Skip to main content
. 2023 Jul 27;9(8):e18719. doi: 10.1016/j.heliyon.2023.e18719

Table 3.

Regression model for FM estimation with BIA.

Source SS df MS F(2, 11) P R2 Adj R2 Root MSE
Model 0.878596 2 0.439298 122.3 <0.001 0.957 0.9491 0.05993
Residual 0.039511 11 0.003592
Total 0.918107 13 0.070624
log Fat-Mass β SE t P 95% CI η2 [95% CI]
Weight 0.030007 0.002329 12.88 <0.001 0.02488 0.035133 0.938 [0.799; 0.963]
R/h2 0.006438 0.001205 5.34 <0.001 0.003785 0.00909 0.722 [0.296; 0.839]
intercept −0.3035 0.324187 −0.94 0.369 −1.01703 0.410028

Note: SS, the sum of squares; df, degrees of freedom; MS, mean of squares; F, Snedecor-Fisher statistical test; P, p-value; R2, the goodness of fit; Adj R2, adjusted R2; MSE, mean of squares error; β, regression coefficient; SE, standard error; t, student's statistical test; CI, confidence interval; η2, eta-squared effect size.