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are not easily scaled to industrial levels. Therefore, from a 
translational perspective, continuous production processes 
such as microfluidic nanoparticle synthesis offer an attrac-
tive and scalable means to generate highly reproducible 
nanoparticles (Shepherd et al. 2021). In microfluidic synthe-
sis, nanoparticle precursor materials are dispersed in either 
aqueous or organic solvents, and by passing these solutions 
through a channel with micrometer dimension with different 
geometries (e.g. T-junction, Y-shaped, etc.) or with different 
channel paths, rapid mixing can result in phenomena condu-
cive to self-assembly of nanoparticles (e.g. micro-mixing, 
nano-droplet formation, or nanoprecipitation). Microfluid-
ics offers precise control over multiple synthesis parameters 
(e.g. flow rate, solvent ratios, precursor concentrations) and 
has been shown to yield particles with better control over 
size as well as dispersity compared to batchwise synthesis 
methods (Karnik et al. 2008). Moreover, this approach can 
yield many different types of particles, such as liposomes 
(Sedighi et al. 2019), polymeric nanoparticles (Karnik et al. 
2008), and hybrid solid-lipid nanoparticles (Arduino et al. 
2021). In microfluidic nanoparticle development, the opti-
mization of the desired particle attributes (size, stability, 
therapeutic loading, etc.) can be challenging due to the num-
ber of possible combinations of the engineering parameters. 

1 Introduction

The rapid development and deployment of the mRNA 
lipid nanoparticle vaccines against the SARS-CoV-2 virus 
brought to the forefront the potential of nanomedicine in 
tackling our most pressing medical challenges (Cohen 2021; 
Hou et al. 2021). However, conventional laboratory prepara-
tion techniques for nanoparticles (i.e. batchwise production) 
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Identifying the optimal synthesis parameters is a non-trivial, 
time-consuming, laborious, and resource-intensive experi-
mental task. However, advanced computational methods 
can help reduce the experimental burden and accelerate the 
identification of a ‘lead configuration’ for the nanomedicine.

The application of artificial intelligence (AI) methods 
to the “wet sciences” has the potential to revolutionize the 
way we design and optimize formulation development. AI 
has been applied towards numerous areas of nanomedicine, 
such as formulation development (Bannigan et al. 2021), 
microfluidics (Galan et al. 2020; Liu et al. 2021), opti-
mizing drug delivery (Hassanzadeh et al. 2019), and bet-
ter understanding nanotoxicology (Singh et al. 2020) and 
nanoparticle-cell interactions (Boehnke et al. 2022; Hassan 
2020; Price and Gesquiere 2019). Computer algorithms and 
computational models that can predict the physico-chemical 
properties of nanosystems could streamline the development 
of nanoparticle systems, reducing development time as well 
as resource waste, resulting in faster production of reliable 
nanoparticle platforms for drug delivery (Boso et al. 2020; 
Boso et al. 2011; Yamankurt et al. 2019). Here, we report 
the implementation of two different machine learning (ML) 
tools that can aid in predicting the dispersity, stability, and 
size of liposomes formulated through a microfluidic device. 
The rationale for choosing these particular endpoints was 
the well-known effect that nanomedicine physico-chemical 
properties (i.e. size, dispersity, surface charge, shape) have 
on nanoparticle safety and toxicity (Fischer and Chan 2007), 
as well as in mediating particle interactions with biological 
systems (e.g. cells, biodistribution and pharmacokinetics) 
(Chithrani et al. 2006; Danaei et al. 2018; Di Francesco et 
al. 2021; Kinnear et al. 2017; Nel et al. 2009).

Liposomes were selected as a model nanoparticle sys-
tem, though the methods herein are extensible to other 
nanoparticle drug delivery systems and microfluidic plat-
forms. A library of liposome formulations obtained by 
varying the total flow rate, aqueous:organic mixing volume 
ratio, organic phase concentration, and curcumin loading, 
was systematically synthesized via a benchtop, commer-
cially available microfluidic-based instrument. From this 
library, two supervised ML models were trained. One model 
exploits the support-vector machines (SVM) algorithm 
using open-source tools, and could predict particle disper-
sity (i.e. monodisperse vs. polydisperse) as well as particle 
stability (i.e. remaining monodisperse for at least 3-days). 
The other model is based on feed-forward artificial neural 
networks (ANN) and could give a quantitative prediction of 
the resulting liposome diameter from the initial microfluidic 
parameters. This work represents a step towards building 
a platform technology which could be widely deployed by 
researchers in the nanomedicine/drug delivery field towards 

increasing the speed at which new nanoparticle formula-
tions can be developed.

2 Results & discussion

2.1 Generating and characterizing a library of 
liposomes

The library of liposomes were synthesized on a commer-
cially available benchtop microfluidic system (NanoAssem-
blr®) comprised of two inlets for the organic and aqueous 
phases, a disposable cartridge with a microfluidic channel, 
within which the two phases are vigorously mixed, and an 
outlet for collecting the resulting suspension of liposomes 
(Fig. 1a). The aqueous phase contained phosphate buff-
ered saline (PBS) and the organic phase contained dipal-
mitoyl-phosphatidyl-choline (DPPC), cholesterol (Chol), 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[carboxy(polyethylene-glycol)-2000] (DSPE-PEG2000), 
and curcumin (Curc) dissolved in ethanol. Four engineering 
parameters were systematically changed to realize over 200 
different liposome configurations (Fig. 1b): the total flow 
rate (TFR), defined as the sum of the flow rates for the aque-
ous and organic phases, ranging between 1 and 16 ml/min; 
the total lipid concentration including DPPC, Chol, and 
DSPE-PEG2000 initially dispersed in the organic phase, 
varying from 10 to 40 mg/ml; the volume ratio between the 
aqueous and organic phases, ranging from 3 to 9; and finally 
the addition or omission of curcumin as a model therapeu-
tic. Figure 1c,d present a dynamic light scattering (DLS) 
size distribution and a scanning electron microscopy image 
of a representative liposome configurations reporting on the 
dispersity and overall spherical shape of the obtained lipid 
particles.

All the liposome formulations were characterized by 
dynamic light scattering (DLS) to evaluate their hydrody-
namic diameter (i.e. size) and polydispersity index (PdI). 
Furthermore, the colloidal stability of the liposome was 
assessed by performing DLS measurements longitudinally 
in time up to 72 h for liposomes stored in PBS at 37 °C. 
Particle size distribution (i.e. dispersity) was evaluated in 
context of the PdI, a dimensionless number providing quan-
titative information on the homogeneity of the nanoparticle 
population. It is here important to highlight that the defini-
tion of monodisperse (i.e. a homogenous size distribution) 
and polydisperse (i.e. a heterogenous size distribution) 
varies. Some classify monodisperse particles as having a 
PdI < 0.07 (Wren et al. 2020) or a PdI < 0.3 (Danaei et al. 
2018), while others define PdI < 0.1 as highly monodis-
perse, a PdI from 0.1 to 0.4 as moderately polydisperse, 
and a PdI > 0.4 as highly polydisperse (Bhattacharjee 2016). 
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Thus, although the strict interpretation of “monodispersity” 
should be a PdI < 0.07, most nanomedicines are considered 
monodisperse if the PdI is generally lower than 0.3 (Baalou-
sha and Lead 2013). In fact, the definition of monodispersity 
depends to a point on the proposed application, in that a 
polydisperse particle size population will behave character-
istically different than a monodisperse one. Moreover, FDA 
guidelines for liposomal formulations do not define a strict 
definition for monodispersity, and rather detail that adequate 
characterization of the liposome physicochemical proper-
ties are required (FDA 2022; Tinkle et al. 2014; Wang and 
Grainger 2022). Here, we define monodisperse formula-
tions as those with a PdI ≤ 0.220 (i.e. 0.200 + 10%), and also 
further evaluate multiple classifications (i.e. PdI ≤ 0.200, 
PdI ≤ 0.300, and polydisperse). Moreover, liposomes were 
defined as stable if a sufficiently low PDI (≤ 0.220) was 
maintained over time (i.e. up to 72 h).

Figure 2 reports the mean hydrodynamic diameter and 
polydispersity index for all 218 different liposomal configu-
rations in terms of the four engineering parameters – total 
flow rate (first column); total lipid concentration (second 
column); aqueous:organic phase volume ratio Va/Vo (third 
column); and inclusion of curcumin (fourth column). For 
each distinct engineering parameter (i.e. column), the col-
ored dots represent unique combinations of the other three 
parameters. From this scatter plot some general trends can 
be deduced as, for instance, an increase in the total flow rate 

results in a reduction of particle size, as well as an increase 
in PdI. Furthermore, increasing the lipid concentration 
seems to indicate a general increase in particle diameter, 
while increasing the Va/Vo leads to a narrowing of the range 
of particle sizes produced. However, it is difficult to extract 
the independent contribution of each of these engineering 
parameters. Interestingly, when looking at the summarized 
data, it was found that there were more monodisperse formu-
lations with curcumin-loaded liposomes (31% of formula-
tions) compared to empty liposomes (17% of formulations). 
For empty liposomes the sizes ranged from 35 to 183 nm, 
while for curcumin-loaded liposomes it was similarly 52 
to 183 nm. However, for both empty and curcumin-loaded 
formulations the mean diameter for all formulations was 
around 83 ± 25 nm.

Traditionally, to further explore these data one would fix 
a variable and then analyze the contribution of the remaining 
parameters. Figure 3 shows, for example, the total flow rate 
fixed to 1 ml/min, while the other three engineering param-
eters vary within the predetermined ranges. In particular, 
Fig. 3a documents that an increase of the total lipid concen-
tration from 10 to 40 mg/ml leads to a consistent increase in 
particle size from about 90 to 140 nm, whereas an increase 
of the aqueous to organic volume ratio Va/Vo from 3 to 9 
is responsible for a decrease in size of about 20% for all 
considered lipid concentrations. Importantly, at this low 
TFR, all liposome configurations presented a PdI < 0.220 

Fig. 1 Microfluidic-based fabrication of curcumin-loaded liposomes. 
(A) Schematic representation of the microfluidic chip with the reagents 
dispersed in the organic (yellow) and aqueous (azure) phases used for 
the liposome synthesis; (B) List of the four independent engineering 
parameters (total lipid concentration; aqueous: organic volume ratio; 

total flow rate (TFR); drug loading) for the liposome synthesis; (C) 
Dynamic light scattering characterization of a representative liposome 
configuration with (+ Curc: red line) and without (- Curc: blue line) 
curcumin; (D) Scanning electron microscopy image of a representative 
liposome configuration (scale bar: 100 nm)
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described in the Materials & Methods section. All of these 
measurements resulted in 218 unique formulations. Of these 
218 unique formulations, 72 (33%) were found to be mono-
disperse (PdI ≤ 0.220) directly after synthesis. A summary 
of measurements can be found in Supporting Table S1.

2.2.1 Open-source tools for supervised machine learning 
models

The development of open-source tools, such as the scikit-
learn module in Python (Pedregosa et al. 2011), offers a 
chance to apply powerful machine learning algorithms 
towards interesting and critical research questions. Here, 
classification-based supervised machine learning models 
were developed to perform qualitative predictions on lipo-
somal dispersity and stability over time. DLS measurements 
were used to train ML models on the four independent engi-
neering parameters. For training the classification models, 
the DLS measurements were randomly split into a training 
data set (85% of the observations) and a data set used to 
validate the ML model (15% of observations), following an 
approach known as holdout with random resampling (Dia-
mantidis et al. 2000). Different classification algorithms 
(e.g. logistic regression, linear discriminant analysis, k-near-
est neighbor, classification and regression trees, Gaussian 
Naive Bayes, and support-vector machines) were trained on 
the data set to build predictive models for liposomal disper-
sity or stability. For all the classification models, a stratified 
k-fold cross-validation was performed to estimate the model 
accuracy (Diamantidis et al. 2000). In this approach, the 
data set was split into a number of “folds” (i.e. k = 10 folds), 
where the class (i.e. monodisperse vs. polydisperse or stable 
vs. unstable) mean and variance of each fold approximated 
that of the whole data set. The algorithm was then run k 
times and, on the k = i-th run, the i-th fold was withheld as 
the validation data set. This approach enabled an estima-
tion of model accuracy with smaller bias compared to the 
holdout with random resampling method. Table 1 shows the 
predicted accuracy from the stratified k-fold cross-valida-
tion and the measured accuracy of the different classifica-
tion models in assessing liposome dispersity. From these 
results, the support-vector machines (SVM) model (Gunn 
1998) was chosen for predicting particle dispersity, as it was 
found to be quite accurate (94.9%) using the holdout with 
random resampling method, while also returning among the 
highest predicted accuracies (91.3 ± 3.9%) using the strati-
fied k-fold cross-validation. Moreover, this model was most 
accurate when predicting liposome stability.

In order to evaluate the effect of data set size (i.e. popu-
lation) and the influence of the number of unique formu-
lations on predicting particle dispersity, a program was 
written that would randomly remove measurements from 

and could be therefore considered as monodisperse liposo-
mal configurations (Fig. 3b). The surface ζ-potential of the 
liposomes did not change significantly with the total lipid 
mass, aqueous to organic volume ratios Va/Vo, and addition 
of curcumin, ranging between − 40 and − 20 mV (Fig. 3c). 
This would indicate that the surface properties of the lipo-
somal configurations are preserved despite the different 
microfluidic fabrication conditions. The colloidal stability 
was assessed for all formulations over 72 h. In particular, 
Fig. 3d shows the stability for the liposomes synthetized at 
TFR of 1 ml/min and for Va/Vo = 3. Under these conditions, 
the liposomes are very stable exhibiting a modest change 
in size and PdI of ~ 10% for the entire observation period. 
These same characterizations were performed for all for-
mulations (Supporting Figure S1-2). In general, liposomes 
realized with higher lipid concentrations and lower TFR 
tended to be monodisperse and stable.

2.2 Machine learning algorithms

ML is a branch of AI whereby a machine (computer or 
program) can learn without being explicitly programmed 
through iteratively training on historical data. Using 
machine learning algorithms, computational models can be 
built which can find patterns and trends in large data sets, 
which would not be obvious to the human eye. The initial 
library of liposome measurements was extensive: 3,518 
total measurements. At the outset of the project, 2x cur-
cumin states were tested (- Curc or + Curc), 4x lipid con-
centrations (10, 20, 30 and 40 mg/ml), 5x initial TFR (1, 
4, 8, 12, and 16 ml/min), and 3x Va/Vo (3, 6, 9). However, 
throughout the building and testing of the various models, 
new conditions were added, including new TFR values (2, 
6, 10, 14, 15 ml/min) and the Va/Vo ratio of 4.5. These new 
conditions were less systematically explored and more used 
to test the current iterations of the models on unseen data 
and conditions. The resulting measurements were subse-
quently added to the entire data set. Likewise, while test-
ing model responses some formulations were replicated up 
to n = 15 times. However, for all finalized models the total 
number of replicates was limited to a maximum of n = 6, as 

Fig. 2 Summarized hydrodynamic diameter and PDI for all liposomal 
configurations. Average diameter and PdI values were calculated for 
each unique formulation and separated by (A) empty liposomes and 
(B) curcumin-loaded liposomes. Solid points represent monodisperse 
formulations (PdI ≤ 0.220) and translucent points represent polydis-
perse formulations (PdI > 0.220). Each column fixes a unique param-
eter as the independent variable (e.g. flow rate, lipid concentration, or 
aqueous:organic ratio), and for each column the different colors indi-
cate unique formulations (i.e. unique combinations of the other two 
non-independent variable factors). Asterisk and error bars represent 
mean values ± standard deviation. For diameter averages, only mono-
disperse formulations were considered while for PdI averages all mea-
surements were considered

1 3
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Table 1 Predicted model accuracy of various classification algorithms for liposome dispersity. Accuracy predicted using k-fold cross-validation 
(k = 10 folds) for various classification algorithms (LOR: logistic regression, LDA: linear discriminant analysis, KNN: k-nearest neighbor, CART: 
classification and regression trees, GNB: Gaussian Naive Bayes, SVM: support-vector machines). All the data are presented as mean % ± SD. (§ 
monodisperse (PdI ≤ 0.220) or polydisperse)
Classification
model

Predicted accuracy for
binary classification§

Predicted accuracy for
multiple dispersity classifications

LOR 90.2 ± 3.1 74.8 ± 4.1
LDA 88.7 ± 3.9 71.2 ± 3.5
KNN 89.1 ± 4.1 74.2 ± 5.0
CART 92.3 ± 3.4 76.8 ± 3.5
GNB 87.2 ± 3.5 71.2 ± 3.2
SVM 91.3 ± 3.9 78.3 ± 5.9

Fig. 3 Morphological and surface characterizations of liposomes 
(TFR = 1 ml/min). (A) Hydrodynamic diameter, (B) polydispersity 
index (PdI), and (C) surface ζ-potential of liposomes as a function 
of the aqueous:organic volume ratio Va/Vo and for different total lipid 
concentrations (10, 20, 30, and 40 mg/mL). Top row is for empty 

liposomes (- Curc), bottom row is for curcumin-loaded liposomes 
(+ Curc). (D) Colloidal stability documented by measuring the hydro-
dynamic diameter and PDI over 3 days of liposomes realized at TFR 
1 ml/min and Va/Vo = 3.
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a clear plateaued was not identified within the limit of the 
current analysis (218 unique configurations).

During the experimental characterization, all the lipo-
somal configurations were replicated a minimum of three 
times. However, for some configurations, the number of 
replicates was increased up to 15. Nevertheless, increasing 
the number of replications for some formulations and not 
others could unduly bias the model performance. In order 
to evaluate the influence of these excessive replicates on 
model accuracy, the program systematically re-ran the pre-
diction process, each time increasing maximum number of 
experimental replicates per unique configuration and com-
pared the SVM model accuracy (Fig. 4c). There was no 
change in SVM model performance for predicting particle 
dispersity when the number of experimental replicates was 
increased past three and all formulations were restricted to 
a maximum of n = 6 replicates in the actual models. It is 
important to note that these models were trained using the 
default settings (i.e. default hyperparameters) of the scikit-
learn module, and while hyperparameter tuning to find the 
best parameters could be performed, it was our intention to 

the data set so that the total number of measurements would 
range from 40 to 779 (i.e. the maximum number of “Day 0” 
measurements made – Supporting Table S1). The complete 
supervised learning process was then re-run on this random 
data set, that is to say splitting into training and validation 
data sets, training the SVM model, and evaluating model 
accuracy on the validation data set. Since this process was 
biased by which measurements were randomly removed, 
the randomization procedure was repeated 5,000 times and 
the prediction outcomes were averaged. As expected, the 
variability due to random sampling (light gray shaded area 
in Fig. 4a) was inversely related to the total number of mea-
surements, and the model accuracy plateaued around 550 
measurements, as determined by a one-sided T-test compar-
ing the number of measurements to a fixed model accuracy 
measured at 92%. During this randomization procedure, the 
program also counted the number of unique formulations. 
These data were then plotted against the SVM model accu-
racy in Fig. 4b. Here, similarly, the variability decreased 
as the number of unique formulations increased, however 

Fig. 4 Support-vector machines (SVM) training to predict liposome 
dispersity and stability. (A) The effect of the liposome library size and 
number of experimental replicates on the model accuracy; (B) The 
effect of the number of liposome configurations on the model accu-
racy. (Dots represent mean values and gray areas represent mean ± 1 
standard deviation); (C) The effect of the number of experimental rep-
licates per formulation on SVM model accuracy. (Black dots repre-

sent the measured accuracy of the SVM model. Gray dots represent 
the mean model accuracy ± 1 standard deviation following a stratified 
k-fold cross-validation (k = 10); D. and E. Heatmaps presenting the 
predictions for the liposome dispersity and liposome stability, post 
SVM training ( filled diamonds corresponds to the actual experimental 
values)

 

1 3

Page 7 of 13 29



Biomedical Microdevices (2023) 25:29

work provides a point from which a larger database could 
be built, and the scope of the machine learning algorithms 
could be expanded to predict a wider array of particles. In 
fact, such an open-source solution points towards the poten-
tial of community-driven machine learning models where 
large, active databases mean dynamic, evolving machine 
learning models that can provide a means to rapidly identify 
formulations that will successfully yield particles.

2.2.2 Artificial neural networks for predicting liposome 
size

Artificial neural networks (ANN) are computational mod-
els which use learning algorithms that mimic a simplified 
brain’s cerebral activity to process and store information. 
For their capacity to analyze large amounts of data and 
detect complex patterns, ANN can be effectively applied 
to a vast array of problems, many of which would be too 
complex to be solved with theoretical models. As men-
tioned, in this work the experimental library of different 
liposomal configurations was exploited to develop neural 
network models capable to predict the liposome size as a 
function of the different fabrication parameters. To this aim, 
the dynamic light scattering measurements were divided in 
two subsets based on the inclusion of the therapeutic agent: 
empty liposome (- Curc) and curcumin-loaded liposomes 
(+ Curc). Consequently, the ANN models were trained only 
on the remaining three engineering parameters: total flow 
rate, aqueous:organic volume ratio, and total lipid concen-
tration. Each of the two DLS measurement sets was split 
into a training data set (85% of observations) and a valida-
tion data set (15% of observations), used to monitor ANN 
overtraining and model integrity. The validation samples 
were selected on a random basis so that would not be limited 
to a specific subset of liposomal configurations.

Only the experimental data set returning a monodisperse 
population of liposome were used (PdI ≤ 0.220 on Day 
0, immediately after synthesis) to build models for quan-
titatively predicting the liposome size. As a consequence, 
the experimental library defined above was significantly 
reduced, thus requiring a careful design and modulation of 
the neural networks. ANN models were trained using highly 
optimized backpropagation training algorithms and the 
layer-to-layer transfer functions were customized depend-
ing on the training characteristics of the first trial neural 
nets. Fully connected, non-hybrid neural networks, imple-
menting the sigmoid transfer function, proved to be the 
most suitable. The DLS measurements showed that empty 
liposomes were significantly more polydisperse compared 
to curcumin-loaded liposomes (~ 74% compared to 65%, 
respectively), and exhibit a larger variation in size (Sup-
porting Figure S5). Indeed, a larger number of liposomes 

construct the classification models with a rapid, “hands off” 
and out-of-the-box approach.

In order to build the SVM model to predict particle sta-
bility, the PdI of the liposomes was evaluated over a 3-Day 
period and the mean PdI over that time (Supporting Figure 
S3) was compared to a fixed value of 0.220 via a one-way, 
one-sided T test. Formulations with a mean PdI significantly 
greater than 0.220 (p-value < 0.05) were classified as unsta-
ble. Classification algorithms were then trained on these 
p-values to build a model capable of predicting whether a 
formulation would be stable or unstable (Supporting Table 
S2). The SVM model for predicting liposome stability was 
found to be approximately 92% accurate and had a predicted 
accuracy of 88 ± 5% with stratified k-fold cross-validation. 
Once the models were trained to predict liposome dispersity 
or liposome stability, they could be run in a “recall” mode to 
make predictions over a wide range of theoretical microflu-
idic parameters. Figure 4d and e show prediction heatmaps 
marking zones where liposomes are expected to be mono-
disperse or polydisperse (Fig. 4d), or where they are antici-
pated to remain stable for at least 3 Days (Fig. 4e). Overlaid 
on top of the heatmaps are the summary measurements (i.e. 
filled diamonds) which show the mean results found experi-
mentally. It becomes evident that using a low TFR (< 8 ml/
min) is critical for successfully developing viable and stable 
liposomes with this specific lipid formulation. Figure 4d 
shows the results of an SVM model using multiple clas-
sifications of dispersity (e.g. PdI ≤ 0.200, PdI ≤ 0.300, and 
polydisperse), while the prediction of stable areas (Fig. 4e) 
relied on a more strict definition of stability (i.e. PdI ≤ 0.220 
over 3-days). A similarly strict interpretation of monodis-
perse and polydisperse was shown in Supporting Figure S4.

The use of pre-built tools such as the scikit-learn mod-
ule in Python offers an out-of-the-box approach to generate 
supervised machine learning models to streamline microflu-
idic-based nanoparticle synthesis. Here the objective was to 
understand two specific and important questions regarding 
the microfluidic synthesis of liposomes: (i) could supervised 
machine learning models or artificial neural networks pre-
dict the dispersity of liposome formulations based on the 
microfluidic synthesis parameters; (ii) could analysis of 
liposome stability over time be used to predict those formu-
lations which remain stable over a period of days? Certainly, 
the formation of liposome in a microfluidic, micro-mixing 
scenario can be described theoretically, and others have 
reported advanced statistical methods for comparatively 
deciphering how microfluidic synthesis parameters affect 
liposome size and stability (Bannigan et al. 2021; Barthel-
dyová et al. 2018; Kastner et al. 2014; Ocampo et al. 2021; 
Sedighi et al. 2019; Zook and Vreeland 2010). Here, a spe-
cific formulation is described with a fixed lipid ratio of 6:3:1 
for DPPC, cholesterol, and DSPE-PEG2000, the presented 
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with the three varying synthesis parameters (total flow rate, 
aqueous:organic volume ratio, total lipid concentration), 
then accounted for two hidden layers with 4 and 2 neurons, 
and ended with one-node output layer (the predicted lipo-
some size). The ML model learning statistics revealed that 
all the microfluidic variables played a significant role on 
the prediction of the liposome size, with the total fluid rate 
providing the most relevant contribution (45%), followed 

returned a PdI < 0.220, especially at lower total lipid con-
centrations, for the subset of curcumin-loaded liposomes. 
Nevertheless, for both subsets (+ Curc and – Curc), the same 
type of ANN model was identified as the most reliable. In 
Fig. 5a, the optimized network topology is presented: a total 
of four layers were used to properly model the significant 
nonlinear behavior of the experimental data. For both lipo-
somal configurations, the ANN model was fed at the input 

Fig. 5 Artificial Neural Networks training to predict the liposome size. 
(A) Schematic representation of the neural network including three 
input nodes (green labels); two hidden layers made of 4 and 2 nodes 
respectively (yellow labels); one output node (cyan label); (B) Out-
put error between the predicted and measured particle diameter vs. the 
training pattern sequence number. Blue dots show the error recorded 
for the training set, while red dots indicate the error recorded on the 
validation set. (C) Root mean square error (RMSE) of the training 
and validation sets (blue and red, respectively) vs. iterations. Inset 
image shows the plateau recorded during the first 10,000 iterations. 

(D) Correlation coefficient of the training (blue) and validation (red) 
data sets as a function of the iteration number. The optimal agreement 
has a correlation coefficient equal to 1. Inset image shows the first 
40,000 iterations (E) learning rate coefficient vs. iterations. (F) Predic-
tion heatmaps, showing the calculated diameter for particle synthesis 
conditions not used for training or validation. The filled diamonds are 
the mean results of the experimental measurements; the grey areas 
mark the unstable field (liposomes predicted to be polydisperse, i.e. 
PdI ≤ 0.220). (G) Model predictions vs. the measured particle diam-
eters, the bisector line shows the optimal agreement
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implementing an effective tool that accelerated the learn-
ing process and prevented divergence. It drove LRC higher 
or lower in a systematic fashion depending on the current 
learning activity. If at any time the network showed signs of 
instability (seen as oscillations in the training error), LRC 
would be lowered to damp the instabilities thus preventing 
training divergence.

Upon training, the neural network models could be run 
in ‘recall’ mode to calculate the liposome size over a wide 
range of microfluidic parameters. Figure 5f presents the pre-
diction heatmaps showing the size of the curcumin-loaded 
liposomes for different synthesis conditions. Overlaid on 
top of the heatmaps are the summary experimental measure-
ments (i.e. the filled circles) which show the mean results. 
The gray areas mark the unstable fields where the SVM 
model predicted polydisperse liposomes. Finally, Fig. 5g 
displays a quick overview of the model showing the close 
correlation between predicted liposome size versus the mea-
sured size via the correlation coefficient (R2 value). The R2 
for the entire data set (i.e. training data + validation data) 
was calculated at 0.959, while the R2 for only the training 
data was 0.958.

Others have previously applied ANN and ML algorithms 
to construct predictive models for nanoparticle synthesis. 
Amani et al. (2008) constructed an ANN for predicting the 
size of nanoemulsions synthesized via a probe sonicator. 
Input factors such as surfactant percent, ethanol and oil per-
cents, concentration of budosenide (as a model therapeutic), 
saline normality, input energy, and rate of energy applied 
were considered in building the ANN. The ANN modeled 
the formulation with R2 values of 0.98 for the training data, 
0.92 for the test data (10% of the initial data set that was set 
aside for validation), and 0.89 for the validation data set (an 
addition 15 experiments performed to validate the model). 
Similarly, ANN have been applied for the prediction of size 
of PLA-PEG-PLA nanoparticles (Asadi et al. 2011), other 
polymeric nanoparticles (Youshia et al. 2017), and CdSe 
nanoparticles (Orimoto et al. 2012). Wu et al. (2022) reported 
the application of ML towards predicting the characteristics 
of chitosan nanoparticles formulated with a multi-inlet vor-
tex mixer fluidic device and flash precipitation. ML mod-
els were then built in python, and took into account various 
synthesis parameters, namely molecular weight of the cat-
ionic polymer, polymer concentration, number of reactive 
groups in the monomer of the anionic polymer, molecular 
weight of the anionic polymer, and flow speed. Although 
not microfluidic synthesis, this study similarly was able to 
quickly test a number of different ML algorithms to identify 
the most accurate for predicting diameter and PdI. Thus, it 
is clear that AI and ML will play an increasingly important 
role in the development of nanomedicines. The aggregation 

by the total lipid concentrations (33%); and, finally, the 
aqueous:organic volume ratio (22%).

Figure 5b,c shows the difference between the predicted 
and measured particle size versus the training pattern 
sequence number and the root mean square error (RMSE) 
history plot, respectively, for both the training (cyan dots/
line) and validation (red dots/line) data sets of the curcumin-
loaded liposomes. The graphs for the empty liposomes are 
similar. The error history of the training data displays the 
rate of network learning: it plateaued when the learning pro-
cess reached its maximum level. During the initial phase 
of the training process, corresponding to the first 20,000 
iterations, it showed a few preliminary plateaus in the error 
level. The first plateau was reached around a few hundreds 
of iterations returning a RMSE of ~ 0.15 (inset of Fig. 5c), 
where no significant learning took place, followed by a 
steep decrease in the training error below 0.05 at ~ 5,000 
iterations, where accelerated periods of learning took place 
(inset of Fig. 5c). After that, the error history showed minor 
oscillations representing training instabilities, which were 
damped by the activation of the learning rate control. The 
validation RMSE history had a similar trend and represented 
the model quality, depicting the accuracy of the network 
predictions for cases not used in the training process. Note 
also that the RMSE vs. iteration plot helps determine how 
well the ANN generalizes the learned information: a posi-
tive slope for RMSE curve would imply overtraining, which 
is not observed in this case. Continuing with the training 
of the network after it reached the RMSE minimum in the 
validation history could affect the predictive capabilities of 
the model. Over-trained nets usually show limited capacity 
for the generalization of concepts.

Figure 5d shows the correlation coefficient history curves 
for the training and validation data sets, which measures 
how well the network predictions trend with the targets. 
As expected, these plots should have an opposite behav-
ior as compared to the RMSE: the correlation coefficient 
increases as the ANN is trained and the corresponding 
RMSE decreases. Additionally, the correlation coefficient 
plots provide quantitative information, where a coefficient 
equal to 1 identifies a perfect linear correlation and 0 is asso-
ciated to a random correlation. Therefore, the correlation 
coefficient history plot for the validation data set (Fig. 5d, 
cyan line) gives a measure of how well the network predic-
tions correspond with measured values for cases outside the 
training set (i.e. unseen by the ANN), and can give useful 
indications as to the onset of the overtraining process (a pla-
teau followed by a negative slope). The learning rate coef-
ficient (LRC) versus iteration number is reported in Fig. 5e. 
The LRC affects the algorithm’s rate of learning within the 
backpropagation training paradigm. An automatic control 
routine was inserted to check the coefficient automatically, 
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4.2 Characterization of liposomes

Particles size, polidispersity index (PdI) and ζ-potential 
were measured using dynamic light scattering (DLS, Mal-
vern Zetasizer Nano S). All formulations were maintained 
in physiologic temperature (37 ± 2 °C) under agitation. At 
specific time points (1, 2 and 3 days) samples were taken 
and their physical features were examined.

4.3 Supervised machine learning to determine 
particle dispersity and stability

A supervised machine learning model was constructed using 
the open-source Python module scikit-learn (Pedregosa et 
al. 2011). Data from the DLS experiments were randomly 
divided into training and validation data sets, with 85% of 
the data being used for training and 15% being used for 
validation. Within both of these data sets, observations (i.e. 
the individual DLS measurements) were classified as either 
monodisperse (PdI ≤ 0.220) or polydisperse (PdI > 0.220). 
Furthermore, a different classification scheme was tested 
where formulations were classified as “PdI ≤ 0.200”, 
“PdI ≤ 0.300” or “polydisperse” (i.e. PdI > 0.300). The 
features used to predict particle dispersity were the parti-
cle synthesis parameters (i.e. TFR, aqueous:organic ratio, 
organic phase concentration, and curcumin loading).

The features of the training data set were subset into a 
matrix X and trained on the list Y, which were the differ-
ent known outputs (i.e. dispersity or stability). In order to 
evaluate particle stability over time, the different observa-
tions were grouped by TFR, aqueous:organic ratio, organic 
phase concentration, and curcumin loading. Then, a one-
sided t-test was performed on the grouped observations to 
determine whether the mean PdI over the three days was 
greater than 0.220 for each formulation, and a p-value > 0.05 
indicated that a particle was stable over the duration of the 
measurements.

Different classification machine learning models, part of 
the scikit-learn module suite, were used to predict particle 
dispersity and stability: logistic regression (LOR), linear dis-
criminant analysis (LDA), K-nearest neighbor (KNN), deci-
sion tree classifier (CART), Gaussian Naive Bayes (GNB), 
and support vector machines (SVM). For training the classi-
fication model to predict dispersity, only the so-called “Day 
0” observations were used, i.e. the measurements made 
directly after synthesis was completed. A stratified k-fold 
cross-validation (k = 10) was run to predict the accuracy of 
each classification model. The actual accuracy of the model 
was estimated by checking the different models on the vali-
dation data set, and comparing the predicted output with the 
actual measured values. Ultimately, the SVM was selected 
to predict particle dispersity and stability.

of these data could be applied towards streamlining the 
development process.

3 Conclusions

Microfluidics offers a scalable approach towards the devel-
opment of nanomedicine formulations. The application of 
AI techniques, such as ML, to aid in optimizing nanopar-
ticle synthesis is, in a sense, inevitable. Here, we presented 
an open-source framework based on the python program-
ming language, which was combined with the development 
of an ANN to provide a roadmap for the development of 
therapeutic liposomes via microfluidic self-assembly. The 
two support-vector machines (SVM) models, built to pre-
dict liposome dispersity and stability, were able to reach 
93% and 92% accuracy, respectively. Moreover, the ANN 
could predict curcumin-loaded liposome diameter with a 
correlation coefficient of 0.927. These data present a poten-
tial platform, in which an increasingly growing foundational 
database can be expanded to obtain powerful, predictive AI 
models for optimizing nanomedicine development.

4 Materials and methods

Materials. 1,2-distearoyl-sn-glycero-3-phosphoeth-
anolamine-N-[succinyl(polyethylene glycol)-2000] 
(DSPE-PEG-COOH), 1,2-Dipalmitoyl-sn-glycero-3-phos-
phocholine (DPPC), cholesterol were purchased from 
Sigma-Aldrich (SaintLouis, Missouri, USA). Curcumin 
(CURC) was obtained from Alfa Aesar (Haverhill, Massa-
chusetts, USA). All reagents and solvents were used without 
further purification.

4.1 Synthesis of liposomes

Liposomes were prepared using the NanoAssemblr® Bench-
top from Precision NanoSystems Inc. (Vancouver, BC, Can-
ada). DPPC, cholesterol, DSPE-PEG2000 (6:3:1) with and 
without curcumin (50 μg for each sample) was dissolved in 
EtOH. The organic solvent and an aqueous solution of PBS 
(pH = 7.4, 1X) was injected into the two inlets of the Nano-
Assemblr®. Aqueous dispersions of the liposomes were 
collected from the outlet, resulting from the mixing of two 
adjacent streams and dialyzed against PBS a 4 °C in order to 
remove the excess EtOH. For this study, the TFR, the con-
centration of organic phase (mg/mL) and aqueous:organic 
volume ratio were changed. Specifically, the TFR used was 
from 1 to 16 mL/min, the organic concentrations were 10, 
20, 30 and 40 mg/mL while the aqueous:organic ratios used 
were 3, 4.5, 6 and 9 for empty and loaded nanoparticles.
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avoiding instabilities and promoting rapid learning. More-
over, a routine for a systematic interrogation of the net-
work characteristic was implemented to analyze the hidden 
node contributions to the model performance. This routine 
allowed one to identify the minimum necessary number of 
neural units in each hidden layer, thus minimizing the com-
plexity of the model topology. This feature turned out to be 
particularly useful, given the relatively small subset of DLS 
measurements for the training and validation data sets. The 
ML neural model was designed to have relative strengths 
of all the output connections for each layer in the range of 
15–52%.
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