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Neuroblastoma (NB) is one of the most common extracranial
solid tumors in children. MYCN gene amplification is highly
associated with poor prognosis in high-risk NB patients. In
non-MYCN-amplified high-risk NB patients, the expression of
c-MYC (MYCC) and its target genes is highly elevated. USP28
as a deubiquitinase is known to regulate the stability of MYCC.
We show here USP28 also regulates the stability of MYCN.
Genetic depletion or pharmacologic inhibition of the deubi-
quitinase strongly destabilizes MYCN and stops the growth of
NB cells that overexpress MYCN. In addition, MYCC could be
similarly destabilized in non-MYCN NB cells by compromising
USP28 function. Our results strongly suggest USP28 as a
therapeutic target for NB with or without MYCN amplifica-
tion/overexpression.

Neuroblastoma (NB) is one of the most common extracra-
nial solid tumors in children, arising from the embryonic
neural crest (1, 2). It accounts for approximately 7% to 8% of
pediatric malignancies and about 15% of malignant neoplasm
deaths in childhood (3, 4). The disease is difficult to treat and is
often accompanied with poor prognosis. Currently, a combi-
nation of chemotherapy, surgery, and radiotherapy is the main
treatment strategy. Key genetic aberrations in NB pathogenesis
and progression include MYCN amplification, TERT rear-
rangements, ALK mutation/amplification, mutations in TP53,
KRAS, NRAS, ATRX, etc. (5–8). The amplification of MYCN is
observed in 20% to 30% of cases and confers poor prognosis (9,
10). In addition, about 11% of high-risk NB cases show
augmented expression of c-Myc (MYCC) (11). MYCN and
MYCC belong to the Myc family of transcription factors that
are critical in promoting cell growth and proliferation (12–14).
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Thus, it is apparent that targeting MYCN (or MYCC) would
bring therapeutic benefits for NB patient (15). However, direct
targeting of MYC proteins has been proven difficult, if not
impossible (16–18).

USP28 (ubiquitin specific protease 28) is a deubiquitinase
which is increasingly found involved in tumorigenesis (19). It is
not an oncogene by itself, but it can help a number of onco-
genic proteins stay away from ubiquitination and subsequent
proteasomal degradation (20). c-MYC, NOTCH1, LSD1, c-
JUN, HIF1A, and TCF/LEF family transcription factors are
some of those proteins reported (20–24). Many of these pro-
teins are ubiquitinated by the E3 ubiquitin ligase SCFFBW7 (25).
Thus, FBW7-USP28 seems to work together to maintain the
homeostasis of these proteins (26). We reported previously
that targeting USP28 with a potent small molecule inhibitor
we developed, could dramatically downregulate c-MYC in
tumor cell lines originated across many different tissue types
and bring the growth of these cells to a halt (27), indicating
that inhibiting USP28 is a valid approach to interfere with c-
MYC function. Given the similarity between MYCC and
MYCN, it is not surprising that MYCN was found to also
undergo FBW7-mediated ubiquitination and degradation (28).
Therefore, it is reasonable to assume that targeting USP28
would downregulate MYCN as well.

Here we report that USP28 is critical for the survival of NB
cells. Genetic depletion or pharmacologic inhibition of the
deubiquitinase enhances MYCN ubiquitination and degrada-
tion, resulting in apoptotic cell death in MYCN-amplified NB
cells. Further, for those NB cells without MYCN amplification,
targeting USP28 is still effective as c-MYC now becomes un-
stable. Together, our results suggest targeting USP28 as a
potential treatment for NB.
Results

USP28 maintains MYCN expression in NB cells

To determine the function of USP28 in regulating MYCN,
we first looked for NB cell lines that overexpressed MYCN. As
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The deubiquitinase USP28 is essential in neuroblastoma cells
shown in Figure 1A, both IMR32 and SK-N-BE (2) highly
express MYCN but not MYCC, whereas SK-N-SH, SK-N-AS,
and SH-SY-5Y are opposite to IMR32 and SK-N-BE (2) with
little expression ofMYCN but high levels ofMYCC expression.
As expected, depleting the expression of USP28 (with two
shRNAs targeting different regions of the DUB) resulted in the
downregulation of MYCN (Fig. 1B), and the downregulation
could be rescued by the addition of proteasome inhibitor
MG132 in the culture medium (Fig. 1C).

The data above indicate that MYCN is degraded through
ubiquitin-proteasome system and suggest that USP28 is a
deubiquitinase for MYCN. Indeed, as shown in Fig. 1D, when
the expression of USP28 is depleted with the same two
shRNAs (Fig. 1B) in HEK293 cells, MYCN ubiquitination
increased significantly. On the other hand, the overexpression
of USP28, but not that of the catalytically inactive form of
USP28 (USP28-C171A), was able to suppress the ubiquitina-
tion (Fig. 1E). Furthermore, we expressed Flag-MYCN and
HA-ubiquitin in HEK293 cells, immunoprecipitated MYCN
with anti-Flag beads, and incubated the immunoprecipitates
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Figure 1. USP28 maintains MYCN expression. A, immunoblotting analysis of
SK-N-AS, and SK-SY-5Y cells. B, immunoblotting analysis of MYCN in the SK-N
shRNAs. C, treatment with proteasome inhibitor MG132 in SK-N-BE (2) cells p
USP28-depleted 293T cells. E, the ubiquitination assay of MYCN in USP28 (WT
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with control, purified USP28, or purified USP28 premixed with
its inhibitor CT1113 (27). After the incubation, the immuno-
precipitates were run in a gel and the amount of ubiquitination
on MYCN was quantitated through Western blotting. As ex-
pected, the purified USP28 could remove the ubiquitination on
MYCN but such a removal was greatly suppressed by CT1113
(Fig. 1F). Taken together, these data demonstrate that USP28
is a deubiquitinase that regulates the expression of MYCN.

As a deubiquitinase for MYCN, USP28 should be able to
interact with it. To demonstrate that, we resorted to reciprocal
immunoprecipitation. As shown in Figure 2A, USP28 could
bring down MYCN and vice versa in HEK293 cells expressing
Flag-MYCN. An interaction between endogenous MYCN and
USP28 could also be detected in IMR32 cells (Fig. 2B). We
further mapped the region in USP28 that could mediate the
interaction (Fig. 2C). Different regions of USP28 were Flag-
tagged and expressed together with MYCN-GFP in
HEK293 cells and immunoprecipitated with anti-Flag anti-
bodies. It is apparent that the USP domain of USP28 interacts
with MYCN.
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Figure 2. USP28 maintains MYCN expression in neuroblastoma cells. A, USP28 interacts with MYCN. Flag-MYCN expressed in 293T cells or endogenous
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The deubiquitinase USP28 is essential in neuroblastoma cells
USP28 is essential for the survival of NB cells with MYCN
overexpression

Given the critical role of MYCN in NB cells (29, 30), we
wondered what would happen to the USP28-depleted cells
now with destabilized MYCN. Not surprisingly, both SK-N-BE
(2) and IMR32 could barely grow when USP28 was knocked
down with the same shRNAs as above (Fig. 3A). The cells died
over time through apoptosis (Fig. 3B). The apoptosis marker,
cleaved PARP, increased significantly in USP28-depleted
cells (Fig. 3C). We could also see a dramatic decrease of cyclin
D1 expression as expected of downregulation of MYCN
(Fig. 3C).
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The deubiquitinase USP28 is essential in neuroblastoma cells
Furthermore, the growth suppression effect of USP28
depletion could be largely rescued by exogenous expression of
a mutant form of MYCN in which two residues (T58 and S62)
were mutated to Ala (Fig. 3, D and E). It is known that
phosphorylation of T58 and S62 is required for MYCN ubiq-
uitination by FBW7 (31). Thus, MYCNT58A/S62A is resistant to
ubiquitin-mediated proteasomal degradation, and no longer
requires USP28 for stabilization. However, MYCNT58A/S62A

expression did not fully rescue the growth deficiency caused by
USP28 depletion, probably because the exogenous expression
could not reach to the level of endogenous MYCN (Fig. 3D).

Pharmacologic inhibition of USP28 blocks the growth of NB
with MYCN overexpression

The results above strongly suggest that USP28 is a target
against NB. To test that, we took advantage of the potent
USP28 inhibitor CT1113 we had developed (27). Indeed,
treating SK-N-BE (2) and IMR32 cells with CT1113 down-
regulated MYCN protein levels in a dose-dependent manner
(Fig. 4A). Another known substrate of USP28, LSD1, was
downregulated as well (Fig. 4A). USP28 itself also decreased
since it is its own deubiquitinase. Accordingly, these two NB
cell lines are very sensitive to CT1113 treatment (Fig. 4B).
They could not grow at all in the presence of 200 nM or more
CT1113 and grew poorly with 100 nM. As with USP28
depletion, the cells died by apoptosis (Fig. 4C). Indeed, CT1113
treatment increased the levels of cleaved PARP as expected
(Fig. 4D). Further, the expression of MYCNT58A/S62A in
IMR32 cells made the cells more resistant to CT1113, sug-
gesting that CT1113 works through MYCN, at least partially
(Fig. 4E).

Next, we tested the efficacy of CT1113 in vivo. SK-N-BE (2)
cells were inoculated in nude mice subcutaneously to from a
tumor first. The tumor was then harvested, divided into small
pieces, and reinoculated. When the inoculated pieces grew to
palpable sizes (�100 mm3), the nude mice were randomly
grouped and treated with vehicle or CT1113 at 15 or 20 mg/kg
body weight twice a day. After 10 to 14 days, the mice were
sacrificed, and the tumors were harvested for analyses. As
shown in Figure 5A, CT1113 was very effective in blocking the
tumor growth, and the effect was dose-dependent. CT1113
significantly suppressed tumor proliferation as indicated by
Ki67 staining (Fig. 5B). As expected, MYCN levels in the tu-
mor were greatly downregulated by CT1113 treatment
(Fig. 5C). Further, CT1113 was tested against a patient-derived
xenograft (PDX) model of NB. Again, the USP28 inhibitor was
extremely efficacious (Fig. 5D). This PDX model apparently
was derived from a MYCN-type tumor as MYCN was readily
detectable while c-MYC was absent in the tumor samples
collected from the mice (Fig. 5E). Again, CT1113 treatment
effectively lowered the expression levels of MYCN in the tu-
mors (Fig. 5E).

USP28 is also critical for the non-MYCN NB cells

Not all NB were driven by MYCN amplification or over-
expression. In those non-MYCN NB cells (Fig. 1A), we wonder
whether targeting USP28 would be as effective as in MYCN
cells, since USP28 might be required to maintain their MYCC
expression as in many other types of tumor cells we have
tested (27). To that end, we first employed RNA interference
to deplete USP28 expression. Indeed, knocking down USP28
caused c-MYC levels to decrease dramatically, so did LSD1
levels in both SK-N-SH and SK-N-AS cells (Fig. 6A). These
cells failed to grow (Fig. 6B) and died by apoptosis overtime
(Fig. 6, C and D). Further, CT1113 treatment was able to
suppress MYCC expression as well as that of LSD1 as expected
(Fig. 6E), blocking the growth (Fig. 6F), and causing cell death
(Fig. 6, G and H).

We further tested CT1113 against the tumors formed by SK-
N-SH and SK-N-AS cells. As shown Fig. 7A, the compound was
very effective in suppressing the tumor growth derived from SK-
N-AS cells. MYCC and LSD1 were suppressed in the tumors as
expected (Fig. 7B). CT1113 was also efficacious against the tu-
mors formed by SK-N-SH cells (Fig. 7C).
Discussion

NB is a devastating disease in children (32, 33). It is driven
by different oncogenic pathways and displays high heteroge-
neity in its pathogenesis that limits treatment options (34). In
fact, chemotherapy is still the most often prescribed for the
patients. Thus, targeted therapies are in urgent need. However,
finding suitable targets for NB is hindered by the fact that a
diverse set of genetic alterations are found responsible for the
disease. Since MYC (MYCC or MYCN) is ultimately required
for NB cells to grow and proliferate, just like the cells from any
other types of malignancies, targeting MYC would be of high
therapeutic value. We show here that genetic depletion or
pharmacologic inhibition of USP28 can destabilize MYCN and
lower its expression to such a level that is no longer sufficient
to sustain cell growth and proliferation.

Tavana et al. (35) reported previously that USP7 could act as
a deubiquitinase for MYCN. It is possible that both USP7 and
USP28 contribute to the regulation of MYCN ubiquitination.
However, targeting USP28 brings additional therapeutic ben-
efits since USP28 also regulates MYCC stability and thus could
be useful against non-MYCN NB (Figs. 6 and 7). Moreover, in
addition to MYC, LSD1 was also downregulated when USP28
was targeted (Fig. 6A). It is known that LSD1 is highly
expressed in poorly differentiated NB and interfering its
function impairs the growth of NB cells (36). Thus, we believe
USP28 is a better target for NB.

The past 2 decades have witnessed the rise and success of
targeted therapies designed to block key oncodrivers like
EGFR, HER2, etc. However, most (if not all) such druggable
targets have been discovered and tried already, and yet, there
are still tremendous unmet needs in the clinic such as NB that
call for new therapeutic targets. In addition to the driver
oncogenes, cancer cells also addict to certain nononcogenes
which are required to maintain their transformed phenotypes
and to deal with the cellular stresses that come with the
transformation process (37). In theory, targeting those addic-
ted nononcogene products should be as effective as targeting
J. Biol. Chem. (2023) 299(7) 104856 5
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driver oncoproteins, and such a strategy might prove to be
particularly beneficial in situations where therapeutic targets
are hard to come by. USP28 seems to be such a nononcogene
target in NB and in other malignancies (24, 27, 38–40).

Experimental procedures

Cell culture

NB cell lines, SK-N-BE (2), IMR32, SK-N-SH, SK-N-AS, and
SK-SY-5Y,were purchased from the ShanghaiCell Bank, Chinese
Academy of Sciences. 293T cells was obtained from theCell Bank
of Type Culture Collection of Chinese Academy of Sciences. The
cells were cultured in either MEM, MEM/F12 (50:50), or Dul-
becco’s modified Eagle’s medium supplemented with 10% fetal
bovine serum, 1μg/ml penicillin, and streptomycin.Themedium,
fetal bovine serum, trypsin, and penicillin-streptomycin were
purchased fromGibco. All cells were maintained in an incubator
supplemented with 5% CO2 at 37 �C.

Animal experiments

All animal experiments were approved by the Animal Care
and Use Committee of the First Affiliated Hospital of Zhejiang
University. The mice are purchased from Beijing Vital River
Laboratory Animal Technology Co, Ltd. To generate cell-
derived xenograft tumors, SK-N-BE (2), IMR32, SK-N-SH, or
SK-N-AS cells (2 × 106) were mixed at a 1:1 ratio (volume) with
matrigel (BD Biosciences) and injected subcutaneously into
5�6-weeks-old BALB/c nude mice. For the PDX model, the
tumor sample from a patient with NB was placed in cold PBS,
and the necrotic and fat tissues were dissected out. The
remaining tumor tissue was cut into very small pieces
(1–2 mm3) to be engrafted subcutaneously into 5�6-weeks-old
BALB/c nude mice. When the PDX tumors grew up to
�500 mm3, they were harvested, cut into small pieces, and
inoculated back to BALB/c nude mice. This process was
repeated several more times to establish a PDX line. To evaluate
the antitumor effect of CT1113, the inoculated tumors (cell-
derived xenograft or PDX) were allowed to grow for 2 to 3 weeks
to reach a size about 100mm3, and the tumor-bearingmicewere
then randomized into two groups. The animals were given
CT1113 (20 mg/kg body weight, bid) or the vehicle by oral
gavage. The growth of the tumors was monitored every 3 days
with a vernier caliper. 2 to 3 weeks after the treatment, the mice
were sacrificed, and the tumors were excised out and weighed.

Tumor tissues were collected and fixed in PBS-buffered 4%
paraformaldehyde overnight, dehydrated, and embedded in
J. Biol. Chem. (2023) 299(7) 104856 9
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paraffin. Serial 5 μm sections were cut and stained with he-
matoxylin and eosin or processed for immunohistochemical
staining of Ki67. Three view fields under a 40× objective of
each section were examined and counted to obtain the per-
centage of Ki67-positive cells.

Plasmids and lentiviruses

Plasmids used in this study were generated using standard
cloning methods. shRNAs were constructed in pLKO.1 with
the following sequences: shNC (50-TTCTCCGAACGTGT
CACGT-30), shUSP28-1 (50-GCACAGAAGTTCGTTGTC
ATA-30), shUSP28-2 (50-GACTGAAGATCATCCATTAAT-30),
shMYCN-1 (50-AGCAGCAGTTGCTAAAGAAAC-30), shMYCN-
2 (50-TGAGCGATTCAGATGATGAAC-30), shMYCC-1 (50-CTG
AGACAGATCAGCAACAAC-3), and shMYCC-2 (50-AGATGA
GGAAGAAATCGATGC-3). The human MYCN cDNA was
mutated with standard site-specific mutagenesis and cloned
into the vector pHAGE with a Flag tag. The lentiviruses for
expression of shRNAs or MYCN were packaged in 293T cells
with standard packaging plasmids and method. Lentiviral
infection of the cells was performed with standard method,
and the infected cells were selected with 4 μg/ml puromycin
(InvivoGen) for 2 days to obtain stable gene-knocking down or
overexpression cell lines.

Cell proliferation and apoptosis assays

For the MTS cell proliferation assay, the cells were seeded in
a 96-well plate at a density of 3000 cells per well and cultured
for the indicated time periods. At the end of the incubation
period, the number of viable cells was determined using a
colorimetric assay (MTS, Promega). In brief, the culture me-
dium was removed, and 100 μl fresh complete culture medium
plus 20 μl of MTS was added to each well. The cells were then
incubated for 2 h before the absorbance of the formazan
product was measured at 490 nm.

For apoptosis assay, the apoptotic cells were stained with
Annexin V-FITC/PI Apoptosis Kit (MultiSciences) according
to the manufacturer’s instruction. The cells were analyzed on a
BD FACSCanto II flow cytometer, and the data were analyzed
with FlowJo software (BD Biosciences).

Western blotting analysis and immunoprecipitation

For Western blotting analysis of proteins, the cells or tissues
were lysed in RIPA buffer (Applygen Technologies Inc) sup-
plemented with a protease inhibitor cocktail (Roche Di-
agnostics), and the lysates were centrifuged at high speed to
remove insoluble debris. The protein concentration of the
resultant lysates was determined with a bicinchoninic acid assay
kit (Beyotime). Equal amounts of proteins were boiled for 5 min
in 5× SDS loading buffer (Biosharp), separated in an SDS-
polyacrylamide gel, and transferred onto nitrocellulose mem-
branes. The membranes were incubated for 1 h in blocking
buffer (5% nonfat dry milk in TBST) and then with primary
antibodies at 4 �C overnight. After three washes with TBST, the
membrane was incubated for 1 h at room temperature with
horseradish peroxidase–conjugated secondary antibodies. The
10 J. Biol. Chem. (2023) 299(7) 104856
membrane was then washed three times and visualized with
SuperSignal West Pico Chemiluminescent Substrate (Thermo
Fisher Scientific). The expression of GAPDH, β-actin, or tubulin
was routinely used as a loading control.

For immunoprecipitation, the cells were lysed in NETN buffer
and centrifuged to remove debris. The supernatants were cell
lysates. The desired protein was precipitated with appropriate
antibodies conjugated directly to Sepharose beads (such as Flag
M2 beads, Sigma) or via protein A/G-conjugated Sepharose
beads. About 2 mg total protein worth of cell lysates were incu-
bated with the antibody-conjugated beads for 1 h at room tem-
perature orovernight at 4 �C.After the incubation, thebeadswere
washed with NETN buffer at least three times. The beads-bound
proteins were eluded off through boiling in denaturing SDS-gel
loading buffer and analyzed with Western blotting.

Ubiquitination assay

Ubiquitination assay was performed as previously described
(41). HEK293T cells were transfected with Flag-MYCN and
other indicated plasmids. Forty-eight hours after the trans-
fection, the cells were treated with 10 μM MG132 for 6 to 8 h
and lysed in NETN buffer (pH8.0 tris-HCl, 100 mM NaCl,
1 mM EDTA, 0.5% Nonidet P-40) containing 1% SDS and 1%
sodium deoxycholate, vortexed vigorously for 15�30 min, and
boiled for 10 min. After that, 5 to 9 times of the volume of
more NETN buffer were added to reduce SDS content to 0.1%
and the so produced cell lysates were incubated with appro-
priate antibody-conjugated beads followed by the rest of
immunoprecipitation procedures.

For in vitro deubiquitination assay, HEK293T cells grown on
a 15-cm dish were transfected with 20ug Flag-MYCN plus 4ug
HA-ubiquitin. Forty-eight hours after the transfection, MG132
was added to the medium to a final concentration of 10 μM, and
the cells were harvested 4 h later. The cells were trypsinized,
collected, washed in PBS, lysed in NETN for 30 min, and pro-
ceeded to anti-Flag immunoprecipitation procedures. The
resultant Flag-MYCN beads were divided to three equal parts to
be incubated with (a) 19 μl DUB assay buffer (de-ubiquitination
assay buffer: 50 mM Tris HCl pH 7.5/1 mM EDTA/100 mM
NaCl/0.05% CHAPS/5 mM DTT) + 1 μl DMSO; (b) 9 μl DUB
assay buffer + 1 μl DMSO + 10 μl purified USP28 (His6-USP28,
Cat. # E570, R&D Systems; final concentration, 1 μM); or (c)
9 μl DUB assay buffer + 10 μl USP28 (final concentration,
1 μM) + 1 μl CT1113 (final concentration, 50 μM). USP28 plus
DMSO or CT1113 were preincubated at room temperature for
30 min before being added to Flag-MYCN beads. The deubi-
quitination reaction mixtures were proceeded for 1 h at room
temperature with rotation for even mixing. At the end, 10 μl 5×
SDS sample buffer were added to stop the reaction, and the
reaction mixtures were boiled for 10 min before gel electro-
phoresis and immunoblotting for ubiquitin and MYCN.

Antibodies

The antibodies used in this study were as follows: anti-
USP28 (17707-1-AP, 1:1000 WB, 1:200 IHC, Proteintech);
anti-MYCN (51705S, 1:1000 WB, 1:200 IHC, Cell Signaling



The deubiquitinase USP28 is essential in neuroblastoma cells
Technology); anti-MYCN (sc-53993, 1:200 WB, Santa Cruz
Biotechnology); anti-c-MYC (sc-40, 1:200 WB, Santa Cruz
Biotechnology); anti-CyclinD1 (2922S, 1:1000 WB, Cell
Signaling); anti-PARP (9542P, 1:1000 WB, Cell Signaling);
anti-cleaved PARP (9664S, 1:1000 WB, Cell Signaling); anti-
Flag (F3165 1:5000 WB, Sigma); anti-Flag (20543-1-AP,
1:2000 WB, Proteintech); anti-HA (901,503, 1:1000 WB, Bio-
Legend); anti-Ub (SC-8017, 1:200 WB, Santa Cruz Biotech-
nology); anti-LSD1 (20813-1-AP, 1:1000 WB, Proteintech);
anti-Ki67 (27309-1-AP, 1:1000 WB, Proteintech); anti-Actin
(66009-1-Ig, 1:5000 WB, Proteintech); and anti-GAPDH
(60004-1-Ig, 1:5000 WB, Proteintech); the secondary anti-
bodies conjugated to horseradish peroxidase were used for
Western blotting. The secondary antibodies of anti-mouse or
anti-rabbit containing Alexa Fluor 488 or 594 were used for
immunofluorescence staining (Jackson ImmunoResearch
Laboratories).

Statistical analysis

The results are presented as the mean ± SD. The data were
analyzed using GraphPad Prism 9.0 and ImageJ. Unpaired
Student t tests were performed for comparisons between two
groups. All experiments were repeated at least three times.

Data availability

All data are contained within this article and available from
the corresponding author on reasonable request.
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