Skip to main content
. 2023 Jul 27;9(8):e18719. doi: 10.1016/j.heliyon.2023.e18719

Table 2.

Regression model for FM estimation with Anthropometry.

Source SS df MS F(4, 9) P R2 Adj R2 Root MSE
Model 0.880474 4 0.220118 196.23 <0.001 0.9887 0.9836 0.03349
Residual 0.010096 9 0.001122
Total 0.890569 13 0.068505
log Fat-Mass β SE t P 95% CI η2 [95% CI]
Weight 0.016 0.001 15.97 <0.001 0.014 0.018 0.966 [0.867; 0.980]
log biceps SK 0.180 0.031 5.82 <0.001 0.110 0.250 0.790 [0.358; 0.882]
log suprail SK 0.255 0.039 6.57 <0.001 0.167 0.343 0.827 [0.441; 0.902]
Thigh SK 0.012 0.003 4.02 0.003 0.005 0.018 0.642 [0.130; 0.800]
Intercept 0.658 0.085 7.76 <0.001 0.466 0.850

Note: SS, the sum of squares; df, degrees of freedom; MS, mean of squares; F, Snedecor-Fisher statistical test; P, p-value; R2, the goodness of fit; Adj R2, adjusted R2; MSE, mean of squares error; β, regression coefficient; SE, standard error; t, student's statistical test; CI, confidence interval; η2, eta-squared effect size; suprail., supra-iliac; SK, skinfold thickness.