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To navigate and guide adaptive behaviour in a dynamic environment, animals
must accurately estimate their ownmotion relative to the external world. This is
a fundamentallymultisensoryprocess involving integration of visual, vestibular
and kinesthetic inputs. Ideal observermodels, pairedwith careful neurophysio-
logical investigation, helped to reveal how visual and vestibular signals are
combined to support perception of linear self-motion direction, or heading.
Recent work has extended these findings by emphasizing the dimension of
time, both with regard to stimulus dynamics and the trade-off between speed
and accuracy. Both time and certainty—i.e. the degree of confidence in a
multisensory decision—are essential to the ecological goals of the system: termi-
nating a decision process is necessary for timely action, and predicting one’s
accuracy is critical formakingmultiple decisions in a sequence, as in navigation.
Here, we summarize a leading model for multisensory decision-making, then
show how the model can be extended to study confidence in heading discrimi-
nation. Lastly, we preview ongoing efforts to bridge self-motion perception and
navigation per se, including closed-loop virtual reality and active self-motion.
The design of unconstrained, ethologically inspired tasks, accompanied by
large-scale neural recordings, raise promise for a deeper understanding of
spatial perception and decision-making in the behaving animal.

This article is part of the theme issue ‘Decision and control processes in
multisensory perception’.
1. Introduction
Consider the challenge of scaling a wall at your local rock-climbing centre.
A successful, fast, climb to the top is facilitated by estimating an optimal route
from an initial vantage point (or several) on the mat. During each movement
across or up thewall,multiple sensory inputs are available to the brain to guide a suc-
cessful climb: vestibular signals arising frommotionof thehead through space; visual
signals from motion of the scene across the retina; proprioceptive and tactile signals
indicating theposition andmotionof the limbs and thequalityof a hand- or foothold.
Small or slippery holds may render tactile information unreliable. Visual input
could be ambiguous or uncertain, for example if one is climbing on an overhang or
with reduced ambient light levels. Depending on the frequency and amplitude of
head motion, vestibular inputs may be unreliable or fail to disambiguate translation
from tilt. Thus, to estimate their ongoing motion with respect to the goal and select
actions accordingly, the optimal climber will use information from all available
sources, at eachmoment instinctively leaningmore heavilyon themore reliable ones.

With each self-motion judgement, twoother features of aperceptual decisionare
at play. First, the timingof commitment to adecisionabout one’s directionofmotion
must itself be decided. Fast decisions during a climb could yield a quicker finish,
thereby conserving energy or winning a competition—but committing too early
during movement risks a dangerous error. Second, a climber’s confidence that
they have made an accurate self-motion judgement is also critical. Low confidence
may lead to a more tentative reach, allow for a re-evaluation or adjustment of
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Figure 1. Sequential self-motion decisions and the role of confidence. The brain executes a motor plan to reposition the body along a desired trajectory. Multisensory
feedback allows perceptual judgement of the actual trajectory, but this may not be exactly as planned. (a) For the climber, the intended trajectory (green solid arrow)
affords grasping the green handhold and advancing the foot upwards (green dashed arrow), but if the trajectory turns out to be more lateral (red solid arrow) this could
prompt a more conservative approach (red handhold and dashed arrow). A low degree of confidence in the initial heading judgement would recommend the con-
servative strategy. (b) Similarly, the skier intends to direct her turn just in front of the next tree (green), but in actuality might be heading dangerously close to it (solid
red). Low confidence should cause her to hedge and keep a more comfortable distance (dashed red). High confidence followed by a negative outcome (a branch to the
face) should trigger adjustment of an internal model or sensory-motor mapping. Illustrations generated with the help of AI tools (DALL-E and Jasper AI).
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trajectory (figure 1), or leave open the possibility of reverting to a
previous position. Higher confidence, on the other hand, could
drive a quicker motion and firmer limb placement, or allow for
a riskiermanoeuvrewith agreaterpay-off in termsofpositioning
forultimate success. Ina reinforcement learning framework, con-
fidence can be seen as a critical modulator of learning rate, or as
impetus for revising anagent’s internalmodel [1,2]—for instance
if a high-confidence decision is revealed to be an error, it means
something about the world has probably changed.

In the following sections, we first summarize existing work
on the integration of visual and vestibular cues for heading per-
ception and discuss the importance of considering decision
speedandconfidence inmultisensorydecision-making.Wepre-
sent preliminary findings in a heading discrimination task that
combines measurement of choice, reaction time (RT) and confi-
dence, which may be considered a bridge towards more
complex tasks with multiple decisions forming a hierarchical
sequence.We then review the recentdevelopmentof naturalistic
paradigms which can be used to study self-motion perception
during target-tracking and virtual-reality (VR) navigation.
When paired with continuous behavioural monitoring and
multi-area neural recordings, these ecologically inspired para-
digms promise unprecedented neurobiological insights into
spatial cognition and guidance of movement in the real world.
2. Visual-vestibular integration: raison d’être and
neural substrates

Although vestibular sensations rarely impinge on conscious
awareness under healthy conditions, the system continuously
signals linear acceleration of the head in space [3] via the two
otolith organs in each inner ear. Owing to fundamental
physical constraints captured by Einstein’s equivalence prin-
ciple, the otoliths alone cannot distinguish translational
inertial motion from a change in orientation relative to
gravity. This ambiguity can be resolved using signals from
the semicircular canals, which detect angular acceleration in
three orthogonal planes [4]—although canal afferents them-
selves are relatively insensitive to low-frequency motion and
static tilts [5]. These physical limitations can give rise to
phenomena like the somatogravic illusion, the erroneous
perception of linear acceleration as tilt [6]. Separately, scene
motion across the retina (optic flow) can cause a profound
sensation of self-motion, and has long been studied as the
visual basis of heading judgements [7,8]. Yet vision also has
shortcomings: the information quality of optic flow can vary
dramatically with viewing conditions or behavioural context,
and the visual system must contend with confounding move-
ments of one’s own eyes and head, and moving objects in the
environment [7,9].

Fortunately, under most real-world conditions, informative
signals are available from both vestibular and visual senses. If
these signals arise from a common source, such as intentional
self-generated locomotion, the information they provide is
generally convergent. Since each source is encumbered with
limitations and ambiguities it cannot resolve alone, it is natural
to consider combining information from both when possible.

Indeed, monkeys and humans can accurately and precisely
perceive heading from either visual [10] or vestibular cues [11],
and performance improves when both are presented together
[12,13], suggesting that these two sensory cues are combined
to improve heading perception. In theory, statistically optimal
integration (Bayesian or maximum-likelihood estimation
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(MLE)) [14–16] is realized by weighting the cues according to
their reliability, and empirical investigations demonstrated
behavioural signatures of near-optimal cue integration in amul-
tisensory heading discrimination task [12,13]. This classic task
has been used for a comparative understanding of human
and non-human primate self-motion perception, and is well
suited for the investigation of its neurophysiological correlates,
through invasive recordings in trained macaque monkeys
(see also Zeng et al. [17]).

A number of cortical areas with selectivity for visual and
vestibular heading stimuli have been linked to a network for
self-motion perception in both humans and monkeys [18,19].
Key nodes include the dorsal medial superior temporal area
(MSTd), ventral intraparietal area (VIP), the smooth pursuit
region of the frontal eye fields (FEFsem), and a multimodal
region of the posterior sylvian fissure (VPS). Vestibular and
visual motion signals, arriving from unimodal areas such as
parieto-insular vestibular cortex and the middle temporal
(MT) visual area, respectively, are thought to converge in
these downstream multisensory areas [20,21]—although
direct projections from MT to parts of the network other than
MST and VIP have not been verified.

MSTd has been of long-standing interest in particular [22],
as it contains a population of neurons with congruent selectiv-
ity for visual and vestibular heading. These neurons show
striking correlates of both the increase in perceptual sensitivity
during cue combination, and reliability-dependent cueweight-
ing [12,23–25]. On the other hand, MSTd neurons lack
a common spatial reference frame for visual and vestibular
information (they remain eye- and head-centred, respectively)
[26], although this may not be a necessity for effective
integration [27]. Furthermore, although MSTd’s velocity-
dominated vestibular responses suggest a temporal integration
from the periphery to match the dynamics of visual motion
signals [28–30], reversible inactivation of MSTd has minimal
effect on vestibular heading judgements [31], and downstream
decision-related activity tracks vestibular acceleration [32].
Thus, while recordings in MSTd support some theoretical pre-
dictions regarding optimal cue combination, there remain
inconsistencies and open questions regarding its role and the
nature of network-level interactions subserving heading dis-
crimination [33,34].

Other areas have their own quirks. The multimodal popu-
lation in VPS is dominated by neurons with opposite tuning
to the two modalities, implying a greater role in segregation
than combination [35]. Area VIP, meanwhile, shows strong
choice-correlated activity, but surprisingly no apparent causal
role in heading discrimination [36]. To date, neurophysiological
studies have shed some light on the possible functions of each
area, but there remains work to reconcile various models of
where and how near-optimal cue integration is achieved.

(a) Limitations of the conventional definition of
optimality

Following the lead of earlier research, many of these studies
implicitly assumed that subjects use all the information avail-
able throughout the stimulus presentation—or at least that the
same subset of the presentation epoch is used for the unisensory
and multisensory conditions. This assumption matters because
testing normative models of cue integration generally requires
estimating the reliability of individual cues to generate predic-
tions for the multisensory percept; namely, how the cues
should beweighted, and howmuchmore precise the multisen-
sory estimate should be. However fixed-duration tasks permit
the decision to be formed covertly at any time during stimulus
presentation [37,38], and at different times for different trials/
conditions, leaving it unclear how to compute the predictions
for an optimal observer.

For instance, the classic Bayesian/MLE approach defines
optimality as maximizing the precision of the combined esti-
mate, given the precision of the unimodal estimates. For linear
weighted integration with uncorrelated inputs, the MLE predic-
tion is captured by the equation: s2

c ¼ ðs2
as

2
b=ðs2

a þ s2
bÞÞ, where

s2
c is the variance of the combined estimate, and s2

a and s2
b are

the variances of the unimodal estimates. Typically, performance
on unimodal conditions is used to estimate the reliability of the
signals being combined, and the prediction from the above
equation is compared to performance in a multisensory con-
dition. However, this comparison is invalid if different
temporal windows are used on unisensory versus multisensory
trials, or if the decision process differs in some other way across
conditions (e.g. termination criteria; see below). Thus, a more
general conception of optimality requires consideration of how
the decision process unfolds in time.

This is just one example of a broader problemwith the con-
ventional approach to defining and testing for optimality:
experimental conditions where only one cue is presented
may not accurately quantify the reliability of the cues when
presented together ([39,40], and see Zaidel & Salomon [41],
for a more nuanced and expansive view on this topic).
Nevertheless, one can at least investigate the time course of
multisensory decisions by measuring RT (see below), and by
relating stimulus fluctuations [37,42] or neural activity [43,44]
to behaviour in a temporally resolved fashion. In addition to
providing an update to the concept of optimality [45], studying
the temporal properties of individual decisions—including
how the brain decides when to decide—is essential if we wish
to understand how they are strung together into sequences,
as is the case during real-world navigation.
3. Two key ingredients for sequential decisions
in complex environments

(a) Decision termination and the speed-accuracy trade-
off

The time it takes to reach a decision (perceptual, mnemonic
or otherwise) has been a bedrock of quantitative psychology
for many decades [46–49]. The need to place limits on the
time of decision formation is especially salient during self-
motion, where timely action can mean the difference between
obstacle avoidance and collision, or catching versus missing a
prey item. Yet we do not know exactly what determines the
time of commitment to a heading judgement, a process
made more complicated by the multiple, dynamic sources
of information that must be taken into account.

A reasonable starting point is to assume, as is standard in
the field, that the brain accumulates noisy evidence until an
internal bound is reached, at which point the decision process
is terminated and a choice is rendered [50]. Drugowitsch and
colleagues therefore developed a multisensory drift-diffusion
model in their investigation of choices and RT during multi-
sensory heading discrimination [45]. As mentioned above,
considering the dimension of time motivates an update to
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conventional theories of Bayes-optimal cue combination. In
the classic (static) model [14,16], stimuli give rise to individ-
ual noisy estimates, and the multisensory estimate is their
reliability-weighted average. By contrast, a dynamic model
seeks to explain the combination of signals both across
modalities and across time. In the model of Drugowitsch
et al. [45], ‘momentary evidence’ at each time step is con-
structed by weighting visual and vestibular signals by their
instantaneous reliability—which is a function of (i) a global
stimulus property that varies across trials (e.g. visual
motion coherence), and (ii) within-trial stimulus dynamics,
namely its velocity or acceleration profile, respectively. The
temporal accumulation of this evidence to a bound gives
rise to both the choice and RT, and the height of the bound
dictates the trade-off between speed and accuracy.

Crucially, when considered as a bounded process, multi-
sensory decisions are not always more precise than
unisensory ones, as predicted by the static model—but in
that case they ought to be faster, and this is what Drugowitsch
et al. [45] found. Thus, when optimality is defined at the level of
the momentary evidence, discrimination thresholds alone are
not sufficient to assess optimality, as increasing decision
speed at the cost of accuracy can be optimal in terms of maxi-
mizing reward rate [51]. Another important contribution of
this work is to derive a normative solution for decisions
where evidence reliability varies over short time scales [52], a
common feature of natural environments but one that is largely
unaddressed in classic studies of perceptual decision-making
(but see [53] for a thorough and timely review of more recent
efforts)). It can be shown that optimal integration of time-
varying evidence is theoretically tractable under certain
assumptions [52], but whether and how the brain achieves
this remains unresolved.

One approach to the question of neural implementation
was undertaken by Hou et al. [32]. They suggested that inte-
gration of multiple dynamic evidence streams could be
mediated by invariant linear combinations of neural inputs
across time and sensory modalities, and observed neural
activity consistent with this integration in the lateral intrapar-
ietal area (LIP) [32]. However, this experiment did not
measure behavioural RT, and trial-averaged neural responses
by themselves may not be diagnostic of bounded evidence
accumulation [54]. Indeed, there is reason to wonder whether
the brain actually uses a strategy of accumulating noisy
samples of evidence in the heading task. The main motiv-
ation to accumulate evidence in the first place is to average
out the noise, but this works best when the samples are inde-
pendent [55] or at most weakly correlated. The degree to
which self-motion fits the bill is unclear, given that the rel-
evant signals have a high degree of autocorrelation (being
tied to inertial motion, not an arbitrary pattern of inputs),
and unique noise properties [56–58] whose implications for
decision-making have not been fully explored.

Thus far the available evidence [32,45] (and see following
section) is consistent with bounded accumulation, but it is
still worth considering alternatives, such as taking a single
‘snapshot’ of evidence [38] at the predicted time of maximum
information content (i.e. the peak of the velocity or accelera-
tion profile [18]). At the other extreme, one might envision
a continuous process best explained using elements of control
theory [59,60], although the relationship between evidence
and decision termination is less clear in such a framework.
Previous work has shown that adjudicating candidate decision
processes may require testing the same subjects in different task
variants, for instance experimenter-controlled duration versus
reaction-time versions [38]. Data from either variant by itself
may be consistent with several distinct processes, so a more
stringent test is to fit the data from one variant and use a
subset of the fitted parameters to predict the other variant
[38]. Neurophysiology could help as well, especially high-den-
sity recordings which permit single-trial analyses of decision
variable representations [61–63]. This three-pronged strat-
egy—behavioural readout of decision dynamics/termination,
computational frameworks that accommodate time-varying
signals, and neurophysiological approaches capable of linking
the two—seems like a promising path towards expanding the
neurobiology of decision-making tomore naturalmultisensory
contexts.

(b) Confidence in multisensory decisions: candidate
models and a pilot experiment

In visual perception, the framework of bounded evidence
accumulation has been extended to explain a third key out-
come inherent to the decision-making process: confidence,
defined as the graded, subjective belief that the current or
pending decision is correct. Considered an elemental com-
ponent of metacognition, confidence is of long-standing
interest to psychologists and philosophers ofmind, and (along-
side RT) has figured prominently in psychophysical theory and
experiment for over a century [64–67]. Yet it also serves a prac-
tical purpose in natural behaviour. Most real-world decisions
are notmade in isolation but are part of a sequence or hierarchy
in which the appropriate choice depends on the unknown out-
come of earlier decisions. In such a scenario, confidence
functions as a proxy for feedback, a prediction of accuracy
that informs the next choice in a sequence—or more generally,
adjustments of decision strategy [68,69] or learning rate [1,70].

Almost all models of confidence devote a key role to the
strength of the evidence informing the accompanying
choice. In models based on signal detection theory (SDT)
[71,72], observations further away from a decision criterion
(i.e. stronger evidence) are more likely to have arisen from
one distribution over another, justifying higher confidence.
When decision time is factored in and controlled by the sub-
ject, the accumulated evidence and the time taken to reach a
decision maps onto the probability of making a correct
choice, and this mapping (or an approximation thereof)
could be learned and used to assign a degree of confidence
[73,74].

Interestingly, these two frameworks offer distinct interpret-
ations for the empirical relationship between confidence and
stimulus strength [74,75]: confidence increases with stimulus
strength on correct trials, but often (though not always)
decreases with stimulus strength on error trials. SDT attributes
this to the fact that an observation leading to an error must
be closer to the criterion when d’ is large, whereas in accumu-
lator models it can be explained by continued accumulation of
contradictory evidence after an initial choice is made [74,76].
This discrepancy further underscores the relevance of time as
a factor in decision-making, and especially confidence;
indeed, failing to consider the time dimension can lead to
misinterpretation of common measures of metacognitive
performance [77].

The study of confidence in perception has typically con-
sidered situations in which the relevant sensory evidence
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arises from just one external source. However, most real-world
sensory experiences consist of concurrent inputs from multiple
modalities, and some basic unanswered questions arise when
studying metacognition in a multisensory context [78]. For
example, we do not know whether confidence is generated by
the same cue-integration process (be it evidence accumulation,
Bayesian inference or something else) underlying the decision
itself. Alternatively, confidence could be computed by a parallel
process that is not contingent on moment-by-moment sensory
evidence, or by a post-decision accumulation process [79] with
distinct termination criteria [80]. A quantitative link between
choice and confidence was supported by perturbations of
visual cortical neurons supplying the evidence in a random-
dot motion task [81,82], but these studies did not rule out
post-decisional processing, and the decision was based on a
single modality.

To begin to address this question for multisensory
decisions, we reasoned that behavioural measures of choice
and confidence should demonstrate similar dependence on
relative cue reliability, which is classically assessed using a
cue-conflict manipulation [13,16,83]. When cues are placed in
conflict, the resulting bias in the psychometric function reflects
theweight assigned to each cue during discrimination. By ran-
domly interleaving different levels of relative reliability,
one can test whether cues are reweighted on a trial-by-trial
basis, as predicted by normative theory and demonstrated
empirically in previous work. What remains to be seen is
whether confidence judgements reflect the same reliability-
based cue weighting that has been observed in choices.

We adapted a well-established heading discrimination
task [13] to include simultaneous reports of choice and
confidence via a continuous rating scale [74]. The task also
measures RT, allowing us to test whether a bounded
accumulation process underlies all three behavioural vari-
ables in this task, as has been suggested for visual motion
discrimination [75]. Human participants (n = 5) seated in a
motion platform were instructed to report their heading
(left or right) relative to a fixed reference of straight
ahead. Each trial consisted of a translational heading stimu-
lus comprising inertial motion and/or synchronous optic
flow of a random-dot cloud. Participants indicated their
choice and confidence by making a saccade to one of two
colour-gradient bars (figure 2a,b). The top of the bar rep-
resented 100% certainty, while the bottom of the bars
represented a complete guess. Participants were not given
immediate feedback about their performance, but instead
were shown their percentage of correct choices at the end
of each set of 30 trials. Interleaved throughout the session
were cue-conflict trials in which the heading angles speci-
fied by visual and vestibular cues were separated by ±3°,
a subtle difference not readily noticeable and with no quali-
tative impact on overall confidence level. Relative cue
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reliability was controlled by the coherence of the random
dots, also randomly interleaved.

Cue reliability was reflected in the relative slope of psycho-
metric functions (figure 2c; compare low (red) versus high
(blue) visual coherence)—and correspondingly in the relative
width of the RT and confidence functions (figure 2d,e). At the
same time, the psychometric functions reveal a bias indicative
of trial-by-trial reliability-based cue weighting, as shown pre-
viously [13]. In the condition shown in figure 2c–e, vestibular
heading was offset 1.5° to the right and visual 1.5° to the left
of the angle specified by the abscissa, and hence participants
made more rightward choices when the vestibular stimulus
was more reliable (low visual coherence, red curve shifted to
the left). Strikingly, the RT and confidence curves show very
similar shifts (figure 2d,e), suggesting that themultisensory evi-
dence guiding choice also underlies a degree of confidence in
the choice [81]. Although it awaits quantitative confirmation
in a larger dataset, this to our knowledge is the first indication
that reliability-based cue combination at the level of choices
also manifests in confidence and RT.

These preliminary findings are consistent with the
hypothesis that confidence arises from the same evidence
accumulation process that governs the decision (and termin-
ation thereof), rather than by a downstream or parallel
mechanism independent of the reliability-basedweighting pro-
cess. We developed a multisensory decision model (figure 3a,b)
that combines the reliability-weighted combination of momen-
tary evidence from Drugowitsch and colleagues [45] with a
two-dimensional accumulation process (anticorrelated race)
that has successfully explained choice, RT, and confidence in a
visual task [74,84]. In this model, evidence at each time
step is drawn from a bivariate normal distribution with

mean = [μcomb, −μcomb] and covariance ¼ 1 r
r 1

� �
, where the

two dimensions correspond to the two choice alternatives
(right versus left) and the evidence for each is partially anticor-
related (i.e. ρ <−0.5 [85]). The mean μcomb is assumed to reflect
the optimal weighting of evidence [45] and is therefore biased
towards themore reliable cue (figure 3a, left). Evidence samples
are fed into competing accumulators, and thewinning accumu-
lator determines both the choice and the decision time. Because
the winning accumulator is always at a fixed value at decision
time (i.e. the bound), confidence is determined by the status
of the losing accumulator (figure 3a, right): the closer the
losing racewas to its bound, the lower the degree of confidence.
This intuitive relationship is formalized by calculating the log
odds of a correct choice as a function of accumulated evidence
and time ([74,84]; figure 3b). The accumulation process jointly



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220333

7
dictates choice, RT, and confidence—and because this process is
downstream of theweighted cue-combination step, all three be-
havioural variables should exhibit the same reliability-based
shift. This is what we observed in the pilot experiment
(figure 2c–e).

Under common assumptions, the mathematics of drift-dif-
fusion guarantees that the mapping between evidence and
confidence is time-dependent [73,74]: a given level of evidence
favouring the unchosen optionmaps onto a probability of being
correct, but this probability decreases with elapsed decision
time (figure 3b). The prediction is that confidence should
be inversely related to decision time, even for a fixed level of
stimulus strength [74] (here, heading angle; figure 3d). Our
preliminary results are consistent with this prediction as well
(figure 3c), which supports the notion that elapsed decision
time is a vital part of the computation of confidence.

In summary, although more work is required to develop
plausible alternatives for model comparison, the data are
qualitatively consistent with a multisensory accumulator
model such as the one in figure 3a. One major open question
is where and how the weighted combination of momentary
evidence is achieved in the brain. The output of this
process—reliability-weighted accumulated evidence—appears
to be represented in parietal and frontal cortices [32,86], but
the upstream circuitry is unknown. As alluded to above, the
dynamics of these accumulation-like signals differ for visual
versus vestibular stimuli, suggesting they might originate
from separate unimodal representations rather than a single
multisensory representation such as in MSTd. Simultaneous
recordings from (and perturbations of) multiple nodes in the
self-motion network, along with downstream decision-related
areas, may be needed to resolve this question.

(c) Sequential self-motion judgements as a scaffold for
navigation

Decision termination and confidence are critical in furnishing
a decision-maker with the ability to make sequential
judgements at appropriate intervals to achieve their goals. If
external feedback about decision accuracy is available,
decision-makers generally exhibit slower RT after errors, con-
sistent with an evolving trade-off between speed and
accuracy based on recent experience [68,87]. On the other
hand, in the absence of external feedback, as is frequently the
case for real-world decisions, the internal ‘feedback’ furnished
by a representation of confidence could drive adjustments of
decision policy, through a modification of the termination
bound or accumulation process [88,89].

In the case of self-motion, an individual decision could
equate to a prediction of body position or orientation in the
near future, derived from an integration of multisensory evi-
dence and expected dynamics (spatio-temporal priors) over
some period of time [90]. Performed repeatedly, these per-
ceptual decisions constitute the building blocks for a path
integration process, with the decision at one time-step feeding
into the next. The perception of egocentric heading for path inte-
gration is a key component of real-world navigation, although
successful navigation also draws on salient environmental
information [91], and a psychological sense of self-location [92].

Since path integration accumulates errors, monitoring
one’s ongoing certainty and incorporating this into an
evolving behavioural strategy could be quite useful, particu-
larly when knowledge of one’s current position or goal
location is incomplete. This idea goes beyond using uncer-
tainty to update a position estimate, in the manner of a
Kalman filter [93,94]. Our conjecture is that a metacognitive
certainty judgement accompanies each position update and
can be used to guide higher-order decisions, for instance
whether to maintain or reverse the current course, or to
stop and sample more information.

During truly continuous natural behaviour, one might
assume that the time interval between successive position esti-
mates should reach zero at its limit. However, given that
upcoming spatio-temporal sequences of naturalmotion stimuli
are generally predictable to the agent (throughmotor efference
and plentiful experience), the interval between updates could
be adjusted based on inferred changes in control dynamics
of the current environment. In other words, although continu-
ous computation of self-motion is necessary for reflexes and
postural control, it may be unnecessary tomaintain a perceptual
estimate of self-motion at all times, agnostic to the current
behavioural state. Instead, the brain could reduce the compu-
tational burden by only consulting the self-motion system
when a salient transition or event boundary is detected. This
might correspond to a change in expected reliability of different
sensory cues, or in the control dynamics needed for that part
of the environment [90], such as a change in ambient light
level or terrain. The relationship between inputs (i.e. motor
commands), and outputs (body motion) is predictable from
an internal model of control dynamics and the autocorrelation
structure of self-motion, but in situations where the environ-
ment changes rapidly, confidence judgements associated with
each position update could play a key role. In the next section,
we discuss increasing efforts to develop more closed-loop be-
havioural tasks to address the computational and neural
bases of self-motion perception along these lines.
4. Where are we heading? Naturalistic self-
motion

The motivation for framing self-motion perception as a
decision-making process arises from a consideration of the
goal it ultimately serves, which is to allow an agent to accu-
rately orient and navigate within its environment. In such
dynamic environments, the brain must use perceptual obser-
vations to guide subsequent actions, and, as described by
classical reinforcement learning models, actions are chosen
to maximize the likelihood of immediate and/or future
desirable outcomes [95]. An agent may also select actions,
including eye movements, to improve its ‘vantage point’ for
new observations that could lead to desirable outcomes
further down the line [96]. Previous studies of self-motion
perception, by operating under fixed-gaze conditions and
soliciting single, binary responses to passively experienced
stimuli, decouple this natural link between perception and
action, which may impose fundamental limitations on
our ability to understand general principles of neural
computation and behaviour.

Approximating real-world decision-making about self-
motion can still be achieved within the laboratory and
build on existing understanding of perception, by using
natural planning strategies in animal behaviour, and tracking
continuous variables over individual trials to generate rich
time-varying behavioural data. The appeal to naturalistic,
evolutionarily ingrained, behaviours in such tasks provides
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an opportunity to explore decision-making processes during
self-motion across species, often while avoiding the need for
heavily over-trained animals. Adopting this approach, a
recent set of experiments instructed human and non-human
primate subjects to navigate with a joystick to memorized
target locations (fireflies) in a virtual environment with
ground-plane optic flow cues [97–101] (figure 4a, and see
[105]). In this task, the evolution of the optic flow pattern is
driven by the subject’s own movements in the virtual environ-
ment, maintaining a link between perception and action. The
task also emulates foraging behaviour, a natural example of
the use of path integration. Eye movements over the course
of each trial, lasting up to several seconds, reliably track the
evolving latent location of the target and correlatewith success,
reflecting the subject’s dynamic belief about the target location
[98]. Perturbations in optic flow or joystick gain indicate that
humans and monkeys rely on optic flow to perform this task
[101], and subjects are also able to rapidly and effectively
generalize to novel task variants, including joystick gain
changes, moving latent targets, selecting between two targets,
and chasing an inexhaustible supply of flashing ‘fireflies’ over
tens of minutes [102].

A multisensory version of the firefly paradigm used gra-
dual across-trial fluctuations in joystick parameters to assess
the contribution of visual and vestibular cues and control
dynamics to path integration [90]. To overcome limitations in
the linear trajectories possible with the motion platform
(figure 4b), Stavropolous and colleagues made use of the tilt-
translation (gravito-inertial) ambiguity to provide combined
rotation and translation of the platform (and accompanying
optic flow stimulus in combined visuo-vestibular trials),
which would be perceived equivalently to the linear accelera-
tions intended by subjects’ joystick commands. Successful
navigation in this task depends not only on integration of
momentary sensory evidence, but on combining this infor-
mation with an accurate internal model of latent control
dynamics [90]. In particular, vestibular inputs alone generally
provided unreliable cues for navigation compared to optic
flow, and better performance was mainly seen in the presence
of sustained acceleration, consistent with the dominance
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of acceleration-dependent responses within the vestibular
processing hierarchy [106,107]. This also complements the
observation that longer duration stimuli elicit greater reliance
on visual (velocity) information [108], although velocity
estimation from optic flow can still result in systematic
undershoot biases owing to a prior expectation of slower
velocities [97,99].

Joysticks, and the ‘continuous’ behaviour they permit,
thus provide a useful tool to re-establish the link between
perception and action, a link broken in classic psychophysical
tasks with independent stimuli and discrete end-of-trial
responses. Yet, there remains an abstraction from true self-
generated motion, or at least a distinct mapping between
intended actions and the gamut of idiothetic cues of self-
motion (i.e. vestibular, proprioceptive and motor efference).
This distinction has meaningful consequences for the central
processing of vestibular information [109]. While steering-
based navigation with real vestibular cues elicits responses
in the brainstem vestibular nuclei, these responses are
attenuated during true active self-motion [110], probably
because the reafferent signals from actively generated move-
ments are cancelled through a comparison with expected
consequences within the cerebellum [111]. Nevertheless,
modelling work [112] demonstrates that both active and
passive vestibular stimuli can be processed within the same
internal model which makes continuous predictions of
expected sensory feedback. This validates the use of exter-
nally applied motion stimuli in experimental settings, and
their relevance in real-world self-motion, such as during per-
turbations, or mismatches between planned and executed
movements [112].

(a) Active motion and virtual reality in monkeys: new
applications

Closed-loop tasks which retain some grounding in estab-
lished theory and produce rich behaviour in primate
subjects open exciting new avenues for probing the neural
basis of self-motion perception. Simultaneous recordings in
MSTd and the dorsolateral prefrontal cortex in the fireflies
task suggest that these areas, and the coupling between
them, may represent important latent variables such as angu-
lar distance to the target [100], consistent with task strategies
inferred from gaze location [98]. Going forward, it will be
important to reconcile MSTd responses during goal-directed
navigation with existing foundations from classic paradigms.
This will help to understand the circumstances in which
MSTd responses may shift from encoding current heading
during smooth pursuit eye movements [113] to encoding
angular or linear distance to a goal location [100,114]. It
may also be interesting to ask whether variability in eye
and joystick position could be a useful proxy measure of con-
fidence, assuming that a greater degree of confidence is
associated with greater movement vigor [115,116] or fewer
changes-of-mind [84].

Gaze patterns have been shown to form an integral com-
ponent of planning behaviour in larger and yet more complex
virtual environments. Zhu et al. [103] found that human
subjects’ eye movements map out future trajectories to the
goal, and relevant subgoals (turning locations), in an arena
navigation task, emphasizing the value of natural oculomotor
behaviour in untangling deliberations and strategies during
sequential decision-making. In this task, fore-aft motion
was controlled via a joystick, but subjects could rotate in
the VR environment through actual movement on a 360°
swivel chair. Although the primacy of actively sampled
visual input is clear, such set-ups could provide cross-
modal inputs from vestibular and proprioceptive systems
of the head and neck, offering opportunities to extend
investigations of multisensory self-motion perception into
the realm of flexible goal-directed navigation. This less-
constrained style of VR experiment has found its way into
several domains of non-human primate systems neuro-
science, including studies focused on learning and memory
[104] (figure 4d ), abstract decision-making [117] and visual
experience [118]—further greying the traditional boundaries
between these areas of study.

The emerging trend for more complex, naturalistic tasks,
and the ability to extract meaningful, quantitative insights
from them, is symbiotic with increasingly available technol-
ogies for large-scale recording of neural populations [119]
and sophisticated analytical tools [120–122]. Such recordings
have already highlighted how perception and behaviour
arise from coordinated activity patterns across multiple
areas [123–126], implementing computations that evolve
over time and are best understood at the population level
[127–133]. Making sense of high-dimensional neural data in
the context of self-motion may require not only analysing
the dynamics of neural activity on single trials [121,134] but
also relating these dynamics to suitably high-dimensional
behaviour, for instance by using new methods for pose
estimation in unrestrained animals [135–138].
5. Summary and outlook
Self-motion perception is a fundamentally multimodal
cognitive process, essential for survival in mobile organisms.
Particularly indispensable to this process are inertial
motion signals arising from the peripheral vestibular
apparatus—semicircular canals and otolith organs—and
optic flow responses to global motion of the visual scene.
Classical psychophysical studies in humans and non-
human primates, often combined with neurophysiology
and normative theoretical approaches, have exposed key
principles of heading perception grounded in the idea that
sensory information is inherently probabilistic. At the cortical
level, multisensory heading perception probably involves the
concerted interaction of multiple areas, and ongoing work
continues to piece together the response properties of cells
across these areas, their potential roles, and the interactions
between them.

The introduction of RT measurements in multisensory
heading discrimination is an important step towards under-
standing self-motion decisions in an ecological setting and
clarifying what is meant by ‘optimality.’ At both the compu-
tational and neural levels, subjective reports of certainty
during multisensory heading perception could also uncover
important features of time-dependent decision-making and
sequential judgements of heading.

Nonetheless, these additions remain grounded in the
passive, independent-trial approach of conventional psycho-
physics and neurophysiology, which is bound to provide a
limited view of computation during natural self-motion and
its associated decisions. There remain significant open ques-
tions about how and where noisy sensory information is
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integrated across modalities, over time, and combined with
internal models of dynamics for the perception of self-motion
in complex environments. The ability to uncover latent vari-
ables from continuous behaviour and neural population
activity will be essential to this endeavour, unveiling mechan-
isms that bridge time scales from individual decisions to
goal-directed navigation.
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