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Abstract

Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts 

hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. 

Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is 

significant interest in developing drugs that target XOR for treating these conditions and other 

diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic 

studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in 

XOR. However, the precise details of the inhibition mechanism are still unclear, which would 

be valuable for designing more effective drugs with similar inhibitory functions. In this study, 

molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to 

investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural 

and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. 

Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the 

active site, which aligns well with experimental findings. Furthermore, the results provide insights 
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into the residues surrounding the active site and propose an alternative mechanism for developing 

alternative covalent inhibitors.

Graphical Abstract

1. INTRODUCTION

Xanthine oxidoreductase (XOR) enzymes accelerate the hydroxylation of various substrates 

containing different functional groups such as aldehyde, purine, and pyrimidine. XOR 

proteins have been isolated from many organisms.1–9 The active form of bovine XOR is 

a homodimer of molecular mass 290 kDa, where each subunit catalyzes the hydroxylation 

reaction independently.10–12 As shown in Figure 1, each monomer has two iron–sulfur 

(Fe2 − S2 or FES) clusters, each bridged to four cysteine residues, one flavin adenine 

dinucleotide coenzyme (FAD), and one molybdopterin cofactor (MoCo). XOR proteins 

are highly homologous and consist of approximately 1330 amino acids. For example, the 

sequence identity between the bovine milk (1332 residues) and the human liver enzyme 

(1333 residues) is about 90%.13,14 Proteolysis of mammalian XOR with trypsin and 

comparative sequence alignment indicated that the enzyme is divided into three fragments. 

The two FES clusters are located in the N-terminal fragment (20 kDa), the FAD is placed 

in the intermediate 40 kDa fragment, and the MoCo center is located in the C-terminal 

fragment with a molecular mass of 85 kDa.15

XOR is one of the most studied flavoproteins, and the redox reaction catalyzed in the 

heart of this enzyme is well established.16–23 Mechanistically, the hydroxylation reaction 

occurs at the MoCo center of XOR and involves the reduction of Mo(VI) to Mo(IV).10 

After completing the reduction half-reaction at the MoCo, the electrons transfer via the FES 

clusters to the FAD cofactor to complete the oxidative half-reaction by the physiological 

electron acceptor, NAD+ or O2.15

Unlike other lower mammals such as cats and dogs, higher apes and humans lack a 

functional uricase gene that oxidizes urate into water-soluble allantoin.24,25 Thus, uric acid 

is the final, irreversible product of purine breakdown by human XOR, which is excreted 

by the kidneys and intestinal tract, although it can be accumulated in the blood, leading to 

certain diseases.26,27 Several clinical studies showed that hyperuricemia, the aftermath of 
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elevated levels of uric acid in serum, leads to gout and is associated with other medical 

conditions such as diabetes, cardiovascular disease, metabolic syndrome, and the formation 

of kidney stones.28–36 Thus, uric acid excretion has to be increased, or its production by 

XOR needs to be reduced to decrease the blood concentration of uric acid and consequently 

treat these diseases.37–40 The latter approach has been used to develop several drugs for this 

target.40–46

Allopurinol, an analogue of hypoxanthine, emerged as an effective inhibitor of xanthine 

oxidase (Scheme 1A, left).48–50 Later, Massey et al.51,52 realized that the active isomer, 

which effectively inhibits the XOR, is the hydroxylated form of allopurinol, i.e., oxipurinol 

(see Scheme 1A, middle). Oxipurinol has been considered the “gold standard” inhibitor of 

xanthine and has been widely prescribed ever since due to its excellent pharmacokinetic 

properties. However, the short dissociation half-life of 5 h52 often leads to a high-dose 

prescription, rarely causing drastic side effects such as joint pain,53 severe skin/mucous 

membrane rash (Steven–Johnson syndrome),54,55 acute febrile neutrophilic dermatosis 

(Sweet’s syndrome),56 toxic epidermal necrolysis,54,57 fulminant hepatitis,58,59 and even 

renal failure in rare cases.60,61 Due to these drawbacks, researchers worldwide have been 

designing more effective and longer-lasting inhibitors.62–75 Among the proposed candidates, 

BOF-4272,66,67,76 febuxostat,69,77–79 piraxostat,71,80,81 and topiroxostat70,74,82–85 have been 

studied more extensively due to their promising inhibitory effects. Nevertheless, the search 

for new drugs continues86–93 due to the increasing number of gout cases worldwide.94–96

The mechanism of the catalytic hydroxylation of XO’s natural substrates, i.e., 

xanthine and hypoxanthine, and other purine- or non-purine-based inhibitors, has been 

extensively investigated by several experimental97–105 and computational106–115 studies. 

This mechanism involves a proton transfer from MoCo to E1261, as shown in Scheme 1B. 

Subsequently, the MoCo’s negatively charged oxygen attacks the substrate’s carbon adjacent 

to an N atom, with a transfer of “hydrogen and a negative charge” to the sulfido ligand 

(= S) and a concomitant reduction of the Mo cation from Mo(VI) to Mo(IV).105,109,110,116 

Afterward, the enzymatic turnover is completed by an incoming water molecule, leading 

to 2H+ and 2e– release during the oxidation half-reaction.117–119 It has been reported 

that the “hydrogen and a negative charge” transfer occurs in the form of a hydride 

ion.10,23,109,110,116

Quantum mechanics/molecular mechanics (QM/MM) studies by Cerqueira and co-

workers112 on the catalytic mechanism of XO with xanthine suggested that a hydrogen 

atom (H·) transfers to the sulfido group, while the second electron is transferred via the 

oxo-bridge. Hybrid spectroscopic/electronic structure studies by Kirk and co-workers120,121 

on purine-, non-purine, and aldehyde-based substrates also supported this mechanism. Our 

previous QM/MM study on the inhibition mechanism of the XO by topiroxostat and 

its hydroxylated metabolites (drug code: FYX-051) also suggested that the transferred 

hydrogen to the terminal sulfido at the transition state is nearly neutral and the other electron 

is transferred via the Mo–O–C bridge.122

As mentioned earlier, it had been envisaged that the allopurinol binds to the MoCo center in 

competition with xanthine. However, it eventually became clear that the inhibition is more 
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complicated and continues in a time-dependent manner, in which the allopurinol acts as a 

suicide inhibitor to produce oxipurinol.52,98 Two crystallographic studies by Truglio et al.47 

and Nishino and co-workers123 indicate that the reduced bovine milk XOR can be covalently 

bound to oxipurinol via the N8 atom of the substrate, which is a different coordination mode 

compared with other previously studied inhibitors (see Scheme 1A, middle). Another study 

by Nishino and co-workers124 on the crystal structure of the reduced bovine milk XOR with 

trihydroxy-FYX-051 (the final hydroxylated metabolite of the topiroxostat family) showed 

similar coordination, in which the inhibitor is directly coordinated to the Mo atom via the 

nitrogen atom on the cyano group of the inhibitor (see Scheme 1A, right). Nishino and 

co-workers concluded that the nitrogen atom of the oxipurinol and the cyano nitrogen of 

trihydroxy-FYX-051 replace the water-exchangeable hydroxy ligand of the MoCo.

Allopurinol and topiroxostat (FYX-051) are two of the most clinically administered drugs 

for gout and hyperuricemia. In addition, the last metabolite of each drug forming the 

Mo−N complex has been identified as the inhibitor form that reduces uric acid levels in 

the body. Therefore, to develop more potent and efficient drugs with similar inhibition 

traits, it is crucial to gain a deeper understanding of the catalytic reaction mechanism 

involved in the last step of each drug. We extensively investigated the reaction mechanism 

of topiroxostat in our previous study, including its final metabolite.122 Herein, we have 

studied the thermodynamics and kinetics of the inhibition reaction of XO by oxipurinol 

using classical molecular dynamics (MD) and QM/MM to determine the details of the 

reaction mechanism for the inhibition of XOR by this drug. The remainder of the paper is as 

follows; in the next section, we describe the approach for the MD and QM/MM simulations, 

including the structural, dynamical, binding affinity, and energy decomposition analyses, 

as well as the reaction path optimization and kinetic studies. Subsequently, the results are 

presented and discussed, followed by concluding remarks.

2. COMPUTATIONAL METHODS

The initial system was obtained based on the reduced bovine milk xanthine oxidoreductase 

bound to oxipurinol: PDB ID 3BDJ,123 and all crystal waters were retained (resolution = 2.0 

Å). The similarity between the human XOR105,125 and the bovine isoform is around 90%. 

The employed PDB had missing fragments, including residues 1, 2, 165–192, 529–536, and 

1318–1325, which comprise about 3% of the entire protein. Comparative modeling of XO’s 

3D structure and incorporation of the missing residues were performed using MODELER 

10.1.126,127 Further assessments were made by CASP128 and CAMEO129 to evaluate the 

accuracy of the constructed models. Finally, the best-suited modeled structure was selected 

for further MD simulations (see Figure S1).

The parameterization protocol applied for the FAD and FES cluster have been described 

previously.122 However, the reduced form of MoCo and oxipurinol needed to be 

parameterized (see Figure S2). The AMBER force-field parameters calculated by Ramos 

and co-workers130 were modified by the MCPB.py module131 to obtain the parameters 

for the reduced MoCo (parameters provided in the Supporting Information), in which 

Mo(VI) is replaced by Mo(IV) and = S ligand is replaced by –SH (termed MoCo in 

the remainder of the paper). The oxipurinol substrate was parameterized via the R.E.D. 
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server132–134 and ANTECHAMBER.135,136 The protonation of all the amino acid residues 

was assessed via PROPKA.137,138 Based on the findings by Truglio et al.47 and Nishino 

and co-workers,105,123,124 residues E802 and E1261 (key residues in the active site) are both 

protonated in the reduced XOR.

The LEaP module139 of AMBER21140 was used to construct the canonical structures of 

solvated apo-XO and XO–oxipurinol by adding hydrogen atoms, neutralizing the system 

with chloride counterions, and solvating the neutralized structure in a cubic box of TIP3P141 

water, extended at least 12 Å from the protein surface. The interactions between the atoms of 

the system were described with the protein’s ff14SB142 and general GAFF135 force fields.

The pmemd.cuda module143 of AMBER21 was utilized for conducting MD simulations. To 

perform minimization, positional restraints with a force constant of 100 kcal mol−1 Å−2 were 

applied to all solute molecules. The minimization process consisted of 5000 cycles using the 

steepest descent method, followed by 5000 cycles with conjugate gradient. The system was 

subjected to further relaxation in seven steps, each consisting of 5000 MD steps with a time 

step of 1 fs with 100 kcal mol−1 Å−2 restraint on the solute’s heavy atoms. This process 

was conducted under constant pressure conditions, using the Berendsen barostat,144 with the 

temperature maintained at 10 K. In the next step, each system was heated to 310 K using 

Langevin dynamics145–147 with a collision frequency of 2 ps−1, followed by 85 ns of NVT
equilibration with decreasing restraint (50.0–0.0 kcal mol−1 Å−2) on the protein’s heavy 

atoms. Lastly, unrestrained NPT ensemble145,147 simulations using a Langevin thermostat 

and Berendsen barostat144,148 were carried out for 500 ns and 1 μs on three replicas, 

producing a total of 1.5 and 3.0 μs of simulation data for the apo-XO and XO–oxipurinol, 

respectively. Temperature was held constant at 310 K and pressure at 1.0 bar with a 2 fs time 

step. Long-range Coulomb interactions were approximated using the smooth particle mesh 

Ewald method,143,149 and the van der Waals long-range interactions were approximated with 

the default isotropic correction implemented in AMBER using a 10 Å cutoff for non-bonded 

interactions. All bonds containing hydrogen atoms were treated with SHAKE150 during the 

simulations.

The CPPTRAJ151 module of AMBER21 was utilized for analyzing the production 

dynamics. Normal mode analysis was performed using the ProDy code.152 Python libraries, 

namely, NumPy, Matplotlib, Pandas, and statsmodels module, along with the Gnuplot 

program were used for further data processing and two-dimensional plot graphing. MD 

simulations of replicates for each system were stable without significant fluctuations (see 

Figures S3–S11). The generated ensembles were used for clustering analysis. For the 

clustering analysis, 300,000 frames of the last 400 ns of all three replicates were subjected 

to a multi-dimensional analysis via the k-means algorithm,153 as implemented in CPPTRAJ. 

The clustering dimensions corresponded to essential distances and angles between MoCo, 

oxipurinol, E802, and E1261. Initially, 30 representatives in ten clusters were obtained 

to identify the frames closest to each cluster’s centroid. Later, eight representatives from 

the four clusters with the highest population abundance and the best orientations of the 

mentioned residues were selected for QM/MM optimizations (see Figures S12, S13, and 

Table S1).
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Relative binding energies between oxipurinol and XO for two different tautomers 

were estimated using the MM/generalized Born surface area (GBSA) approach.154–156 

Calculations were carried out on the last 100,000 frames of each of the three replicates. 

A comprehensive explanation of the procedure utilized to compute the binding enthalpies 

had been previously provided.122 The entropic contributions were not included in the 

calculations due to convergence issues; however, it has been shown that comparing the 

relative binding affinities of similar ligands via the MM/GB(PB)SA techniques can achieve 

satisfactory accuracy, even if the conformational entropy is neglected.122,157–165

QM/MM calculations were performed using LI-CHEM,166,167 to interface Gaussian16168 

(for the QM region) and TINKER169 (for the MM environment). The QM region was 

modeled using the ω B97X-D/def2-SVP170,171 level of theory, while the MM environment 

was described using the AMBER ff14SB and TIP3P water force fields. The QM subsystem 

consists of 145 atoms, including the MoCo, oxipurinol, Q767, E802, R880, F914, F1009, 

E1261, and three water molecules that are placed within 3 Å of the substrate (see Figure 

S14). The remaining residues and solvent molecules within a 27 Å radius from the Mo 

center were described using the ff14SB and TIP3P potentials, respectively, while the rest 

were kept frozen. The reduced MoCo was tested for various multiplicities. Our calculations 

indicate that the most stable state corresponds to a singlet multiplicity, in agreement with 

Cerqueira and co-workers112 and our previous study.122

After optimizing the chosen representatives, the reactant with the lowest QM/MM 

optimization energy was deemed the most stable, and the product was designed based on 

that structure. The resulting product structure was then subjected to QM/MM calculations 

using the same level of theory. The potential energy surface of the reaction path between 

the optimized reactant and product was obtained using the quadratic string method (QSM) 

combined with the restrained-MM optimization approach implemented in LI-CHEM.167 

Detailed explanations of the QM/MM calculation protocols can be found in our previous 

study.122

The reactants with the lowest QM/MM optimization energies were employed to calculate 

QM/MM interaction energies (IEQM/MM) between the oxipurinol and XO via the following 

approach:172

IEQM/MM = QMactive site + OXI − (QMactive site + QMOXI)
+ MMOX − OXI − MMapoXO (1)

The terms QMactive site + OXI, QMactive site, and QMOXI correspond to the single-point 

energies of the QM subsystem, the active site only (MoCo, Q767, E802, R880, F914, F1009, 

E1261, and 3H2O), and the tautomer of interest, respectively. The terms MMOX − OXI  and 

MMapoXO correspond to the MM energies of the XO–OXI and apo-XO, respectively. The 

basis set superposition error (BSSE) correction is included in the IEQM/MM calculations using 

the counterpoise approach.173,174
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The critical points were approximated by using the QM/MM-optimized structures and 

obtaining the frequencies and thermochemistry using only the electrostatically embedded 

system. These structures were subsequently used for vibrational analysis via Gaussian16168 

at the same levels of theory to calculate the approximate activation Gibbs free energies 

(ΔG‡). One negative imaginary frequency was observed for the TS corresponding to the 

motion along the reaction coordinate (see animations in the Supporting Information). The 

Eyringpy175,176 code was used to calculate the rate constant (kcat) at 310 K based on the 

transition state theory (TST)177,178 as

k = σκ kBT
ℎ e−(ΔG‡)/RT (2)

where kB and ℎ are the Boltzmann and Planck constants, ΔG‡ is the Gibbs free energy 

of activation of the studied reaction, σ is the reaction symmetry number which represents 

reaction path degeneracy, the number of different but equivalent reaction pathways that can 

be possible, and κ accounts for tunneling corrections which were calculated using the Eckart 

barrier approach179 as implemented in the Eyringpy code.

Non-covalent index (NCI) analysis was performed to investigate non-covalent interaction 

(NCI) regions between oxipurinol and the binding pocket residues using the promolecular 

density method,180 as implemented in the Multiwfn V. 3.8 program.181 5000 random 

snapshots from the last 100 ns of MD for the first replicate of each tautomer were 

used to analyze the electron density and its gradient norm during the dynamics, which 

allowed for the study of the averaged NCI (aNCI) regions. In addition, the QM/MM-

optimized structures of the reactant, product, and the approximate TS were used to generate 

wavefunctions and calculate grid data of the reduced density gradient (RDG), which allowed 

for the study of the NCIs during the catalytic reaction. NCI surfaces were generated using 

the RGB color code to illustrate the strength of the interactions. Green and blue surfaces 

represented strong and weak interactions, such as hydrogen bonds and van der Waals 

(vdW) forces, while any repulsive interactions were depicted in red. The NCI surfaces were 

visualized with an isovalue of 0.4 a.u and a color scale of – 0.05 a .u . < sign λ2 ρ < 0.05 a .u .

The QM/MM-optimized coordinates of the critical structures were also used to obtain all the 

wave functions for the electron localization function (ELF) analysis.182 The ELF generates 

a scalar field that is both continuous and differentiable.182,183 This field can be divided 

into basins, providing information on the classification of electron pairs within the system. 

A common notation is used to represent the basins associated with valence electrons, V(), 

which are associated with electron pairs belonging to one atom (monosynaptic basins, e.g., 

lone pairs), two atoms (disynaptic basins, e.g., covalent bonds), or three atoms (trisynaptic 

basins). The basin analysis184,185 feature of Multiwfn V. 3.8181 was employed to carry 

out the ELF calculations. The basin illustration was performed using a cubic grid of 200 

a.u. with an isovalue of 0.8 a.u. and medium-quality grid with a spacing of 0.10 Bohr. 

Gaussian16168 was used to generate the wave functions for the NCI and ELF calculations 

with Multiwfn and the cube files of the electrostatic potential (ESP) visualized with 

visual MD (VMD).181,186 ESP charges were calculated using the Merz–Singh–Kollman 

scheme187,188 implemented in Gaussian16.
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Energy decomposition analysis (EDA) calculates the averaged energies of the non-bonded 

intermolecular interactions as a function of a reference residue(s). The nature of the 

intermolecular interactions between the protein and any fragment(s) of interest can be 

studied by this technique, which can be used to qualitatively assess the catalytic roles 

of individual amino acid residues.122,172,189 Herein, an in-house Fortan90-based EDA 

code190–192 was employed to study the intermolecular effects of the XO on the dynamics 

and kinetics of the inhibition by oxipurinol. To study the oxipurinol-bound pre-catalytic 

structure, EDA was run on 25,000 randomly selected snapshots of the 3 μs of the MD 

simulations from all three replicates. The total difference in the non-bonded intermolecular 

interaction energy between the MoCo and the protein environment during the MD 

simulation, ΔENB, can be calculated as

ΔENB = ENB XO−OXI − ENB apo−XO (3)

where ENB XO−OXI and ENB apo−XO represent the average of non-bonded intermolecular 

interactions between the MoCo and each residue of the MM environment for the XO– 

oxipurinol and the apo-XO, respectively.

3. RESULTS AND DISCUSSION

3.1. Dynamics of the Pre-Catalytic Inhibition.

Xanthine and oxipurinol (also known as alloxanthine) are structurally related purine 

analogues that differ in the nature of their five-membered heterocyclic rings. Xanthine 

contains an imidazole ring, while oxipurinol features a pyrazole ring (see Scheme 1). Like 

xanthine, oxipurinol can exist as a mixture of tautomers (see Figure S15). Several reports 

on the chemical synthesis of oxipurinol have demonstrated that tautomer-1 represents the 

predominant tautomeric form of this compound.48,193–198 In vitro and in vivo studies have 

also suggested that tautomer-1 is the functional derivative of oxipurinol with biological 

activity.199–204 Moreover, Truglio et al.47 suggested that the N9 nitrogen of oxipurinol (see 

Scheme 1A, middle) in their XDH–oxipurinol-inhibited crystal structure from Rhodobacter 
capsulatus (PDB ID: 1JRP) presumably acts as NH and forms a hydrogen bond to E730 

(identical to E1261 in bovine XO). Hernández et al.205 computationally showed that among 

the probable tautomers of oxipurinol, shown in Figure S15, di-keto tautomers (tautomers 

1 and 2) are favorable in the gas phase and aqueous solution. In contrast, the keto–enol 

(tautomers 3–6) and di-enol (tautomers 7 and 8) forms are very unstable and largely 

disfavored. However, their results suggest that tautomer-1 is less favorable than tautomer-2 

by ∼3 kcal mol−1.

It should be noted that experimental studies on allopurinol also show that the N9-protonated 

tautomer, shown in Scheme 1A-left, is the predominant form of neutral allopurinol.206–208 

In addition, another computational study by Hernandez et al.194 on allopurinol showed 

that the N9-protonated tautomer of this inhibitor is the predominant form in both the gas 

phase and aqueous solution with the population of 99 and 88%, respectively. Given the 

collective findings, it is more likely that tautomer-1 is the principal inhibitor of xanthine 

oxidoreductase.
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In our previous study on FYX-051 metabolites, we noticed that the incoming inhibitor exerts 

proximal and distal impacts on the movements of the enzyme.122 It is observed in both 

the previous and the current study that the movements of the FES and FAD domains are 

non-correlated in the apo-XO (results are obtained from two different crystal structures), 

while the MoCo domain’s movements are anti-correlated (see Figure 2A). Moreover, in our 

previous study, the inhibited enzyme’s movements underwent significant changes following 

the binding of the inhibitor. Specifically, the MoCo domain displayed mostly correlated 

motions, whereas the other two domains exhibited varying movements in response to 

each metabolite. Herein, we aimed to investigate whether oxipurinol exhibits comparable 

effects on the enzyme movements and if there are any similarities between this inhibitor 

and trihydroxy-FYX-051, which has a similar mode of complexation to XO. Interestingly, 

similar to trihydroxy-FYX-051, the binding of oxipurinol results in a mostly non-correlated 

FES domain and completely anti-correlated FAD. Moreover, the residues of the MoCo 

domain remain correlated with MoCo, except for the areas adjacent to the FAD domain, 

which become non-correlated (Figure 2A). Taken together, our results indicate that ligand 

binding considerably affects the dynamics of the MoCo domain.

Root-mean-squared deviations (RMSDs) and atomic fluctuations for all the systems depicted 

in Figures S3–S8 show that significant movements primarily occur in the flexible loops 

of the protein’s surface or on the modeled missing residues. The modeled residues were 

excluded from the principal component analysis (PCA); however, it is still evident that the 

largest PCA fluctuations are mainly centered around the removed residues and the flexible 

loops. The PCA results in Figures S3–S8 also indicate that the first two normal modes 

account for over 90% of the systems’ movement modes in all structures. As the first normal 

mode makes up more than 75% of the movement modes for all structures, it was utilized 

to interpret the systems (refer to the animations in the Supporting Information). Figure 2A 

and the NMA animations in the Supporting Information also reveal that the directionality 

of the first normal mode’s movements in the FES and FAD domains of apo-XO and XO–

OXI are similar. Interestingly, the movements of the FES and FAD domains are smaller in 

magnitude for XO–OXI compared with that for apo-XO (see animations in the Supporting 

Information). The motion of the MoCo domain is similar between apo-XO and XO–OXI in 

some regions. Similar to the other two domains, the MoCo domain of apo-XO has larger 

movements than the inhibited-XO. Combining our observations with those of our previous 

investigation,122 we suggest that oxipurinol, similar to trihydroxy-FYX-051, significantly 

enhances the stability of the MoCo domain.

Another helpful method for assessing the role of the enzyme’s residues in the MoCo 

active site is to examine intermolecular interactions via an EDA. Here, we focused on 

a comparative investigation of the impact on the MoCo between the apo and inhibited 

structure to see whether oxipurinol stabilizes the MoCo domain. The difference of the 

non-bonded intermolecular interactions (ΔENB) between the protein and the MoCo was 

calculated with respect to apo-XO as the reference to study the intermolecular effects of 

oxipurinol (see Table S2). In addition, Figure 2B provides a three-dimensional illustration 

of the residues of the first, second, and third coordination shells that exhibit significant 

non-bonded interactions with the MoCo.
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The calculated value of the sum of the individual calculated non-bonded interactions, 

∑ΔENB ∼ – 174 kcal mol–1, suggests a strong attractive interaction between the protein 

and oxipurinol. Moreover, Table S2 shows that in addition to the MoCo domain’s residues, 

several residues in the FES domain show significant stabilizing/destabilizing contributions 

to ΔENB. On the other hand, the FAD domain residues do not appear to have any substantial 

intermolecular interaction changes.

In our previous study, the stabilizing/destabilizing effects of several proximal and distal 

residues were observed during the inhibition reaction of XO by topiroxostat.122 Besides, 

exhaustive studies on other metalloenzymes, such as human TET2 enzyme209 and human 

histone demethylase,210 have also identified the catalytic role of second coordination sphere 

(SCS) and long-range (LR) residues. Here, we were interested to see which residues around 

the active site considerably contribute to the reaction center of the oxipurinol-bound system 

consisting of MoCo, oxipurinol, and E1261—which are directly involved in the inhibition 

reaction. Calculated values of ENB in Table S3 reveal several positively and negatively 

charged residues with ENB ≥ 30 kcal mol–1, which respectively stabilize or destabilize 

the active site during the MD simulation. Figure 3A illustrates residues with significant 

intermolecular interactions that are located in the active site’s first, second, and third 

coordination shells. As can be seen, several residues such as R829, R839, R871, R880, 

R899, K902, R912, K1045, K1052, S1080, R1134, K1250, and K1251 display significant 

stabilizing interactions with the active site, while negatively charged residues, D740, D745, 

D872, E879, E1037, D1084, E1092, E1196, E1209, and E1210, contribute to destabilization. 

Oxipurinol is predominantly surrounded by stabilizing contributors, among which R839 and 

R880 show substantial stabilizing effects (ENB ∼ – 61 and – 80 kcal mol–1, respectively). In 

contrast, MoCo is mostly surrounded by destabilizing residues with only two residues, R912 

and K1045, providing significantly large stabilizing interactions (ENB ∼ – 143 and – 105 kcal 

mol–1, respectively).

A plot of the aNCIs along the dynamics simulation is shown in Figure 3B, illustrating 

the residues of the binding pocket having interacting surfaces with oxipurinol. Several 

binding pocket residues, including E802, R880, A910, F914, F1005, F1009, and E1261, 

show attractive interactions (in the NCI scale) with the inhibitor. Interestingly, in addition 

to R880 that exhibited a substantial stabilizing effect in our EDA analysis, all the other 

residues seen in the aNCI also have stabilizing contribution to the active site, especially 

E802 and F914 (ENB ∼ – 12 and – 11 kcal mol−1, respectively). Taken together with the 

EDA, these results are consistent with an overall stabilizing environment of the protein in 

the binding pocket, promoting the binding of XO–OXI. Moreover, as shown in Figure 3A 

and Table S3, unprotonated aspartate and glutamate residues have destabilizing contributions 

to the MoCo active site. The stabilizing effect of the protonated E802 and its NCI with the 

inhibitor, which were also observed in our previous study on topiroxostat, agrees with the 

experimental results assuming the priority of protonated E802 over the negatively charged 

glutamate.47,105,123,124

As discussed in the beginning of this section, the di-keto isomer of oxipurinol is more 

stable than the other forms. Many studies have also supported that tautomer-1 (Figure S15) 
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is the primary product of synthesis and, thus, the active form of oxipurinol in inhibiting 

XOR. However, a computational study by Hernández et al.205 has suggested tautomer-2 

as a possible alternative. Therefore, this tautomeric form has also been studied here as a 

theoretically probable inhibitor, termed OXIT−2, for the rest of the paper.

The binding affinities (ΔHbind) between the inhibitor and the enzyme during the dynamics 

of the pre-catalytic reaction were calculated via the MM/GBSA approach (see Table S4). 

Calculated ΔHbind values for the major (OXI) and the theoretical tautomer (OXIT−2) are –24.5 

and –25.8 kcal mol−1, respectively, showing a slightly greater binding affinity for the later 

one. The QM/MM interaction energies (IEQM/MM) between the inhibitor and the XO were 

also studied, which are –120.0 and –124.2 kcal mol−1, respectively, showing a similar trend 

as the binding affinities. The components of the QM/MM interaction energies (Table S5, 

EQM and EMM of eq 1) suggest that despite the slight difference between IEQM/MM values, the 

differences between EQM and EMM for the tautomers are significant. The values of EQM and 

EMM for the major tautomer are similar (–58.9 and –61.1 kcal mol−1, respectively), implying 

that its interaction with the enzyme is moderately stabilized by the active site (EQM) and the 

solvated enzyme (EMM). On the other hand, the EQM value is more than twice that of EMM for 

XO and the theoretical tautomer (–84.2 and –40.0 kcal mol−1, respectively), suggesting that 

its interaction is mainly stabilized by the MoCo active site.

Taken together, the results of the binding affinities and interaction energies of these two 

forms propose the probability of a higher propensity of the theoretical tautomer to interact 

with the enzyme if presented in the active site.

3.2. Catalytic Inhibition Reaction.

Several studies have concluded that oxipurinol coordinates to the reduced MoCo during the 

enzymatic turnover.52,124,211 However, extensive investigations by Spector and co-workers 

on both bovine and human xanthine oxidase provided particularly strong evidence that 

the reduced enzyme is susceptible to the inhibition by oxipurinol.101,202,212,213 They 

realized that the enzyme undergoes inactivation when electron donors like xanthine and 

allopurinol substrates or the chemical reductant dithionite are present. In contrast, there is 

no inactivation in the absence of electron donors or when an artificial electron acceptor 

capable of directly re-oxidizing the MoCo is present. Moreover, Nishino and co-workers 

proposed that the XO–OXI complexation occurs in the presence of a proton.124 Given that 

the XO–OXI complexation takes place during enzymatic turnover and a proton is required at 

the reaction center, which can be provided by E1261, a possible mechanism associated with 

this process, as depicted in Scheme 2, was investigated.

The proposed mechanism for oxipurinol is similar to the suggested mechanism for 

trihydroxy-FYX-051, in which the water-exchangeable hydroxyl ligand is replaced by the 

nitrogen atom to form a stable complex.122 However, the pathway for the MoCo–OXI 

complexation involves the protonation of hydroxide ion (OH−) by E1261, followed by the 

release of a water molecule (see animation in the Supporting Information). The resulting 

complex dissociates by a replacement of oxipurinol by an incoming water molecule, 
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resulting in the re-oxidation of the Mo to its original oxidation state, fulfilling the enzymatic 

turnover.

The results in Figure 4A suggest that the reaction is slightly endergonic (ΔEreact = 1.0 kcal 

mol−1 and ΔGreact = 1.6 kcal mol−1). As shown in Figure 4C, the creation of V(Mo,N8) and 

V(O, Hε) ELF disynaptic basins in the product (bead 15) with electron populations of 3.1 

e− and 1.8 e−, respectively, implies the formation of the MoCo–oxipurinol complex and 

a water molecule at this point (refer to Table S6 for the detailed values). The calculated 

energy barrier associated with the approximate TS (corresponding to bead 9) is 27.6(29.8) 

kcal mol−1. At this point of the reaction mechanism, the Mo–OH bond cleaves, while the 

proton transfers from E1261 to the cleaving hydroxyl (Mo···OH···H···Glu), and the Mo···N8
bond forms between the MoCo and oxipurinol. The creation of ELF trisynaptic basins 

V(Mo,N8,C), V(Mo,O,H), and V-(O, Hε, Oε1) with electron populations of 2.7 e−, 3.1 e−, 

and 1.7 e– at bead 9 also suggest the formation of the approximate TS at this point.

The QM/MM-optimized geometries of the key structures involved in the complexation 

reaction shown in Figure 4B provide calculated values for the product’s O–Mo–N angle and 

Mo–N distance, which are 96° and 2.32 Å, respectively. These values are consistent with 

the experimental data from the referenced crystal structure with the reported values of 95° 

and 2.28 Å (see Scheme 1, middle). Moreover, the RMSD of the active site’s atoms and the 

RMSD of the protein’s backbone atoms with respect to the crystal structure are 1.3 and 3.1 

Å, respectively. These distances, coupled with the blue surfaces of the NCIs in Figure 4A, 

suggest that oxipurinol maintains hydrogen bonds with N768, R880, E1261, and two water 

molecules along the catalytic reaction pathway. In addition, the blue NCI surfaces between 

the N8 nitrogen of oxipurinol and the hydrogen of MoCo’s hydroxyl ligand in Figure 4A 

show a hydrogen bond between them. The presence of a hydrogen bond, combined with the 

cleavage of the hydroxyl ligand from the MoCo, may account for the relatively high barrier 

energy observed in both experiments and our calculations.

A larger view of the NCIs is provided in Figure S16 showing the NCIs between the binding 

pocket residues with the reactant and product. This figure highlights the important role of 

some residues such as E802, L873, R880, A910, F914, F1009, A1078, A1079, and E1261. 

In conjunction with the previous results of aNCI and EDA, residues R839, K902, F1005, 

S1080, and K1251 also play essential roles in the precatalytic and catalytic inhibition of XO 

by oxipurinol.

By examining the non-bonded contributions (EDA and NCI) to the MoCo’s active site 

and comparing them to experimental mutagenesis studies on XO function, we can gain 

additional insights into the residues that significantly affect XO inhibition. As listed in Table 

S7, several studies have demonstrated that mutagenesis of E802,105,214,215 R880,105,216–219 

and E1261,105,217 which show substantial non-bonded interactions in our analyses, lead to 

complete loss of XO function. Our EDA and NCI results also show stabilizing effects by 

proximal residues such as G799, R912, and A1079, whose mutagenesis leads to partial 

or total loss of XO function.218,220 Similar experimental effects were seen upon mutation 

of distal residues including R149,221 H884,218 and N887,218 which are observed to have 

stabilizing effects from our present results. Moreover, several clinical trials on human 
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cases showed the substantial impact of residues R228,222 R606,223 K721,224 R824,219 and 

R1282225 on lowering the XO activity (hypouricemia). Our EDA results show significant 

stabilizing effects of these residues on the active site. EDA results also suggest the 

destabilizing effects of residues I702, H1220, and T909 on the active site, suggesting that 

their mutation might promote the function of XO. Interestingly, clinical studies demonstrate 

the increasing activity of XO upon the mutation of these residues.221,223 Overall, our results 

are consistent with experimental mutagenesis studies, and the predicted effects of residues 

within the binding pocket could be considered for developing analogues of oxipurinol with 

improved inhibitory effects.

The experimental activation energy values for the XO inactivation (ΔGinact
‡ ) by oxipurinol 

are 31 and 28 kcal mol−1 for human and bovine xanthine oxidase, respectively,101 which 

are in good agreement with our calculated barrier free energy in Figure 4A (ΔG‡= 29.8 

kcal mol−1). The corresponding corrected rate constant (kcat) calculated via the results of the 

vibrational analysis is 3.4 × 10−9 s−1.

Several studies have indicated that oxipurinol-inactivated XO can be reactivated at varying 

rates. The slowest reactivation rate is through spontaneous means.50,52 Cycling of the 

enzyme in the presence of the xanthine substrate leads to an intermediate reactivation 

rate,212 while re-oxidizing the reduced MoCo via artificial electron acceptors results in a 

quick reactivation.52,226,227 The experimental activation energy values for the spontaneous 

reactivation process (ΔGreact
‡ ) are 25 and 27 kcal mol–1 for human and bovine XO, 

respectively.101 These values are in good agreement with our calculated backward barrier 

corresponding to 26.6(28.2) kcal mol−1. Notably, the calculated backward barrier (ΔEbackward
‡ ) 

for trihydroxy-FYX-051 in our previous study122 was 32.6 kcal mol−1, which is ∼6–7 kcal 

mol−1 larger than that calculated for oxipurinol. This difference in backward barriers may (at 

least partially) help explain the observed differences in dissociation half-lives (t1/2) between 

oxipurinol (∼5 h)52 and trihydroxy-FYX-051 (∼20.4 to 72 h).74

As mentioned before, OXITn−2 was also considered a possible theoretical alternative for the 

biologically active tautomer. The proposed mechanism for this form and the corresponding 

reaction path study are provided in Section 13 of the Supporting Information (Figures 

S17–S20). Interestingly, the inhibition reaction by this form, which involves a spontaneous 

proton transfer from the tautomer to the hydroxyl ligand of MoCo, is −10.7 kcal mol−1, 

and the energy barrier is 14.8 kcal mol−1. These results suggest that the catalytic inhibition 

might be more favorable for this tautomer if this molecule (or a similar analogue) could be 

synthesized. This might suggest possible routes for designing new analogues of oxipurinol 

with a similar coordination mode to this tautomeric form.

Taken together, our results align with experimental reports for the functional derivative of 

oxipurinol that possesses XO-inhibiting activity. However, the thermodynamics and kinetics 

of the catalytic reactions propose that cleavage of the water ligand might be more favorable 

than the hydroxy ligand. This suggests that similar candidates with accessible proton (e.g., 

−NH instead of −N) might facilitate the ligand exchange and consequently the XO–inhibitor 

complexation. Furthermore, the observation of stabilizing the active site’s environment 
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upon the binding of oxipurinol underscores the important contribution of multiple residues 

surrounding the binding cavity as non-covalent interacting partners. In designing new 

candidate inhibitors, these amino acids can serve as targets for NCIs.

4. CONCLUSIONS

Oxipurinol, the active metabolite of allopurinol, is widely used to treat gout and 

hyperuricemia as an effective xanthine oxidase inhibitor. However, its inhibition mechanism 

has not been studied at the atomic level. The MD results show proximal stabilizing effects 

of the incoming inhibitors on the active site’s environment and distal influences on the 

MoCo, FES, and FAD domains. EDA results suggest several residues located in the first, 

second, and third coordination shells of the active site with substantial stabilizing effects 

such as E802, R880, R912, F914, S1080, and K1045. In addition, oxipurinol forms NCIs 

with E802, L873, R880, A910, F914, F1005, F1009, A1078, A1079, and E1261 during 

the pre-catalytic and catalytic stages of the inhibition. A probable inhibition mechanism 

was investigated based on the insights provided by previous experimental studies, which 

turned out to be thermodynamically feasible compared to the experimental observations. 

The product state for XO–OXI is endergonic with a calculated reaction energy of 1.0 

kcal mol−1. The proximity between the experimental activation energy for the enzyme 

inactivation by oxipurinol (ΔGinact
‡ = 28 kcal mol−1 for bovine XO) with the calculated energy 

barrier (ΔG‡ ∼ 29.8 kcal mol−1 ) suggests that our proposed mechanism may be kinetically 

feasible. Moreover, our calculated backward barrier is 26.6 kcal mol−1, consistent with the 

experimental activation energy values for the spontaneous reactivation process (ΔGreact
‡ = 27 

kcal mol−1 for bovine XO). Calculated intermolecular interaction results underscore the 

important role of several residues during the enzyme inhibition process, including E802, 

L873, R880, A910, F914, F1005, F1009, A1078, A1079, S1080, and E1261, which could 

be considered as significantly interacting residues that may be exploited for the future 

development of more potent oxipurinol analogues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
One subunit of the bovine xanthine oxidoreductase homodimer (PDB ID: 1JRO).47 The 

close-up represents the XOR’s active regions in the redox reaction that are almost linearly 

positioned in the order of MoCo, Fe2 – S2, and FAD. Hydrogen atoms are not presented for 

more clarity, and four cysteine residues bound to the Fe2 – S2 cluster’s irons are shown in the 

sticks.
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Figure 2. 
(A) Plots of the PCA on the root-mean-square fluctuations (first mode) along with the 

residue-wise correlation with respect to MoCo as a heatmap projected on the protein for 

the apo-XO and XO–OXI. The black arrows show the fluctuations greater than 1.0 Å and 

point toward the direction of the highest ranked eigenvector, and their amplitude is directly 

proportional to the length of the arrow. Areas with correlated movements in the heatmap are 

colored blue (0.5), non-correlated areas are white (0.0), and anti-correlated movements are 

red (−0.5). (B) Representation of the residues with considerable non-bonded intermolecular 

interactions (| ΔENB ≥ 12.0 kcal mol−1) with the MoCo of XO–OXI compared to that of the 

apo-XO as the reference.
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Figure 3. 
(A) Residues of the XO–OXI active site with considerable non-bonded intermolecular 

interactions ( ENB ≥ 30 kcal mol−1). Residues in the sticks have stabilizing (black) and 

destabilizing (purple) interactions with the active site, given in the ball-and-sticks. E1261 of 

the active site is not shown for enhanced clarity. (B) Plot of the aNCI between the inhibitor 

and the surrounding residues of the active site. Values in parenthesis correspond to ENB (kcal 

mol−1) of each residue.
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Figure 4. 
(A) Minimum energy path for the catalytic inhibition of XO by oxipurinol modeled via 

the QSM together with the NCI plots of the critical structures. The QM/MM optimization 

energies (kcal mol−1) are calculated at the ω B97X-D/def2-SVP level of theory with the 

AMBER ff14SB force field. The values in parenthesis correspond to the Gibbs free energies 

obtained from the vibrational analysis using Eyringpy. (B) Optimized geometries of the 

critical structures with the values of selected distances (Å). (C) ELF basins among the 

MoCo, oxipurinol, and E1261 for the critical structures along the reaction pathway.
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Scheme 1. 
(A) Coordination Modes in Left: MoCo–Allopurinol; Middle: MoCo–Oxipurinol with 

a Direct Mo–N8 Bond (PDB IDs: 1JRP & 3BDJ);47,123 and Right: MoCo–Trihydroxy-

FYX-051 with a Mo–N≡C Bond (PDB ID: 3AM9);74 (B) Proposed Reaction Mechanisms 

for the Hydroxylation of Hypoxanthine and Xanthine in the Active Site of XOR.
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Scheme 2. 
Studied Mechanism for the Catalytic Inhibition of XO by Oxipurinol
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