Table 2.
Evaluation metrics of the models constructed by each algorithm
AUC | ACC | SEN | SPE | Kappa | Brier score | MCC | |
---|---|---|---|---|---|---|---|
Train | |||||||
CART | 0.981 | 0.893 | 1 | 0.883 | 0.577 | 0.038 | 0.637 |
GBM | 0.965 | 0.94 | 0.843 | 0.949 | 0.684 | 0.038 | 0.694 |
KNN | 0.969 | 0.957 | 0.941 | 0.959 | 0.777 | 0.047 | 0.788 |
LR | 0.784 | 0.703 | 0.843 | 0.689 | 0.228 | 0.075 | 0.319 |
NNet | 0.849 | 0.831 | 0.765 | 0.838 | 0.37 | 0.065 | 0.42 |
RF | 0.978 | 0.924 | 0.941 | 0.922 | 0.651 | 0.041 | 0.682 |
XGBoost | 0.996 | 0.959 | 1 | 0.955 | 0.794 | 0.017 | 0.881 |
Valid | |||||||
CART | 0.997 | 0.963 | 1 | 0.959 | 0.822 | 0.023 | 0.835 |
GBM | 0.991 | 0.938 | 1 | 0.931 | 0.729 | 0.029 | 0.757 |
KNN | 0.983 | 0.975 | 0.917 | 0.982 | 0.866 | 0.051 | 0.867 |
LR | 0.75 | 0.529 | 0.917 | 0.486 | 0.133 | 0.081 | 0.242 |
NNet | 0.907 | 0.793 | 0.917 | 0.78 | 0.376 | 0.058 | 0.459 |
RF | 0.99 | 0.905 | 1 | 0.894 | 0.627 | 0.042 | 0.676 |
XGBoost | 0.998 | 0.971 | 1 | 0.968 | 0.857 | 0.016 | 0.866 |
Train Training set
Valid Validation set
AUC Area under the curve
ACC Accuracy
SEN Sensitivity
SPE Specificity
MCC Matthews correlation coefficient