarized in Supplementary
Table 2.

In this work, three different programs were used for alignment
in combination with up to four variant callers. Regarding the align-
ers, three were used: NGMLR [27] 0.2.7, build from July 2, 2018;
minimap2 [28] 2.17-r941; and lra [29]. The first two are recom-
mendations for sensitivity and speed [1], and the latter is included
in the latest Oxford Nanopore Technologies’ (ONT)
recommendations.

Alignments were performed against hg38 [30] (which includes
some corrections [31], also explained here [1]) for the three align-
ers, and hg19 [32] for minimap2 and NGMLR, to test specific vari-
ants. For sorting and indexing the alignment files, samtools [33] 1.9
was used for minimap2 and NGMLR (to maintain compatibility
with NGMLR), and 1.12 for lra.

SVs were called by Sniffles [27] 1.0.12 (github build cloned on
February 10, 2021), SVIM [34] 1.4.0, CuteSV [35], and NanoVar
[36]. Sniffles and SVIM were chosen to maximize sensitivity [1],
CuteSV from the ONT latest recommendations and independent
benchmarks [15], and NanoVar for its promising performance
[36]. Sniffles, SVIM, and CuteSV only consider reads with a map-
ping quality of > 20, but as NanoVar does not apply such a filter,
it was run on filtered BAM files to emulate this option. For hg19,
only Sniffles and SVIM after minimap2 and NGMLR were used, as
they performed the best with the SVs of interest in our study.

Call sets from Sniffles, CuteSV, and NanoVar were filtered using
a minimum supporting reads threshold of 5, and those from SVIM
n affecting SERPINC1 was found with aCGH. The last three columns indicate whether
fter the indicated aligner. Abbreviations: DVT: deep venous thromboembolism, CSVT:
n, DUP: duplication. Column 5 indicates whether the mutation affecting SERPINC1 was
f our knowledge, AT-deficiency. Anti-FXa is ‘‘anti-factor Xa activity”, a measure of
of 100 healthy blood donors.

lra Minimap2 NGMLR
y CuteSV/Sniffles/

SVIM
CuteSV/NanoVar/Sniffles/
SVIM

CuteSV/NanoVar/Sniffles/
SVIM

N, N, N Y, Y, Y, Y Y, Y, Y, Y

N, N, N N, N, N, Y N, N, Y, Y
N, N, N N, N, Y, Y Y, N, Y, Y

Y, Y, N Y, Y, Y, Y Y, Y, Y, Y
N, N, N Y, N, Y, Y N, N, Y, Y
N, N, N N, N, N, N N, N, N, N

Y, Y, Y N, Y, N, Y Y, Y, Y, Y



Fig. 1. Flowchart describing the steps for SV analysis done in this work. Nanopore reads from our cases, and from a control dataset from an individual whose SVs have been
extensively characterized by Chaisson et al., 2019, were aligned using three different programs. The alignments generated, three per sample, were analyzed by four variant
callers (except the combination of lra and NanoVar, which do not seem to be compatible). Then, the four (or three, for lra) SV sets based on each aligner were merged using
SURVIVOR. This set could then be compared against aCGH, for our samples, or against the truth set, for NA19240. We then checked whether the coverage could be used to
support CNVs, particularly the ones that were not found by callers. To deal with aCGH coordinates, which were only available for the hg19 reference, the alignment and
variant calling were repeated for our samples.

Table 2
Individual sequencing statistics for the study cases, and NA19240.

Patient Mean
read
length

Percentage of genome
covered
(MAPQ � 20)
(lra/minimap2/
NGMLR)

Median and (Q3-Q1)
coverage
(MAPQ � 20)
(lra/minimap2/NGMLR)

P1 5387.96 92/92/92 17 (20–13)/18 (21–14)/17
(21–13)

P2 7508.66 93/92/92 25 (29–20)/26 (30–21)/25
(30–20)

P3 3955.37 93/92/92 15 (18–12)/16 (20–13)/16
(19–12)

P4 7331.80 93/93/92 24 (29–19)/25 (29–20)/25
(29–19)

P5 6369.04 93/92/92 18 (21–14)/18 (22–14)/18
(21–14)

P6 3795.30 92/91/91 5 (6–3)/5 (7–3)/5 (7–3)
P7 6166.71 93/92/91 13 (16–10)/14 (17–11)/14

(16–10)
NA19240 14,565 93/92/91 16 (19–13)/17 (20–13)/15

(18–11)
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using a quality value of 5. All were sorted and indexed by bcftools
[33] 1.9. They were later merged using SURVIVOR [37]. The SVs
were then limited to > 50-kb CNVs. The aCGH coordinates were
translated from hg19 to hg38 with USCS liftOver [38]. Coordinate
lifting’s limitations were taken into consideration; to account for
them, the repetition of the workflow on hg19 allowed to compare
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the results and assess whether the differences truly came from the
lifting. To compare the considered techniques, as aCGH was less
precise, a difference in size of 33% and a difference in coordinates
of 3 Mb were allowed, although types had to match: a ‘‘Gain” from
aCGH was called ‘‘DUP” (duplication) by nanopore sequencing, and
a ‘‘Loss”, a ‘‘DEL” (deletion).

Sequencing statistics were calculated using NanoStat [39].
Coverage was measured using mosdepth [40] 0.3.1 by chromo-
some and on regions of interest with a mapping quality threshold
of 20.

Data analysis was performed in R [41], with a series of packages
for different purposes: for data preparation, data.table [42] and
tidyverse [43]; for plotting, circlize [44] and ggplot2 [45]; and
stringi [46] for text operations.
Statistical analysis of coverage using disCoverage

The tool presented in this work, disCoverage, acted as a wrapper
for the coverage calculation and then processed the coverage data.
It relied on SV’s coordinates retrieved from the variant callers listed
in the previous section, or from other techniques, such as aCGH,
which was used in this work.

The per-base coverage of SVs and their surroundings (1 Mb in
each direction, to account for coordinates’ error and coverage vari-
ability) were measured by mosdepth [40] with the input encoded
in the BED format. For this study, these files were generated man-
ually, using Sniffles’ results, when possible, or from aCGH (the Snif-



Fig. 2. Number and type of SVs found by aCGH in each patient. For each case, this is
split into copy gains and losses, as reported by aCGH. The green sections indicate
the amount of ‘‘gains” or duplications, and the yellow ones, ‘‘losses” or deletions.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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fles coordinates are presented in Supplementary Table 1). With the
latter, the coordinates for the seven SVs were adjusted manually.

The mean coverage of each putative SV was compared with its
surroundings, using a threshold of 40% shift in coverage. Statistical
significance was checked with the implementation of Student’s t-
test (Welch’s approximation) in R. As each base had a coverage
value, the group size (one group being both the surrounding
regions, and the other, the CNV’s coordinates or tentative ones)
was sufficiently large to generate values too small to be normally
processable in R, which allowed precise calculations only of deci-
mal numbers greater than 2.225074e � 308. To circumvent this,
the t parameter and the degrees of freedom returned by R were
used to calculate the natural logarithm of the p-value for a two-
tailed test (2 ⁄ cdf (�|t|, degrees of freedom), where cdf denotes
the cumulative distribution function of the t-Student distribution).
Retrieving the cdf value as a logarithm avoided the generation of
very low numeric values (which otherwise would have been
turned into zero, or calculated with precision errors). Then, the
p-values were calculated from their logarithms by using the expo-
nential function and the Rmpfr [47] package with 100 bits of pre-
cision. These two steps avoided working with low values in R’s
statistics function and then allowed us to retrieve and work nor-
mally with p-values below the precision threshold.

Additionally, disCoverage generated plots as those presented in
the subfigures of Figs. 5 and 6, which allowed us to visually exam-
ine the coverage differences in the regions of interest.

For this study, a p-value threshold was selected using an ROC
curve from pRoc [48]. For this purpose, we used the CNVs from
P1 to P7, considering as positive cases those with a coefficient
between the SV coverage and its surroundings of>0.4. The thresh-
old of p-value < 1e � 13482 provided a specificity of 100% and was
selected by using two criteria: Youden’s and closest to the top-left
corner of the graph. A less stringent threshold, p < 1e � 3117, pro-
vided a sensitivity of 100%. These values might not work univer-
sally, and disCoverage allows inputting different ones.
Results

Sequencing metrics

The mean read length was 5.83 kb ± 4.49 kb, and the mean
number of sequenced and aligned bases reported by NanoStat
and determined by the three aligners (lra, minimap2, and NGMLR)
was 57.89 ± 22.39/60.29 ± 22.93/65.14 ± 25.11 Gb and 52.96 ± 20.
80/56.51 ± 21.88/52.44 ± 20.53 Gb, respectively (these statistics
varied by aligner because only the mapped reads were considered
for their computing). Although NGMLR obtained more sequenced
bases than minimap2 and lra in all the patients, the number of
aligned bases was always higher for minimap2. Only patient 6,
who showed shorter reads, had a reduced number of sequenced
bases and aligned bases as compared to the rest of the patients
(Figs. S1, S2, and S3).

Accordingly, the percentage of the genome covered (with map-
ping quality values of at least 20) by nanopore sequencing was
92.71% when using lra, 93.86% when using minimap2, and
92.86% with NGMLR (Fig. S4). As expected, patients with the high-
est number of aligned bases (P2 and P4) showed the highest cover-
age, having 50% of their genome above 20 � coverage, while
patient 6 showed the lowest genome coverage: no positions in
the patient’s genome reached a coverage depth of 20.
Cnvs identified by aCGH and nanopore sequencing

With aCGH, we could identify 84 CNVs in all the patients, with a
mean of 12 ± 3.27 CNVs/patient. All the patients had a similar dis-
149
tribution of SVs involving a gain or a loss, and the global distribu-
tion of these two types of SVs in the whole cohort was similar (40
losses and 44 gains). Fig. 2 shows the number and type of SVs iden-
tified by aCGH in each patient. Because of the limitations of this
method regarding SV size, the gross gene defects affecting SER-
PINC1 were only found by aCGH in two patients: P2 and P3.

For nanopore data, we reported the results from the union of
variant callers (three for lra, and four for minimap2/NGMLR), for
each aligner. Nanopore sequencing showed a remarkably high
number of total SV calls. For aligners lra/minimap2/NGMLR, the
mean number of total SV calls was 23,874.86 ± 9,139.74/38,462.1
4 ± 12,207.19/35,392 ± 11,696.86, respectively. Most of the SVs
detected by the nanopore sequencing were deletions
(48%/43%/42% of the total SVs for lra/minimap2/NGMLR) and inser-
tions (47%/34%/33%), although this method also detected other
types of SVs, such as duplications (1%/10%/12%), inversions
(3%/2%/3%), and translocations (1%/10%/10%). It was interesting
that the proportion of these less frequent SV types was higher with
NGMLR and minimap2 than with lra. Fig. 3 shows the number and
type of SVs detected in each patient. Again, P6 was the patient with
the least number of SVs detected. Note that the SVs affecting SER-
PINC1 were detected in all the cases by nanopore sequencing.
Concordance and discrepancies of SVs detected by aCGH and nanopore
sequencing

This analysis only considered > 50-kb CNVs occurring in chro-
mosomes 1–22, X, and Y. The results differed depending on the
variant caller program used and aligner. Moreover, the results dif-
fered when using hg38 or hg19 as the reference. Only 11/23/31
CNVs detected by aCGH (13.10%/27.38%/36.90%) were also
detected by nanopore sequencing with variant callers when using
lra, minimap2, or NGMLR (Table 4 for deletions and Table 5 for
duplications). Supplementary Table 1 shows the CNVs identified
by both the methods in each patient, focusing on the hg38 and
hg19 coordinates.

We found a total of 1930, 683, and 1432 > 50-kb CNVs for the
lra, minimap2, and NGMLR alignments. The mean number of SVs
per patient was 275.71 ± 136.06, 97.57 ± 40.93, and 204.57 ± 94.
70 for lra, minimap2, and NGMLR, respectively. Fig. 4 shows the
number and type of CNVs identified by nanopore sequencing in



Fig. 3. Number and type of SVs found by nanopore sequencing per patient and aligner. Deletions are shown in green, duplications in yellow, insertions in purple, and
translocations in blue. N1 refers to NA19240, the control dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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each patient. Note that NGMLR and lra detected a considerably
higher number of SVs with these features than minimap2. We also
observed that these two types of SVs had a similar distribution
with NGMLR’s alignments (50.28% deletions and 49.72% duplica-
tions), while the percentage of deletions found with lra’s and min-
imap20s alignments was significantly higher than that of
duplications (70% and 30%, 65.59% and 34.41%).

Interestingly, the coordinates obtained for each concordant SV
detected by both the methods, namely aCGH and nanopore
sequencing, did not match for any SV, but the differences ranged
from 11 bp to 2,956,260 bp, and might be different depending on
the version of the reference genome used (hg38 or hg19) (Supple-
mentary Table 1).

A factor to consider in the comparison was the allele dose of the
selected variants. Array hybridization reported both hetero- and
homozygous CNVs (43.42% of the deletions and 40.79% of the
duplications were marked as heterozygous). It was possible to find
27.3%/42.4%/54.5% of the heterozygous deletions with the lra/min-
imap2/NGMLR alignments, and 0%/40.0%/40.0% of the homozygous
ones. For duplications, the agreement was 6.5%/16.1%/25.8% and
14.3%/14.3%/42.9% for homozygous and heterozygous ones,
respectively.

Aiming to explain the discrepant results between these two
methods, we first analyzed the nanopore coverage data for the
SVs detected by aCGH that were not detected by nanopore
sequencing. The coverage was measured by using mosdepth inside
SVs’ coordinates and on their surroundings. The results revealed a
significant (p-value < 1e � 13482 with Welch’s approximation of
Student’s t-test) difference in coverage compatible with the type
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of SV detected by aCGH. Thus, an aCGH ‘‘loss” corresponded with
a lower coverage by the nanopore sequencing, while a ‘‘gain” had
higher coverage than the surroundings areas. Representative
examples of the coverage obtained by nanopore sequencing for
the SVs detected by aCGH, including concordances and discrepan-
cies that might be solved by this approach, are shown in Fig. 5.

We also observed that for several SVs detected by aCGH not
called by using nanopore sequencing, a compatible difference in
coverage was not found in the region indicated by the array, but
it was observed nearby (<1 Mb) (Fig. 6). After adjusting to these
new coordinates, we found nine regions compatible with the CNVs
identified by aCGH (Supplementary Table 1).

All the CNVs identified by aCGH that were also found with
nanopore sequencing (using Sniffles on the NGMLR alignment,
which generated the most complete set of calls) except two were
also supported by the coverage analysis. The two CNVs for which
the coverage analysis failed were a duplication on chromosome
11 in P5 and a duplication on chr22 in P2 (see Supplementary
Table 1 for the aCGH coordinates). For the latter, it was not consid-
ered supported by the coverage because it did not reach the
required 40% difference in coverage. Additionally, P10s deletion in
chr1:146174166–146231540 was supported by the coverage in
the coordinates reported by aCGH, although the NGMLR + Sniffles
pipeline called it at chr1:143226638–143275280, where there was
no coverage difference.

The rest of the CNVs found by aCGH were not found by the call-
ers onminimap20s (N not found = 49) or NGMLR’s (N not found = 40)
alignments and were not supported by the coverage. For seven of
these CNVs, there was supporting coverage data from nanopore



Table 3
SVs detected by using the different bioinformatic tools reported in the study participants and control. The presented numbers are in the format total deletions; total duplications/
>50-kb deletions; >50-kb duplications. N1 refers to NA19240.

Aligner Caller P1 P2 P3 P4 P5 P6 P7 N1

lra CuteSV 4 941;63/

16;31

13 304;204/

98;78

10 186;82/

47;35

13 130;212/

103;76

11 941;210/

91;73

2 195;26/

19;11

9 468;82/

42;35

22 618;43/

13;13
Sniffles 11 599;57/

119;28

12 375;150/

194;54

8 878;81/

104;43

12 307;157/

208;59

11 059;187/

207;65

2 120;36/

51;13

8 136;63/

95;28

18 316;61/

50;32
SVIM 8 827;29/

11;11

10 242;97/

16;28

7 395;38/

5;14

10 259;105/

18;33

9 248;122/

19;31

1 755;18/

0;5

7 240;32/

6;10

13 209;24/

0;13
minimap2 CuteSV 7 007;826/

14;17

6 213;950/

19;20

5 280;735/

12;14

11 718;1 822/

27;34

14 524;2 192/

33;27

3 441;280/

6;7

4 774;707/

8;9

29 874;1 699/

29;30
NanoVar 18 807;4 542/

27;23

15 724;4 969/

37;27

15 321;4 433/

17;16

15 730;3 980/

39;32

14 773;3 203/

33;23

4 140;939/

7;5

14 039;4 333/

27;15

28 547;2 690/

32;27
Sniffles 15 547;2 628/

38;10

14 129;3 436/

47;16

11 816;2 483/

30;5

14 167;2 452/

45;17

12 526;1 375/

33;7

3 001;89/

10;1

10 417;2 340/

26;2

24 548;1 004/

48;18
SVIM 10 629;3 480/

2;8

11 187;3 941/

6;8

8 989;3 275/

2;4

11 315;2 991/

5;8

10 191;2 114/

4;5

2 514;302/

0;1

8 564;3 085/

3;1

16 808;1 674/

4;10
NGMLR CuteSV 15 617;3 009/

31;87

5 499;1 542/

21;84

12 391;2 664/

28;66

14 943;4 014/

53;122

4 957;1 370/

13;47

2 897;459/

15;22

4 134;976/

18;31

21 455;1 805/

24;51
NanoVar 16 985;3 211/

26;15

14 890;5 236/

44;16

14 070;2 971/

25;7

14 932;3 627/

41;21

13 904;4 835/

30;14

3 586;821/

6;2

12 933;4 233/

31;5

24 417;2 488/

41;8
Sniffles 13 590;2 051/

69;69

12 817;4 689/

111;104

10 507;1 743/

61;53

12 955;3 049/

121;100

11 523;4 039/

81;67

2 464;267/

19;15

9 457;2 948/

51;41

19 847;967/

63;37
SVIM 9 743;2 450/

23;38

10 380;4 935/

23;46

8 268;2 048/

18;28

10 510;3 388/

34;55

9 552;4 316/

18;47

2 110;319/

3;13

7 952;3 269/

14;21

12 276;1 430/

9;20

Table 4
Consensus between aCGH and nanopore sequencing, and disCoverage effect for deletions (DEL). N1 refers to NA19240. *For NA19240, the values in these columns are > 50-kb
deletions in the truth set and > 50-kb deletions present in the truth set also found with nanopore sequencing by our pipeline, respectively.

Patient DEL found with
aCGH*

DEL found by aCGH and nanopore sequencing* >50-kb DEL after disCoverage

lra minimap2 NGMLR lra minimap2 NGMLR

CuteSV,
Sniffles, SVIM

Any
caller

CuteSV, NanoVar,
Sniffles, SVIM

Any
caller

CuteSV, NanoVar,
Sniffles, SVIM

Any
caller

CuteSV,
Sniffles, SVIM

CuteSV, NanoVar,
Sniffles, SVIM

P1 4 1,0,0 1 0,1,1,0 2 2,1,3,0 3 1,0,10 1,11,3,8 7,12,9,15
P2 7 2,0,1 2 0,1,4,0 4 1,1,4,1 4 4,26,24 4,17,3,16 9,19,7,37
P3 4 2,0,0 2 1,1,3,0 3 3,1,3,0 3 0,10,8 2,10,1,5 7,11,9,14
P4 6 2,2,0 2 0,2,3,2 3 3,2,5,2 4 4,32,24 2,21,6,14 13,18,16,30
P5 2 0,0,0 0 1,0,1,0 2 0,0,1,0 1 3,19,16 3,20,9,12 9,19,4,28
P6 6 0,0,0 0 0,1,1,0 1 1,1,1,0 1 0,0,0 0,6,0,1 1,3,1,1
P7 9 2,0,0 2 1,2,3,0 3 1,2,4,0 0 0,13,9 2,15,2,7 6,13,8,21
N1 94 0,0,0 0 0,0,0,1 1 0,0,0,0 0 0,4,4 4,22,15,20 5,24,14,30

Table 5
Consensus between aCGH and nanopore sequencing, and disCoverage effect for duplications (DUP). N1 refers to NA19240. *For NA19240, the values in these columns are > 50-kb
duplications in the truth set and > 50-kb duplications present in the truth set also found with nanopore sequencing by our pipeline, respectively.

Patient SVs found with
aCGH*

DUP found by aCGH and nanopore sequencing* >50-kb DUP after disCoverage

lra minimap2 NGMLR lra minimap2 NGMLR

CuteSV,
Sniffles, SVIM

Any
caller

CuteSV, NanoVar,
Sniffles, SVIM

Any
caller

CuteSV, NanoVar,
Sniffles, SVIM

Any
caller

CuteSV,
Sniffles, SVIM

CuteSV, NanoVar,
Sniffles, SVIM

P1 7 0,0,0 0 0,1,1,0 1 1,1,1,0 1 1,1,1 3,1,4,3 2,1,5,7
P2 3 0,0,0 0 0,0,0,0 0 1,0,2,0 2 2,3,4 0,0,5,1 4,0,7,8
P3 9 1,1,1 1 1,2,2,1 2 2,2,2,1 1 1,2,2 2,2,3,2 1,1,3,2
P4 4 1,0,0 1 1,0,1,0 1 2,0,2,0 2 6,6,8 2,1,4,2 2,0,8,6
P5 5 1,0,0 1 1,0,1,1 1 1,0,1,1 1 5,6,2 1,3,3,2 9,2,6,11
P6 7 0,0,0 0 1,0,1,1 1 1,0,1,1 1 0,0,0 1,0,1,1 2,0,3,3
P7 3 0,0,0 0 0,0,0,0 0 0,0,1,0 1 1,1,1 0,1,1,0 0,0,0,1
N1 28 0,0,0 0 0,0,0,0 0 0,0,0,0 0 1,1,0 4,22,15,20 5,24,14,30

J. Cuenca-Guardiola, Belén de la Morena-Barrio, J.L. García et al. Journal of Advanced Research 50 (2023) 145–158

151



Fig. 4. Number and type of CNVs > 50 kb found by nanopore sequencing per patient. Green is for deletions, and yellow for duplications. N1 refers to NA19240, the control
dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sequencing, but these data showed irregular coverage across the
surroundings or the presence of specific features, such as adjacent
centromeres, which prevented the consideration of a potential SV
with nanopore sequencing. Finally, for the five SVs detected by
aCGH, the coordinates could not be translated from hg19 to
hg38, because the region was split. One of these SVs, the duplica-
tion in chr10 in P7, was also identified by minimap2 and NGMLR
when aligning against hg19.

Fig. 7 summarizes the status of the SVs detected by aCGH after
the nanopore sequencing analysis in each chromosome and in each
patient.

SVs only found with nanopore sequencing
Even after discarding all the SVs that the aCGH could not detect,

the variant callers detected 1930/683/1432 > 50-kb CNVs (lra/min-
imap2/NGMLR alignments) across the study from the nanopore
data not reported by aCGH. A manual inspection of these SVs
revealed that 980/185/603 were very large (>10 Mb), some encom-
passing other SVs (such as the ones confirmed by MLPA) or cen-
tromeres, which suggested that these > 10-Mb SVs were false
positive artifacts.

SV calling for control dataset
To evaluate the variant calling in our pipeline, we used a pub-

licly available set of nanopore reads [49] of the well-
characterized NA19240 as the control dataset and a previously
reported set of variants [50] as the gold standard. The variants
were from an exhaustive study that yielded a high-confidence set
by combining multiple techniques [51] for applications such as
the one considered in this study. One flow cell from PromethIon
sequencing was used as the reference; this resulted in a coverage
similar to the rest of the cases presented (a mean of 16.2�, which
fell within our range, see Table 2). The distribution of SVs for lra/
minimap2/NGMLR was 68.8/66.0%/64.0% deletions,
0.3%/4.9%/6.1% duplications, 29.9%/24.1%/24.9% insertions,
1.0%/1.0%/1.4% inversions, and 0.1%/3.9%/3.7% translocations. The
CNV call data are shown in Table 3.
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We managed to find 37.93%/42.71%/40.05% (lra/minimap2/
NGMLR) of the deletions in Chaisson et al.’s dataset,
3.70%/13.81%/16.43% duplications, and 36.24%/37.56%/34.85%
insertions (these results are split by size range in Supplementary
Table 3). The median difference in the coordinates between Chais-
son et al.’s truth and call sets was 12.5 bp/13.0 bp/14.0 bp for each
aligner. However, the agreement was considerably lower for > 50-
kb CNVs, with just 0/1/0 SV (which was a deletion) out of 122 (94
deletions and 28 duplications), which were different for each
aligner used. Despite this, more > 50-kb CNVs were called by the
nanopore analysis: a total of 91/153/168 for lra/minimap2/NGMLR,
so the agreement was lower than that observed in the study cases.

Despite the poor consensus, disCoverage allowed us to discard
83/115/114 SVs not present in the gold standard from the lra/min-
imap2/NGMLR datasets, reducing the number of false positives
considerably.
Discussion

Third-generation sequencing is an emerging technology partic-
ularly useful for the identification and characterization of SVs [13].
However, it is still necessary to improve bioinformatic tools used to
detect SVs by using long-read sequencing data. Therefore, we com-
pared the data obtained by aCGH and nanopore sequencing from
seven patients with AT deficiency caused by SVs affecting SER-
PINC1, which were first detected by MLPA. While nanopore
sequencing was sufficient to detect the gene defects carried by
these patients, the comparison of SVs larger than 50 kb detected
by these methods allowed us to identify the weak points of current
programs used to identify SVs from the nanopore data, as well as to
propose new approaches that might provide a better identification
of SVs by using this promising technology.

As showcased in this work, obtaining a complete list of SVs
requires compromising specificity at the least. In addition, many
factors play an important role in variant calling, ranging from the



Fig. 5. Representative examples of cases with SVs detected by aGCH and nanopore sequencing. A) Example of a deletion (loss), B) example of an insertion (gain), and C)
examples of a deletion detected by callers after NGMLR alignment, D) but not after minimap2, although the coverage analysis supported the deletion with both the aligners.
Segments in the putative SV region are colored green, segments with coverage greater than the chromosome mean (brown continuous line) are colored blue, and red for
lower. The mean coverage of the SV is represented by the red horizontal segment, and the surroundings’ mean, by the orange dotted line. ***: p-value � 1e � 13482, **: p-
value � 1e � 3117, and for Student’s t-test, see Statistical coverage analysis for details. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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quality of the experimental results to the selection of software
tools. Next, we will discuss these aspects.
Non-bioinformatic factors affecting SV discovery

Regarding the in vitro part of the study, two variables seem
responsible for the completeness of the results: coverage depth
and read length. For coverage depth, a higher value allows for a
more stringent threshold for the variants’ read support. P6 is a
good example; the few nanopore reads explained why only 3 out
of 17 SVs detected by aCGH were found by nanopore sequencing.
However, after the examination of the unfiltered call sets, two
additional SVs were found with three supporting reads each (Sup-
plementary Table 1). In contrast, our results did not seem to point
read length as a decisive parameter for the successful identification
of large SVs, as the mean read length for NA19240 was 2.4 fold of
that of the study cases, and the detection of > 50-kb CNVs was
lower than 1% (Table 3), against the 37% of the most successful
combination of tools applied in this work. This was likely because
the > 50-kb CNVs were detected by split reads instead of reads con-
taining the whole variant. For general use, 20-kb length reads have
been reported to produce optimal results [16].

Furthermore, the allele dose might be another factor to consider
as heterozygous SVs usually require more coverage to be detected
[16]. As shown in our results, while the recall percentage was sim-
ilar for homozygous and heterozygous deletions, the nanopore
results were more complete for homozygous duplications.

Finally, the particular nature of the target SVs in this work
might have limited the existing programs from finding them. Vari-
ant callers rely on algorithms that examine the alignment against
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the reference genome. Thus, SVs are detected when supplementary
alignments are found. In our study, 13.10%/27.38%/36.90% (lra/
minimap2/NGMLR) of the SVs detected by aCGH were also
detected by nanopore sequencing using these variant callers. The
SVs that were not found were explained by the absence of supple-
mentary alignments supporting the variants. One reason why there
were no such alignments in these cases might be the relatively low
coverage, which reduced the likelihood of reads covering the
boundaries of the SV. There might also be the possibility that the
mutant allele had not been sequenced, but this seemed unlikely
to have occurred for 70% of our variants. A different explanation
for these missing reads might be that DNA breaking during library
preparation occurred more frequently in these regions. Indeed,
regions with SVs could be somehow unstable, facilitating both
fracturing during experiments and in-cell DNA recombination,
the latter being an SV genesis mechanism [52,53].
Evaluation of variant calling

The rate of detection of SVs by nanopore sequencing using the
aCGH results as a reference (�13%–36%) seemed low, considering
the capabilities of nanopores. To further explore this, we used
the available data from the well-characterized individual
NA19240 to study the agreement with this case.

While the correct calling of the totality of SV was � 40%, it was
lower for duplications than for deletions and insertions (Supple-
mentary Table 3).

Despite the large number of SV calls, only one > 50-kb CNV with
minimap2 was found to be in common with this truth set. This was
certainly lower than the �40% for all the SVs, which pointed to the



Fig. 6. Representative example of a SV detected by aGCH not detected by Sniffles or
SVIM analysis of nanopore sequencing, but showing significantly different coverage
and being compatible with the type of SV identified by aCGH in a close
chromosomal region. A) Nanopore data on the region pointed by the SV (loss)
detected in aCGH (chr1:26059700, green area) do not support a deletion, but
nearby, around chr1:25265000, red area, a potential deletion is suggested. B)
Nanopore data on this new coordinate (green area) support a coverage significantly
lower than in the surrounding regions. ***: p-value � 1e � 13482, **: p-
value � 1e � 3117, and for Student’s t-test, see Statistical coverage analysis for
details. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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variant callers underperforming with large SVs. It was also lower
than the agreement between nanopore sequencing and aCGH in
our study; this difference might be attributed to the reference SV
set obtained using different techniques. The kit that we used for
genomic hybridization detected SVs in a specific size range and
was limited to CNVs, while the NA19240 combined several tech-
niques, which resulted in a broader scope. Other studies, however,
have reported similar performance across SV lengths [16]. As we
used the same tools with similar settings, the nature of the variant
set used for the comparison might be the cause of this discrepancy;
moreover, >50-kb variants seemed to be usually grouped
with > 10-kb ones [12,16]. Supplementary Table 3 includes the
recall data for NA19240 split by SV type and length and reveals a
steep decrease in > 50-kb SVs.

Despite the low agreement with aCGH, nanopore sequencing
remains a valuable tool that detects all the pathogenic SVs in SER-
PINC1 [20], in addition to being able to call mutations in a consid-
erably wider size range for all types of variants.
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Comparison between different alignments and SV calling tools

In this work, three different programs were used for alignment
in combination with up to four variant callers, and we found that
not every workflow led to the same variants being detected. Snif-
fles produced the best results in calling the SVs detected by aCGH
(N = 31, with NGMLR). SVIM, CuteSV, and NanoVar only managed
to report a fraction of these SVs. Only NanoVar found a single SV
that Sniffles did not. Furthermore, SVIM characterized some of
them worse, reporting them as a pair of breakpoints (BND).

As for the alignment process, the ones produced by NGMLR
allowed Sniffles to find nine more SVs also present in the aCGH
results, and the coverage analysis supported an additional one
when run with NGMLR-produced alignments. Although NGMLR
had limitations, such as being slower [1] and having some bugs
at the time of writing this manuscript, it was the approach that
generated the largest consensus of SVs between aCGH and nano-
pore sequencing. Its results contained all of minimap20s, except
for the deletion on chr8 in P7, which was detected with the read
support below the filtering threshold (Supplementary Table 1).

While the previous statements applied to > 500-kb CNVs, newer
tools might offer better results when checking for a broader range
of variants. In fact, minimap2, CuteSV, NanoVar, and SVIM yielded
results that shared more variants with the NA19240 truth set
(15,112, 14,475, and 14,163) than Sniffles (13,150), although the
first two called more variants (43,467 and 44,954) than Sniffles
(35,077), while SVIM reported fewer (27,684). The results for the
other were worse, particularly for lra, and are presented in Supple-
mentary Table 2.

Coverage analysis complements SV discovery of nanopore data

Coverage analysis has already been used for searching for CNVs
with NGS data, although with limited success [54]. A comparison of
the data obtained by aCGH and nanopore sequencing revealed that
a significant number of SVs detected by the array but not detected
by variant callers with nanopore data (�15%) might be identified
by a statistical analysis of the coverage. Thus, this approach
improved variant calling with nanopore applications. However,
disCoverage is not a variant caller and needs putative SV positions,
which could be obtained from an additional technique, or maybe
more interestingly, by a study of multiple species samples from
the same species. The variants could be merged to generate a set
of SVs, which could be then re-checked on every sample, which
might help at polishing calls on a population.

Unfortunately, coverage analysis has some limitations. Cover-
age is not uniform in a sample, and local peaks and valleys are fre-
quently observed without necessarily pointing to an SV;
furthermore, unresolved regions in the genome insert drastic shifts
in coverage. Moreover, even when studying per-base coverage, it is
not clear where the shift happens.

Coverage analysis may also be used for filtering out some SVs
that, despite being supported by variant callers, do not seem to
imply changes in the DNA material. This can only be applied to
some types, namely deletions and duplications, which has been
proven useful in our study.

NA19240 data were used for assessing the performance of vari-
ant callers on our samples and for testing disCoverage. We applied
both approaches, filtering the called SVs and checking the coverage
support for truth set events, to our cases and the data from
NA19240 and increased the agreement between techniques. The
results from P1–7 were discussed in detail in the Results section.
Similarly, for NA19240, we could discard 29/62 out of the 100
called SVs when using minimap2 and NGMLR, respectively. Out
of the 122 SVs of interest in the truth set, 55/61 SVs were sup-
ported by the coverage. This represented an increase in specificity



Fig. 7. Structural variants identified by aCGH and their status after nanopore analysis. Concentric semi-dashed circumferences represent P1–7 from outermost to innermost,
while the most external one shows genome coordinates and karyotype. Each dot represents an SV call from aCGH, and its color indicates whether it was found by our
nanopore analysis and how. A) Results obtained using hg38 as a reference. B) Results obtained using hg19 as a reference. Coordinates are taken from aCGH results. Variants
that would obscure each other are shifted away from the semi-dashed lines to avoid this; check Supplementary Table 1 for the full list of coordinates. SVs found by variant
callers are colored green; those only found by our coverage analysis, blue; and those not found, red. Nearby dots have been shifted across the radius so as to not obscure the
close SVs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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when discarding �56%/62% of the erroneous calls for each aligner.
Considering that SV detection is still in development [14], a frac-
tion of the remaining ‘‘false” positives could be present in
NA19240’s genome, considering that they were supported by
alignment and coverage. The number of SVs recovered by disCover-
age was one order of magnitude larger than that of variant callers
for the truth set, although this was certainly influenced by the call-
ers that only found one SV from the gold standard. For the > 50-kb
CNVs in our study cases, disCoverage performed similarly to call-
ers, and it was able to rescue a few more variants (Fig. 7), although
it needed the coordinates as the input.

Therefore, the coverage analysis implemented in our tool was
useful to study large SVs from the nanopore sequencing data.
The decision to compare against a wide (2 Mb) surrounding region
seemed to have allowed to overcome the coverage irregularity, and
the selected p-values were useful to detect SVs with confidence.

In this work, we used a threshold for p-values smaller than 0.05.
This has been used for particular applications in the scope of bio-
logical studies [55,56], and general corrections for p-values are
available, as 0.05 may not be suitable for all applications [57]. As
a matter of fact, recent works have proposed that the 0.05 thresh-
old should be lowered [58]. With this in mind, we combined the t-
test with the coverage difference as a criterion to report any SV as
supported by the coverage. Our p-value threshold was meaningful
for our cases and was useful to polish the variant sets. However,
further studies are required to confirm its optimality.

As shown in this work, coverage analysis could be used to find
additional support for possible SVs with another technology’s
results as the input. This process could be extended for application
to situations in which a set of genes or loci are suspected to be
affected, which could be helpful for molecular diagnosis. Therefore,
the other side of our analysis is also of interest: variant callers gen-
erated large sets of variants, and reducing the number of SVs could
help in finding the mutation responsible for a given disease. High
confidence sets could be generated from the intersection of several
callers’ results [1], and disCoverage could be an alternative (for
deletions and duplications) that would not require several callers
to report the same difficult variant.
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Nanopore sequencing and aCGH differences

The variants’ coordinates were another major difference
between aCGH and nanopore sequencing that contributed to the
explanation of the discrepant results. The coordinates for the SVs
discovered with nanopore sequencing were more accurate because
the alignments allowed for placing them with a 1-base precision,
which is one of the strengths of third-generation sequencing
[13]. These differences were measured and compared (Fig. 8) for
the CNVs found with both the reference versions. The variability
of accuracy for the aCGH coordinates was considerable, as there
were coordinates of SVs determined by these two methods with
almost complete concordance (11 bp) to a difference that almost
reach 3 Mb (2,956,260 bp). Interestingly, the discrepancy of coor-
dinates was more evident when using hg38 as the reference, which
suggested that this difference was an artifact from the coordinate
translation between references. Although for a deletion in
chr17:43229084–43303788 (hg38 coordinates), the difference
was greater than 2 Mb in both the cases, and the other three SVs
found in hg19 but not in hg38 had a difference greater than
1 Mb. We considered these calls to be the same CNVs as their aCGH
counterparts. This was based on the premise that, as they had the
same nature (e.g., ‘‘Loss” and ‘‘DEL”), similar size, and relatively
close location, it was likely that they were the same variant. We
found this more likely than such similar variants existing this clo-
sely, but only one being detected by callers or having a significant
impact of coverage. Lifting variants from one reference to the other
introduces errors in coordinates, which makes the discrepancies
between techniques more noticeable (Fig. 8). Consequently, con-
verted sets of coordinates should be used carefully.

The majority of > 50-kb CNVs identified by nanopore sequenc-
ing (99.43%/96.63%/97.84% of them for lra, minimap2, and NGMLR)
were not detected by aCGH. Very large SVs (>10 Mb), particularly
those encompassing other SVs or centromeres, were probably arti-
facts and were not considered true, despite being supported by
several reads and supplementary alignments.

Finally, note that while CGH and nanopore sequencing reported
a considerably different number of variants (�20 CNVs against



Fig. 8. Boxplot of the absolute value of aCGH and nanopore coordinate difference (start and end mean) per patient, for hg19 (green) and hg38 (orange). Coordinates are taken
from NGMLR and Sniffles, which yielded the best results for > 50-kb CNVs. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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�30,000 SVs of all types, respectively), the difference was lower
for > 50-kb CNVs, of which nanopore sequencing reported � 100.
Additionally, after running disCoverage, most of them were filtered
out (Tables 2 and 3), and the number of variants called was more
similar between the two. The use of CGH was interesting because
it provided a clear example of how large variants were harder to
detect. While new tools were developed, the results for this partic-
ular subset did not improve. Despite being difficult to study, large
SVs can be pathogenic [20], and therefore, its characterization was
important.
Conclusion

Nanopore sequencing is a very useful third-generation sequenc-
ing technology to find variants that cannot be detected by applying
short-read sequencing technologies, and they are useful for other
studies, for example, haplotyping [59]. Nevertheless, this technol-
ogy and its related software tools are at different levels of maturity
and require further development.

Our results led to the conclusion that, for SV calling, the hg38
version of the reference human was better, which was in agree-
ment with the literature on smaller variants [60], although SVs
whose coordinates could not be translated (8 in our study) were
impossible to find in hg38. Regarding software, the alignment pro-
duced by NGMLR generated more complete sets of SV calls when
using Sniffles, with more SVs as a trade-off. SVIM, with only one
flow cell per patient, called fewer SVs and characterized them
worse. However, using the NA19240 dataset, we assessed that this
was specific to large CNVs that yielded satisfactory results,
although Sniffles and CuteSV obtained the best results.

Future applications may yield higher depth coverage alongside
more accurate reads. Additionally, software applications will be
developed to better parse anomalies in alignments and character-
ize SVs more accurately. Meanwhile, newer tools seem to bring
improvements in the field [15,16]. However, the variant sets
reported by third-generation sequencing are still incomplete and
contain false positives [1,15,16]. As reported, this issue seemed
to be worse for larger CNVs, and more recent tools have not
improved this, and the problem does not seem to be observed or
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addressed. Large CNVs, and SVs in general, are still of interest for
the impact they have [17]–[19]. We presented that the coverage
analysis from the same sequencing experiment that was used to
call variants could alleviate the problem.

Regarding disCoverage, we found that it could support many
more aCGH > 50 kb from Chaisson et al.’s truth set than variant
callers. Thus, in addition to filtering out CNV calls, it could be used
for detecting the known (previously or discovered in the same stu-
dio) polymorphic CNVs in populations, which is another current
use of nanopore sequencing [61].

We believe that this study, which we have extended from AT to
genomic scale, and the methodology applied to compare nanopore
sequencing with aCGH at the whole-genome level will contribute
to the creation of a knowledge foundation that may allow future
projects to tackle other pathologies.
Code and data availability

The code used for analysis is available in the following GitHub
repository: https://github.com/javiercguard/nanopore_pipeline_
21. The tool disCoverage is available at https://github.com/javierc-
guard/disCoverage. The data that support the findings (P1–7) of
this study are available from NIHR BioResource, but restrictions
apply to the availability of these data, and so, these data are not
publicly accessible. Data from NA19240 were downloaded from a
public dataset [49,50].
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