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Abstract

A method for C(sp3)–C(sp3) cross-coupling of amines is described. Primary amines are converted 

to 1,2-dialkyldiazenes by treatment with O-nosylhydroxylamines in the presence of atmospheric 

oxygen. Denitrogenation of the diazenes with an iridium photocatalyst then forges the C–C bond. 

The substrate scope accommodates a broad latitude of functionality, including heteroaromatics and 

unprotected alcohols and acids.

Graphical Abstract

Cross-coupling reactions are highly valued for their ability to construct complex carbon 

frameworks from simple precursors.1 While conventional cross-couplings utilize coupling 

partners such as organohalides, organometallics, or boronic acids, recent years have 

witnessed major efforts to extend the range of functional groups that can be engaged.2 

Of particular interest is the cross-coupling of “native” functionalities, such as alcohols3 

and carboxylic acids,4 due to their prevalence in natural and synthetic chemical feedstocks. 

In contrast, amines, which are also broadly available,5 have less commonly been used as 

cross-coupling partners. This relative paucity is a reflection of the basicity of the amino 

nitrogen, which tends to complicate transition metal-based reactions, and the strength of the 

C–N bond.6 Nevertheless, several strategies have been developed to cross-couple amines, 

most notably through their conversion to Katritzky-type pyridinium salts7 or to redox-active 

imines,8 which enables the requisite scission of the C–N bond. While these advancements 

Tristan H. Lambert – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States; 
tristan.lambert@cornell.edu. 

Supporting Information Available: Experimental procedures and product characterization data. This material is available free of 
charge via the Internet at http://pubs.acs.org.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2023 August 07.

Published in final edited form as:
J Am Chem Soc. 2023 May 31; 145(21): 11524–11529. doi:10.1021/jacs.3c03634.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/


have enabled impressive transformations of amines, C(sp3)–C(sp3) coupling reactions have 

been limited to radical additions to alkenes,9 coupling with alkyl metal reagents10 and 

radical couplings with specialized substrates.11 Thus, there remains a strong interest in 

the development of amine cross-coupling reactions that are simple, versatile, and broadly 

tolerant of various functional groups for the direct generation of new C(sp3)–C(sp3) coupled 

products. Here, we report such a method involving the photocatalytic denitrogenation of in 

situ-generated diazenes.12

It is well known that diazenes can be induced to expel molecular nitrogen, leaving behind 

carbon-centered radicals that can combine to form C–C bonds.13 Indeed, this reactivity 

has been employed in wide-ranging applications, including for the total synthesis of highly 

complex natural products.14 Unfortunately, the current state of the art for this chemistry 

suffers from several limitations. First, the synthesis of dialkyldiazenes, particularly those 

with α-C–H bonds, can be challenging because they are prone to isomerize to hydrazones15 

which are inactive for denitrogenation. Second, the denitrogenation step often requires 

elevated temperatures16 or UV radiation,17 which promotes side reactions and limits 

functional group compatibility. Nevertheless, because the loss of molecular nitrogen 

provides a powerful driving force that can be leveraged to construct very challenging bond 

connections, we reasoned that solving the above-mentioned challenges would result in a 

powerful C–C bond-forming method.

In regard to the denitrogenation problem, we recently reported the electrophotocatalytic 

decomposition of diazenes to form olefin products (e.g. 2 → 1, Figure 1), using a 

trisaminocyclopropenium catalyst 4 that enabled the formation of distonic radical cation 

intermediates.18 As part of that work, we demonstrated that iridium photocatalyst 5 resulted 

instead in the generation of a diradical intermediate, leading to exclusive C–C bond 

formation, i.e. 2 → 3. This latter denitrogenation is believed to occur via energy transfer 

from the photoexcited iridium complex to the diazene group,19 a process that has been 

employed to great effect for the related decomposition of diazirines to form carbenes.20 

In brief, the photocatalyst [Ir] can absorb a photon to access the singlet excited state 
1[Ir]*, which can undergo intersystem crossing to the triplet state 3[Ir]* (see Figure 1). 

Energy transfer from this triplet state to the diazene can then generate the triplet excited 

state of the diazene. Expulsion of nitrogen from this triplet excited state gives rise to two 

radical fragments that can recombine to form a new C–C bond. We recognized that this 

photocatalytic denitrogenation of 1,2-dialkyldiazenes21 could enable an attractive means to 

cross-couple amines if 1) the process was generally applicable to acyclic diazenes, and 2) a 

simple synthesis of dialkydiazenes could be developed.

In regard to the second question, although several methods to prepare dialkyldiazenes 

are known, they tend to be inefficient,22 and in our hands proved unserviceable for the 

development of a useful cross-coupling procedure. We envisioned making use of the facile 

autooxidation of hydrazines23 as a way to prepare diazenes under mild conditions; our 

goal thus became to convert a primary amine substrate to a hydrazine intermediate. While 

it is known that treatment of an amine with an N-chloroamine can forge the requisite 

N–N bond to form diaziridines,24 N-chloroamines are problematic and did not suit our 

purposes. Inspired by the diaziridine work and limited examples utilizing tosyl-substituted 
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hydroxylamines,25 we found that reaction with O-nosylhydroxyamines (ONHAs) provided 

the desired efficiency.

The optimized amine cross-couping conditions we identified involved treatment of a primary 

amine substrate, such as leelamine, with one equivalent of the isopropyl ONHA•TFA26 

salt 6 and 2,6-lutidine in MeCN at room temperature with exposure to air (Table 1). After 

12 h, 2 mol% [Ir(dFCF3ppy)2(dtbbpy)]PF6 was added, and the mixture was irradiated 

by blue LEDs for 24 h. This procedure resulted in an 85% isolated yield of the cross-

coupled product 7.27 In addition to this example, products derived from t-Bu glycinate 

8 and leucine p-nitroanilide 9 were generated in high yields. Reactions to form products 

7 and 8 were also conducted on a preparative scale (1 mmol) with reasonable yields. 

Meanwhile, we found that unprotected 1,2-aminoalcohols were viable substrates, with 

aminoindanol furnishing 10 and threonine benzyl ester giving rise to 11, both as single 

diastereomers. In the case of 10, both cis and trans aminoindanol substrates led to the same 

trans product. Unprotected amino acids could also be directly coupled, as with products 

12-14 derived from asparagine, methionine, and methyldopa respectively. Peptide starting 

materials aspartame and lisinopril were converted to adducts 15 and 16 in good and modest 

yields, respectively. The benzazapinone derivative 17 was prepared in 76% yield, and 

reaction of aminoethyl biotinamide led to 18 in 75% yield.

To further explore the applicability of this reaction to complex molecular settings, we 

examined the cross-coupling of several amine-containing drug molecules. For example, 

the reactions of fingolimod, oseltamivir, saxagliptin, dehydroamlopidine, sitagliptin, 

amoxicillin, and linagliptin to furnish adducts 19-25 in good yields highlight the 

compatibility of this procedure with a range of functionality and complex architectures. 

Due to the nature of the radical intermediates, stereoselectivity for these reactions relies 

exclusively on substrate control. Thus, while 20 was formed as a single diastereomer; 21 and 

24, derived from substrates with more isolated amino groups, were generated as mixtures of 

diastereomers.

Next, we examined the scope of the ONHA component, using threonine benzyl ester 26 
as the amine coupling partner (Table 2). Carbocycles of various sizes could be engaged 

to furnish adducts 27-29 with complete diastereoselectivity for the trans product. We also 

found that products incorporating tetrahydropyran 30 and piperidine 31 rings could be 

formed in good yields and as single stereoisomers. When non-α-branched ONHA partners 

were employed, products 32-34 were obtained, albeit as 1:1 mixtures of diastereomers. 

In the case of product 35, some measure of stereocontrol was exerted by the existing 

stereocenter on the ONHA coupling partner.

Under the assumption that the hydrazine formation step proceeds by nucleophilic attack 

of the amine on the nitrogen of the ONHA, we anticipated that selective cross-coupling 

of only one amino group of a diamine substrate based on steric differences might be 

possible. Indeed, treatment of lysine (36) with one equivalent of ONHA 6 under the 

standard conditions led to the selective formation of 37 in 68% yield (Figure 2, eq 

1). No products derived from reaction of the α-amino group were detected. Finally, we 

examined the applicability of this amine cross-coupling to forge C–C bonds in the context 
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of a highly complex natural product, namely the antibiotic natamycin (38, Figure 2, eq 

2). This macrocyclic compound bears a dense array of potentially sensitive functionality, 

including multiple hydroxyl groups, an allylic epoxide, a carboxylic acid, and a conjugated 

tetraene, in addition to the aminoglycan appendage. Even within this formidable setting, this 

coupling method enabled the formation of isopropyl derivative 39 in 48% yield as a single 

diastereomer, highlighting the potential for late-stage editing of complex molecules.

In summary, we have developed a new method to convert primary amines to C(sp3)–C(sp3) 

cross-coupled products by employing a simple yet effective 1,2-dialkyldiazene synthesis 

followed by the use of visible light photocatalysis to trigger their in situ denitrogenation. 

Because of the mild nature of these conditions, a wide range of functional groups were 

found to be compatible, including unprotected alcohols, carboxylic acids, and even other 

amino groups. This work thus expands the ability to utilize widely available amines as 

building blocks for the construction of complex carbon frameworks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cross-coupling of amines via photocatalytic denitrogenation of in situ-generated diazenes.
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Figure 2. 
Selective cross-coupling of lysine (eq. 1) and cross-coupling of natamycin (eq. 2).
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Table 2.

Scope studies for the ONHA coupling partner.a

a
See SI for detailed procedures. Reaction Conditions: 26 (1.0 equiv), ONHA (1.0 equiv), 2,6-lutidine (2.0 equiv) under ambient air in MeCN at 

room temperature for 12 h, followed by addition of 5 (2 mol%) and irradiation with blue LEDs under N2 at room temperature for 24 h. Yields 

determined on purified products. Diastereomeric ratios (dr) determined by 1H NMR spectroscopy.

b
Diastereomeric ratio refers to the α and β stereocenters. Racemic ONHA was used, so all diastereomers were obtained.
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