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Abstract
Background  The spread of extended-spectrum β-lactamases (ESBL) producing E. coli from food animals and 
the environment to humans has become a significant public health concern. The objectives of this study were 
to determine the occurrence, pathotypes, virulotypes, genotypes, and antimicrobial resistance patterns of ESBL-
producing E. coli in retail meat samples and workers in retail meat shops in Egypt and to evaluate the bactericidal 
efficacy of silver nanoparticles (AgNPs-H2O2) against multidrug resistant (MDR) ESBL-producing E. coli.

Results  A total of 250 retail meat samples and 100 human worker samples (hand swabs and stool) were examined 
for the presence of ESBL- producing E. coli. Duck meat and workers’ hand swabs were the highest proportion of ESBL- 
producing E. coli isolates (81.1%), followed by camel meat (61.5%). Pathotyping revealed that the isolates belonged 
to groups A and B1. Virulotyping showed that the most prevalent virulence gene was Shiga toxin 2 (stx2) associated 
gene (36.9%), while none of the isolates harbored stx1 gene. Genotyping of the identified isolates from human and 
meat sources by REP-PCR showed 100% similarity within the same cluster between human and meat isolates. All 
isolates were classified as MDR with an average multiple antibiotic resistance (MAR) index of 0.7. AgNPs-H2O2 at 
concentrations of 0.625, 1.25, 2.5 and 5 μg/mL showed complete bacterial growth inhibition.

Conclusions  Virulent MDR ESBL-producing E. coli were identified in retail meat products in Egypt, posing significant 
public health threats. Regular monitoring of ESBL-producing E. coli frequency and antimicrobial resistance profile in 
retail meat products is crucial to enhance their safety. AgNPs-H2O2 is a promising alternative for treating MDR ESBL-
producing E. coli infections and reducing antimicrobial resistance risks.
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Background
For several decades, β-lactam antibiotics have been con-
sidered the antimicrobial agents of choice in humans 
and veterinary medicine. However, the effectiveness of 
these drugs has been diminished due to the emergence of 
β-lactamase-producing bacteria, particularly within the 
Enterobacterales [1]. Recently, as a result of the increased 
production of extended-spectrum β-lactamases (ESBL) 
a rise in β-lactam resistance in E. coli has increased [2]. 
ESBL-producing E. coli or their resistance genes can 
potentially be transmitted through direct contact, the 
food chain, or environmental sources [3]. The emergence 
of ESBL-producing bacteria linked to cattle, poultry, and 
pigs may be linked to the gradual increase in the usage of 
third-generation cephalosporins in food animal produc-
tion [4, 6].

The genome of E. coli consists of a mobile gene core 
that determines the strain pathotypes. Various viru-
lence factors determinants have been attributed to E. coli 
pathogenicity, including Shiga toxin-associated genes 
(stx1 and stx2), toxin production genes such as hemoly-
sin (hly) and the astA gene encoding enteroaggregative E. 
coli heat-stable enterotoxin, intimin encoding gene (eae), 
and fimbrial H gene (fimH). E. coli are classified into eight 
phylotypes (A, B1, B2, C, D, E, F, clade 1) based on the 
presence or absence of ChuA, yjaA, TspE4.C2, and arpA 
genes [5, 6]. Phylotypes B2 and D are frequently found 
in humans, with phylotype B2 being associated with 
extraintestinal disease in both animals and humans [7]. 
Different properties of isolates are indicated by their typ-
ing, which is helpful for identifying the circulation pat-
tern across various sources and hosts [8]. The presence of 
similarities between clinical and foodborne ESBL isolates 
suggests that food products can serve as a reservoir for 
ESBL-producing bacteria and their genes [9, 10, 13].

ESBL enzymes hydrolyze broad-spectrum cephalo-
sporins, including ceftazidime, cefotaxime, cefuroxime, 
ceftriaxone and cefepime. Most ESBLs are classified as 
Ambler class A enzymes, which includes the sulfhydryl 
variable (SHV), Temoneria (TEM) and cefotaxime (CTX-
M) types [11]. Unlike other bacterial families, Enterobac-
terales encode SHV, TEM and CTX-M genes on plasmids 
rather than the chromosome [12], ESBL-producing E. 
coli is becoming more resistant to fluoroquinolones and 
aminoglycosides, leading to the evaluation of colistin as 
an important alternative antimicrobial for human ther-
apy [13, 17].However, colistin has been extensively used 
in veterinary medicine for years to prevent and treat 
gastrointestinal infections caused by Enterobacterales in 
food producing animals [14]. The mcr-1 gene, respon-
sible for mobile colistin resistance, has been detected in 
Enterobacterales isolates from humans, food, companion 
animals, meat, and the environment in various studies 
[15].

Cephalosporins are widely used to treat various infec-
tions caused by both Gram-negative and Gram-posi-
tive bacteria [16]. They possess a broader activity range 
and are less susceptible to inactivation by β-lactamase 
enzymes compared to other β-lactam antibiotics, with 
successive generations of cephalosporins having a wider 
spectrum of activity [17]. The World Health Organization 
has prioritized third-generation cephalosporins (such as 
cefotaxime and ceftriaxone) in monitoring and steward-
ship programs for antibiotic resistance due to their signif-
icance to human health [18, 23].ESBLs, which hydrolyze 
third-generation cephalosporins, can transmit acquired 
resistance to other bacterial populations, leading to the 
spread of antibiotic resistance [12, 19].

In the past, the most common ESBL genes found in K. 
pneumoniae were the allelic variants of TEM-1, TEM-2, 
and SHV-1 that are the traditional TEM- and SHV-types, 
exhibit enhanced activity against extended-spectrum 
cephalosporines, and are primarily found in the hospital 
environment. However, in recent times, ESBL genes have 
been more frequently identified in E. coli, with the major-
ity belonging to the CTX-M- group [20, 21].

The increasing prevalence of infections caused by MDR 
bacteria, coupled with the rising problem of acquired 
resistance resulting from improper antibiotic use, high-
lights the urgent need to reduce antibiotic consump-
tion by exploring alternative approaches [22]. Among 
the potential alternatives, nanoparticles have emerged 
as a promising alternative to antibiotics for controlling 
infectious agents. Silver nanoparticles (AgNPs) exhibit 
biocidal effects against various foodborne bacteria [23]. 
They can interact with the cell surface of Gram-negative 
bacteria, causing damage and structural changes that 
enhance bacterial permeability [24]. Therefore, this study 
aims to (i) determine the occurrence, pathotypes, virulo-
types, genotypes, and antimicrobial resistance patterns of 
ESBL-producing E. coli in retail meat samples and work-
ers in contact in Egypt, and (ii) evaluate the bactericidal 
efficacy of silver nanoparticles (AgNPs-H2O2) against 
MDR ESBL-producing E. coli.

Materials and methods
Sample collection
The study received approval from the Zaga-
zig University Institutional Animal Care and Use 
Committee (ZU-IACUC) under approval number ZU-
IACUC/2/F/214/2022. Animal procedures were con-
ducted following the ARRIVE guidelines. A total of 250 
meat samples (chicken breast, duck breast, turkey breast, 
beef meat, and camel meat) were collected from retail 
meat shops in Zagazig City, Sharkia Governorate, Egypt. 
Samples were collected aseptically in sterile plastic bags 
between January to March 2022. Additionally, a total of 
100 hand and stool swabs (50, each) were collected from 
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workers at the retail shops where meat samples were 
collected. Hand swabs were collected by rolling a ster-
ile swab moistened in buffered peptone water over the 
palmar surface of the workers’ hand. The swab was then 
placed in the collection tube containing buffered peptone 
water. Stool samples were collected in clean sterile cups, 
and a swab was taken from each sample and inserted in 
a collection tube containing buffered peptone water. All 
samples and swabs were transported in an icebox at 4 °C 
to the laboratory and processed within 12–24 h.

E. coli isolation and identification
From each meat sample, 25  g were aseptically homog-
enized in 1:10 buffered peptone water and incubated 
for 24 h at 37 °C. Hand and stool swabs were also incu-
bated in buffered peptone water. A loopful of incubated 
samples was then streaked onto Chromocult® Tryptone 
Bile X-glucuronide agar (Sigma Aldrich, Millipore, ISO 
16,649) supplemented with 2 μg/mL of cefotaxime (CTX) 
and incubated for 24  h at 37  °C. Green blue colonies 
were picked and purified by streaking into Tryptone Soy 
Agar (TSA) (Merck, Darmstadt, Germany). The purified 
colonies were then identified by biochemical tests for 
indole, oxidase, catalase, Methlye-Red (MR), Voges-Pros-
kauer (VP), citrate, urease, nitrate reduction and sugar 
fermentation.

To confirm the presence of E. coli, bacterial DNA from 
presumptive E. coli colonies was extracted using the 
QIAamp DNA Mini kit according to the manufacturer’s 
instructions (Qiagen GmbH, Hilden, Germany, Cata-
logue no. 51,304). Specific primers targeting the phoA 
gene (Table  1) were employed for amplification to con-
firm E. coli isolates [25].

Characterization of ESBL-producing E. coli
The Double Disc Synergy Test (DDST) was used to verify 
the confirmed E. coli strains for phenotypic ESBL expres-
sion [26].

ESBL-producing E. coli phylotyping, virulotyping and 
genotyping
The confirmed strains were phylotyped using prim-
ers for the amplification of chuA, yjaA, and, tspE4C2 
genes (Table 1), according to the phylotype classification 
scheme previously described [27].

Virulotyping was also performed using specific prim-
ers for amplification of the virulence associated genes 
(Table 1), including hly [28],, astA [29], stx1 and stx2 [30], 
stx2f [31],, fimH [32], eaeA [33].

Genotyping was performed on extracted DNA through 
fingerprinting PCR using REP-primers synthesized by 
Metabion (Germany) with the following sequences: 
Rep1R-I 5’- III ICG ICG ICA TCI GGC-3’ and Rep2-I 5’- 
ICG ICT TAT CIG GCC TAC-3’ [34]. The primers were 

included in a 25- μL reaction mixture containing 12.5 μL 
of EmeraldAmp Max PCR Master Mix (Takara, Japan), 1 
μL of each primer ( 20 pmol), 4.5 μL of water, and 6 μL of 
DNA template. The PCR procedure was carried out using 
an Applied Biosystem 2720 thermal cycler.

To assess the discriminatory power of the REP-PCR 
fingerprinting data, the Simpson’s index of diversity (D) 
was utilized. The fingerprinting data was converted into 
a binary code, indicating the presence or absence of each 
band. A D value greater than 0.9 indicated good differen-
tiation [35].

Antimicrobial susceptibility testing
The Kirby-Bauer disc diffusion method was used to eval-
uate the isolates’ antibiotic susceptibility in accordance 
with the standards established by the National Commit-
tee for Clinical Laboratory Standards (NCCLS). Nine-
teen different antimicrobial agents were tested, and the 
zones of inhibition were measured and interpreted based 
on the guidelines provided by the Clinical and Labora-
tory Standards Institute (CLSI) [26]. In accordance with 
CLSI recommendations, the double fold dilution proce-
dure (0.125-256  g/mL) was used to establish the mini-
mum inhibitory concentration (MIC) for colistin [36]. 
The antimicrobial agents used included penicillin (PEN), 
ampicillin (AMP), amoxicillin (AMX), streptomycin 
(STR), erythromycin (ERY), nalidixic acid (NAL), ami-
kacin (AMK), trimethoprim-sulfamethoxazole (SXT), 
kanamycin (KAN), neomycin (NEO), gentamicin (GEN), 
ciprofloxacin (CIP), tetracycline (TET), colistin (CST), 
imipenem (IPM), chloramphenicol (CHL), cefotaxime 
(CTX), ceftriaxone (CRO), ceftazidime (CAZ). E. coli 
ATCC 25,922 and Staphylococcus aureus ATCC 25,923 
served as the microorganisms for quality control.

Multiple antibiotic resistance (MAR) index was cal-
culated by dividing the number of antibiotics to which 
E. coli isolates showed resistance by the total number 
of drugs tested [37]. Multidrug resistance (MDR) was 
defined as the resistance of an isolate to at least one agent 
in three or more antibiotic classes [38].

Antimicrobial resistance genes
Bacterial DNA from the E. coli confirmed isolates was 
also screened for ESBL encoding genes (Table 1); blaIMP, 
blaVIM, and blaNDM [39], blaTEM, blaOXA-1, and 
blaSHV [40], blaCMY [41], blaCTX-M-1 [42], tetracy-
cline; tetA(A) and tetA(B) [43], sulfonamides; sul [44], 
chloramphenicol; cmlA [45], and florquinolones; floR 
[46]. The presence of colistin resistance genes mcr-1 to 
mcr-5 was also examined [47].
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Table 1  Primers, product size and annealing temperatures used for identification, virulence and antimicrobial resistance genes 
reported in the present study
Gene Primer sequences (5’-3’) Product size (bp) Annealing (°C) References
hlyA fw: AACAAGGATAAGCACTGTTCTGGCT 1177 60˚C [28]

rev: ACCATATAAGCGGTCATTCCCGTCA

phoA fw: CGATTCTGGAAATGGCAAAAG 720 bp 60˚C [25]

rev: CGTGATCAGCGGTGACTATGAC

stx1 fw: ACACTGGATGATCTCAGTGG 614 58˚C [30]

rev: CTGAATCCCCCTCCATTATG

stx2 fw: CCATGACAACGGACAGCAGTT 779 58˚C

rev: CCTGTCAACTGAGCAGCACTTTG

astA fw: CCATCAACACAGTATATCCGA 110 55˚C [29]

rev: GGTCGCGAGTGACGGCTTTGT

stx2f fw: AGA TTG GGC GTC ATT CAC TGG TTG 428 57˚C [31]

rev: TAC TTT AAT GGC CGC CCT GTC TCC

fimH fw: TGCAGAACGGATAAGCCGTGG 508 50˚C [32]

rev: GCAGTCACCTGCCCTCCGGTA

eaeA fw: ATG CTT AGT GCT GGT TTA GG 248 51˚C [33]

rev: GCC TTC ATC ATT TCG CTT TC

blaIMP fw: CATGGTTTGGTGGTTCTTGT 488 53˚C [39]

rev: ATAATTTGGCGGACTTTGGC

blaVIM fw: AGTGGTGAGTATCCGACA 280 53˚C

rev: ATGAAAGTGCGTGGAGAC

blaNDM fw: GGCGGAATGGCTCATCACGA 287 55˚C

rev: CGCAACACAGCCTGACTTTC

blaTEM fw: ATCAGCAATAAACCAGC 516 54˚C [40]

rev: CCCCGAAGAACGTTTTC

blaOXA-1 fw: ATATCTCTACTGTTGCATCTCC 619 54˚C

rev: AAACCCTTCAAACCATCC

blaSHV fw: AGGATTGACTGCCTTTTTG 392 54˚C

rev: ATTTGCTGATTTCGCTCG

blaCMY fw: GACAGCCTCTTTCTCCACA 1143 60˚C [41]

rev: TGGAACGAAGGCTACGTA

blaCTX-M-1 fw: GTTACAATGTGTGAGAAGCAG 1041 60˚C [42]

rev: CCGTTTCCGCTATTACAAAC

tetA(A) fw: GGTTCACTCGAACGACGTCA 576 50˚C [43]

rev: CTGTCCGACAAGTTGCATGA

tetA(B) fw: CCTCAGCTTCTCAACGCGTG 633 50˚C

rev: GCACCTTGCTCATGACTCTT

sul fw: CGGCGTGGGCTACCTGAACG 60˚C [44]

rev: GCCGATCGCGTGAAGTTCCG

cmlA fw: CCGCCACGGTGTTGTTGTTATC 698 50˚C [45]

rev: CACCTTGCCTGCCCATCATTAG

floR fw: TTTGGWCCGCTMTCRGAC 494 50˚C [46]

rev: SGAGAARAAGACGAAGAAG

mcr-1 fw: AGTCCGTTTGTTCTTGTGGC 320 58 °C [47]

rev: AGATCCTTGGTCTCGGCTTG

mcr-5 fw: ATGCGGTTGTCTGCATTTATC 1644 58 °C

rev: TCATTGTGGTTGTCCTTTTCTG

chuA fw: GAC GAA CCA ACG GTC AGG AT 279 55˚C [27]

rev: TGC CGC CAG TAC CAA AGA CA

yjaA fw: TGA AGT GTC AGG AGA YGC TG 211

rev: ATG RAG AAT GCG TTC CTC AAC

tspE4C2 fw: GAG TAA TGT CGG GGC ATT CA 152

rev: CGC GYC AAC AAA GTA TTR CG
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Antimicrobial effect of silver nanoparticles on MDR ESBL-
producing E. coli
AgNPs-H2O2 (Top Superpower-vision) was obtained as a 
commercial product from El-Delta Center for Nanosilver 
Technology Company, Mansoura, Egypt. The stock solu-
tion of the product contained 45-nm silver nanoparticles 
(0.00004467 mL/liter), hydrogen peroxide (50% per liter) 
and natural herb mint (1 mL/liter) at a concentration 
of 5 mL/liter of water. The particles size was previously 
determined to be 30.17–67.92  nm with a zeta potential 
estimation of − 0.192 mV [48]. The AgNPs-H2O2 mixture 
was prepared by diluting the stock solution in sterile dis-
tilled water to achieve the desired commercial concen-
tration. The minimum inhibitory concentrations (MIC50 
and MIC90) of AgNPs-H2O2 were determined against 
MDR ESBL-E. coli by the broth microdilution method 
[36]. Briefly, microtiter plate wells were supplemented 
with various concentrations of AgNPs-H2O2 rang-
ing from 100, 50, 25, 10, 5, 2.5 1.25, 0.625, 0.312, 0.156 
and 0.078 μg/mL. MDR- ESBL-producing colonies were 
added in Muller Hinton broth and adjusted to the den-
sity of a 0.5 McFarland standard (1 × 108  cfu/ml). Each 
well received a final inoculum of 5 × 105 cfu/mL, and the 
plates were incubated for 24 h at 37 °C. A well with MHB 
alone and another well included MHB with AgNPs-H2O2 
were used as reference control. The lowest agent con-
centration that entirely prevents an organism’s observ-
able growth is known as the MIC endpoint. The MIC50 
and MIC90 were calculated using an orderly array method 
[49], where the middle value was selected as MIC50. The 
MIC90 was determined in the same way by selecting the 
appropriate value from the orderly array.

Data analysis
For statistical analysis and data visualization, R software 
was used (R Core Team, 2022; version 4.2.0). The E. coli 
isolation rate was calculated by dividing the number of 
E. coli positive samples by the total number of samples 
tested for each source. Pearson’s chi-square test was 
employed to assess any variations in the E. coli isolation 
rates among different sample types. The heatmap was 
created using the “Complex heatmap” package [50], and 

the dendrogram was created using the “hclust” function 
of the stats package. Furthermore, one-way analysis of 
variance was conducted to compare the MAR index of 
isolates from different sources. P-values < 0.05 were con-
sidered statistically significant.

Results
E. coli isolation and identification
Out of the 350 samples tested, 112 (32%) were E. coli 
positive with 68.75% (77/112) were isolated from retail 
meat samples and the remaining 31.25% (35/112) were 
recovered from retail market workers. E. coli was identi-
fied in various types of retail meat and market workers 
samples. The E. coli isolation rates exhibited significant 
variation (P = 0.0003) among the different sample sources. 
The highest isolation rate (54%) was observed in beef 
meat samples followed by workers stool samples (48%) 
(Table 2).

ESBL-producing E. coli
Overall, 58% (65/112) of E. coli isolates were ESBL pro-
ducers, with 45 (69.2%) and 20 (30.8%) isolates recovered 
from retail meat and market workers samples, respec-
tively (Table 2). The highest proportion of ESBL-produc-
ing E. coli was observed in duck meat and worker hand 
swabs (81.8%), followed by camel meat samples (61.5%).

Phylotyping, virulotyping and genotyping
The phylogenetic grouping of the 65 ESBL-producing E. 
coli showed that 4 (6.2%) isolates belonged to group A 
and 61 (93.8%) to group B1 (Table  2). All group A iso-
lates were recovered from workers stool samples (Fig. 1). 
None of the isolates belonged to group B2 or D. All the 
ESBL-producing E. coli isolates (100%) harbored at least 
one virulence gene, but only 25 (38.5%) of the isolates 
harbored two or more virulence genes (Fig. 2). The stx2 
gene was amplified in 24 (36.9%) of the isolates, followed 
by eaeA and hlyA genes in 9 (13.8%) and 4 (6.2%) isolates, 
respectively. The stx2f gene was identified in only four 
isolates that tested positive for stx2 gene (one each from 
chicken, turkey, duck, and beef meat samples). None of 

Table 2  Proportion of E. coli and ESBL-producing E. coli isolated from retail meat samples and retail shop workers
Source Sampling site Number examined No. of E. coli positive (%) No. of ESBL positive E. coli (%) Phylogenetic group

A B1
Chickens Breast meat 50 17 (34%) 10 (58.8%) 0 10 (100%)

Ducks Breast meat 50 11 (22%) 9 (81.8%) 0 9 (100%)

Turkey Breast meat 50 9 (18%) 5 (55.6%) 0 5 (100%)

Beef Cube meat 50 27 (54%) 13 (48.1%) 0 13 (100%)

Camel Cube meat 50 13 (26%) 8 (61.5%) 0 8 (100%)

Workers Hand swabs 50 11 (22%) 9 (81.8%) 0 9 (100%)

Stool swabs 50 24 (48%) 11 (45.8%) 4 (36.4%) 7 (63.6%)

Total 350 112 (32%) 65 (58%) 4 (6.2%) 61 (93.8%)
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the isolates carried the astA or stx1genes, however, all of 
them tested positive for the fimH gene (Fig. 2).

A single amplification profile was used to analyze the 
REP-PCR patterns of the 65 ESBL-producing E. coli 
isolates. The profiles were distinguished based on the 
number and position of the amplified fragments, which 
ranged in size from 290 to 1600 bp. Visual examination 
of the banding patterns revealed that five profiles (E1 to 
E5) were generated (Fig. 3). Simpson’s index of diversity 
was used to evaluate the discriminatory power of the 

REP-PCR, and the results showed that it had relatively 
low discriminatory power with a D value of 0.42. There 
were three main clusters revealed by the dendrogram 
analysis of the 65 analyzed isolates. (Figures  1 and 3). 
Notably, isolates from workers and meat within the same 
cluster exhibited 100% similarity.

Antimicrobial susceptibility testing
Table 3 presents the antimicrobial susceptibility profiles 
of the 65 ESBL-producing E. coli isolates. The isolates 

Fig. 1  Heatmap representation of ESBL-producing E. coli phylotypes, virulotypes, genotypes, antimicrobial resistance patterns and genes
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showed high frequencies of resistance to PEN, AMP, 
AMX, CTX, CAZ and CRO (100%, each), while the low-
est resistance rate (21.5%) was observed for GEN. All 
isolates were susceptible to IMP. Figure 4 displays the fre-
quency of antimicrobial resistance by source of isolation. 
However, no significant difference (P > 0.05) was found 
between resistance rates of ESBL-producing E. coli iso-
lated from retail meat and market workers. All isolates 
were classified as MDR with MAR index ranging from 
0.32 to 0.95 and an average of 0.70 (Fig. 5). The average 
MAR index of isolates recovered from various sources 
differed significantly, with workers’ stool having the high-
est MAR index (0.86) followed by camel meat (0.85).

Antimicrobial resistance genes
The frequency of antimicrobial resistance genes detected 
in ESBL-producing E. coli isolates obtained from retail 
meat and market workers is shown in Fig.  6. The ESBL 
encoding genes (blaIMP, blaTEM, and blaCTX-M-1) 
were found in 100% of the isolates, while blaVIM, and 
blaNDM were detected in 93.8% of the isolates. How-
ever, none of the isolates were positive for blaOXA-1, 
blaSHV, or blaCMY. Tetracycline resistance genes (tetA 
and tetB) were detected in 66.2% and 27.7% of the tested 
isolates, respectively The resistance genes for sulfon-
amides (sul), and florquinolones (floR) were identified 
in 86.2% and 69.2% of the isolates, respectively. Only 
mcr-1 was detected among the tested colistin resistance 
genes (mcr-1 and mcr-5), and it was found in 60% of the 
isolates.

Antimicrobial effect of silver nanoparticles
The antimicrobial activity of AgNPs-H2O2 against 
ESBL-producing E. coli was evaluated using the broth 

microdilution method. The MIC values of different con-
centrations of AgNPs-H2O2 against ESBL-producing 
E. coli isolated from retail meat and market workers are 
illustrated in Table  4. AgNPs-H2O2 concentrations of 
0.625, 1.25, 2.5 and 5 μg/mL showed complete bacterial 
growth inhibition (no turbidity). The MIC50 and MIC90 
were 0.625 and 2.5 μg/mL, respectively.

Discussion
Unhygienic food handling and processing procedures 
facilitate the dissemination of MDR bacteria, including 
ESBL-E. coli to human consumers. Thus, enforcing strict 
monitoring measures and promoting sanitary procedures 
for meat distribution are necessary to prevent the prolif-
eration of antibiotic-resistant bacteria [4].

In this study, ESBL-E. coli prevalence in duck meat was 
higher compared to the other sources (81.8%), followed 
by camel meat (61.5%). Similar results were reported 
in other studies in China [51] and Thailand [52], where 
MDR E. coli isolates were more common in ducks than 
in chicken. The higher isolation rate of ESBL-E. coli from 
ducks could be attributed to their nature as waterfowl, 
which excretes feces in water, thus enhancing the spread 
of the pathogens within the duck population [52].

A high ESBL-producing E. coli isolation rate of 86.7 
from chicken meat in Turkey was reported by Kürekci, 
et al. [53]. The authors attributed the high isolation rate 
from chicken meat due to the extensive use of fluoroqui-
nolones, cephalosporines and aminoglycosides in poultry 
industry which resulted in selection pressure for the high 
carriage rate of ESBL-producing E. coli in chickens [54].

The prevalence of ESBL-producing E. coli in beef was 
lower than that in chicken, which is consistent with the 
findings of Randall, et al. [55] who found rates of 20% in 

Fig. 2  Frequency of virulence genes of ESBL-producing E. coli isolated from retail meat samples and retail shop workers
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beef samples compared to 63% in chicken samples. Rao, 
et al. [56], also reported that only 1.9% of beef samples 
were positive for ESBL-producing E. coli, whereas 65.4% 
of chicken samples tested positive. Meanwhile, the prev-
alence of ESBL-producing E. coli in beef samples in the 
current study (48.1%) was much higher than the average 
(7.1%) of ESBL/AmpC-producing E. coli found in beef 
samples purchased at retail in the EU [57].

Meat is highly susceptible to microbial contamina-
tion due to multiple contacts from the slaughterhouse 
until consumption as food [4]. The prevalence of ESBL-
E. coli was found to be high in camel (61.5%) and beef 
meat (48.1%) samples, this is in line with another study 
[4]. Similarly, El-Ghareeb, et al. [58] reported the isola-
tion of ESBL-producing E. coli from 11.3% camel minced 
meat samples in Saudi Arabia. The high water and pro-
tein content of red meat provide a favorable environment 
for bacterial growth and may contribute to the high con-
tamination rates [59].

In the present study, ESBL-E. coli was found to be 
prevalent in workers hand swabs (81.8%) and stool 
samples (45.8%). Similar findings were reported in stud-
ies conducted in Thailand [52, 60]. In Ethiopia, E. coli 
was isolated from 20% of hand swabs, with ESBL-E. coli 
accounting for 25% of the isolates [4]. Variations in the 
hygienic procedures of meat handlers and the sanitary 
standards of meat retail shops may be the cause of the 
observed differences in E. coli prevalence. Inadequate 
hygienic procedures of meat handlers and insufficient 
sanitation standards in meat retailer stores may lead to 
cross-contamination of meat with E. coli [4].

E. coli can be classified into four main phylogenetic 
groups named A1, B1, B2, and D, which can be identi-
fied by PCR of four genes [6]. Generally, commensal 
strains belong to groups A1 and B1, while most virulent 
strains belong to groups B2 and D [6, 61]. In the present 
study, all the isolates were of the commensal groups A 
(6.2%) and B1 (93.8). Previous studies have also reported 
that the majority of the E. coli phylotypes from different 
sources were of the commensal groups A1 and B1 [61–
63]. In Egypt, Abdallah, et al. [64] reported that 80% of 
ESBL-producing E. coli isolated from chicken meat in 
the same study area were also of the commensal groups. 
The high proportion of commensal strains highlight their 
critical silent role in the spread and dissemination of 
ESBL-resistance genes [61, 64].

Virulotyping of the isolates revealed that all had at least 
one virulence gene, with stx2 (36.9%) being the most fre-
quently identified gene, and four isolates being positive 
for stx2f gene. The existence of genes related to virulence 
such as stx1, stx2, and eae have been found to be crucial 
factors for the pathogenicity of E. coli strains [65]. Stx2-
encoding strains of Shiga toxin producing E. coli (STEC) 
have been linked to more severe infections than those 
only possessing stx1 [66]. In our study, stx2 was the most 
common virulence gene (36.9%), consistent with reports 
from Germany, Argentina, and China [67–69]. In line 
with our findings, a study conducted in Egypt reported 
that 36% of MDR E. coli isolates obtained from chicken 
meat carried the stx2 gene [70].

In China, 28.57% and 51.02% of E. coli isolates had stx1 
and stx2 genes, respectively [69]. Although Shiga toxin 

Fig. 3  REP-PCR based dendrogram for ESBL-producing E. coli isolated 
from retail meat samples and retail shop workers
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is necessary for STEC pathogenicity, it is not sufficient. 
Therefore, we examined four additional virulence-asso-
ciated genes: hly, ast, eae, and fimH, that are linked to 
bacterial virulence. The combination of the eae and stx 
genes has been associated with increased virulence [71]. 
None of the isolates in our investigation carried the astA 

or stx1genes, while Nong, et al. [69] found astA in 20.41% 
and Ali, et al. [70] detected stx1 gene in 4% of the E.coli 
strains from chicken meat. All tested isolates in our study 
were positive for fimH gene, which is responsible for 
adhesion (the first step in the colonization process). Simi-
lar results were reported in poultry meat from Brazil [53, 

Table 3  Frequency of antimicrobial resistance profiles of ESBL-producing E. coli isolated from retail meat samples and retail shop 
workers
Antimicrobial resistance profiles1 Frequency of E. coli isolates from each source Total

Chicken Duck Turkey Beef Camel Hand Stool
PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, CIP, TET, CST, CHL, CTX, 
CRO, CAZ

2 2 2 6 12

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, GEN, CIP, TET, CST, CHL, 
CTX, CRO, CAZ

1 1 2 4

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, GEN, CIP, TET, CST, CTX, 
CRO, CAZ

1 1 2 4

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, NEO, CIP, TET, CST, CHL, CTX, CRO, CAZ 1 1 1 1 4

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, CIP, TET, CST, CTX, CRO, CAZ 2 1 3

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, CIP, TET, CHL, CTX, CRO, 
CAZ

1 1 1 3

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, CHL, CTX, CRO, CAZ 2 1 3

PEN, AMP, AMX, ERY, NAL, AMK, SXT, KAN, NEO, CIP, TET, CST, CHL, CTX, CRO, 
CAZ

1 1 2

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, CIP, TET, CST, CTX, CRO, CAZ 1 1 2

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, CTX, CRO, CAZ 1 1 2

PEN, AMP, AMX, ERY, NAL, AMK, SXT, KAN, NEO, GEN, CIP, TET, CST, CHL, CTX, 
CRO, CAZ

1 1

PEN, AMP, AMX, ERY, NAL, AMK, SXT, KAN, NEO, GEN, CIP, TET, CST, CTX, CRO, 
CAZ

1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, CIP, TET, CST, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, NEO, GEN, CIP, TET, CST, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, CIP, TET, CST, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, CIP, TET, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, NEO, CIP, TET, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, ERY, NAL, AMK, SXT, KAN, NEO, CIP, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, CIP, TET, CST, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, KAN, NEO, CIP, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, TET, CST, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, NEO, CST, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, ERY, NAL, AMK, SXT, NEO, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, SXT, NEO, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, SXT, GEN, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, NAL, AMK, SXT, KAN, CIP, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, GEN, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, AMK, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, NAL, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, SXT, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, ERY, SXT, GEN, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, ERY, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, CHL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, STR, NAL, CTX, CRO, CAZ 1 1

PEN, AMP, AMX, CTX, CRO, CAZ 1 1
1 PEN, penicillin; AMP, ampicillin; AMX, amoxicillin; STR, streptomycin; AMK, amikacin; KAN, kanamycin; NEO, neomycin; GEN, gentamicin; SXT, trimethoprim-
sulfamethoxazole; ERY, erythromycin; NAL, nalidixic acid; CIP, ciprofloxacin; TET, tetracycline; CST, colistin; IPM, imipenem; CHL, chloramphenicol; CTX, cefotaxime; 
CRO, ceftriaxone; CAZ, ceftazidime
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72]. This is expected because this gene has been reported 
from both clinical and commensal E. coli isolates from 
different sources [53, 57]. The eaeA and hlyA genes were 
found in 13.8% and 6.2% of our isolates, respectively. A 
lower proportion of eaeA and hlyA encoding genes (5 
and 4%, respectively) among E. coli isolates was reported 
previously in Egypt by Ali, et al. [70]. However, a higher 
percentage of eae -encoding genes (34.69%) among the E. 
coli isolates was observed in China [69]. In contrast, none 
of ESBL-producing E. coli recovered from retail meat in 
Mexico were positive of stx1, stx2, hlyA, or eae, virulence 
genes [61].

Recent studies highlight the significance of comparing 
isolates from various sources to evaluate the relevance 
of the foodborne pathway in human infection [73]. This 
study utilized REP-PCR to investigate the genetic relat-
edness between the isolates from different sources. The 
isolates were grouped into five profiles in three clusters. 
The 100% similarity between human and meat isolates 
within the same cluster indicates genetic relatedness and 
the possibility of transmission of strains from meat to 
humans. This is supported by the isolation of the same 
ESBL-associated genes from human and meat isolates. A 
similar study conducted in the Netherlands also reported 
a partially close genetic relationship between strains 
obtained from human carriers and chicken meat samples 
[74]. A Japanese study also reported 80% similarity index 
between E. coli isolates harboring β-lactamase obtained 
from domestic and imported chicken meat samples [75]. 
Similarly, a study in Sweden revealed that less than 0.1% 

Fig. 5  Multiple antibiotic resistance (MAR) index box plot of ESBL-producing E. coli isolated from retail meat samples and retail shop workers

 

Fig. 4  Frequency of antimicrobial resistance of ESBL-producing E. coli iso-
lated from retail meat samples and retail shop workers
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of the population carried ESBL-producing isolates asso-
ciated with poultry, but 5% of individuals were colo-
nized with ESBL-encoding plasmids that were identical 
to those found in chicken meat and poultry isolates [76]. 
Additionally, a study conducted in rural Ghana demon-
strated genetic links between ESBL-producing E. coli, 
suggesting possible transmission between poultry and 
human populations [77].

However, Belmar Campos, et al. [21] reported that 
ESBL genes produced by E. coli from chicken meat are 
different from those found in human stool samples and 
their data do not support the notion that ESBL strains 
from chicken meat significantly contribute to human 
colonization. The authors attributed this discrepancy to 
the fact that the chicken meat samples were collected 
more than six months after the human feces samples 
were obtained. Similarly, other studies have reported no 
genetic relatedness between ESBL-producing isolates 

from food animals and humans in close contact [73, 76]. 
In a study conducted in the Netherlands, no evidence 
was found to support the hypothesis of clonal transmis-
sion of ESBL-producing E. coli isolates between humans 
and poultry [78].

All isolates tested in our study were found to be MDR, 
with an average MAR index ranging from 0.32 to 0.95. 
The isolates showed 100% resistance to penicillins, beta-
lactams and cephems. The MDR isolates are considered 
reservoirs for both resistance and virulence genes and 
can be transferred to other strains of the same species 
and other species, thereby increasing the source of anti-
biotic resistance [61]. Similar results were reported by 
other studies [52, 55]. Abayneh, et al. [4] reported that 
the majority of E. coli isolates (74.3%) exhibited resistance 
to three or more classes of antibiotics, including TET, 
ERY and cotrimoxazole. Additionally, 85.7% of ESBL-
producers were resistant to CTX and CRO, while 71.4% 

Table 4  The distribution of minimum inhibition concentration (MIC) values of AgNPs concentrations against ESBL-producing E. coli 
isolated from retail meat samples and retail shop workers
Source No. of sensitive E. coli isolate at different AgNPs concentra-

tions (μg/mL)
5 2.5 1.25 0.625 0.312 0.156 0.078

Chickens 2 2 0 6 0 0 0

Ducks 0 3 1 5 0 0 0

Turkey 0 2 0 3 0 0 0

Beef 3 1 0 9 0 0 0

Camel 0 3 1 4 0 0 0

Worker’s hand 0 1 2 6 0 0 0

Worker’s stool 0 0 2 9 0 0 0

Total 5 12 6 42 0 0 0

Fig. 6  Frequency of antimicrobial resistance genes of ESBL-producing E. coli isolated from retail meat samples and retail shop workers
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were resistant to CAZ. Another study reported high 
resistance of ESBL-E. coli to AMP (69.4%), SXT (66.7%), 
TET (88.9%) and Sulfonamide (75%) [79]. In China, 
ESBL-producing E. coli were found to be resistant to dif-
ferent antibiotics such as AMP (98.9%) and TET (97.6%) 
[80]. Another study in Egypt TET (80.9%), STR (61.9%) 
and SXT (61.9%) [81]. All our isolates were susceptible 
to imipenem, this is consistent with another study con-
ducted in Turkey on chicken meat samples [53]. The dif-
ference between the resistance rates of ESBL-producing 
E. coli to antimicrobials could be attributed to antibiotic 
administration practices in the veterinary field as growth 
promoters or for therapy, also due to geographic distribu-
tion [3].

Colistin resistance has been observed in E. coli isolates 
from food-producing animals, especially poultry [82]. In 
this study, 60% of the isolates were resistant to colistin. 
The resistance to colistin is mediated by chromosomal 
mutations in pmrA/B, phoP/Q, and mgrB genes. How-
ever, an acquired colistin-resistance gene mcr-1 has also 
been identified in E. coli [83, 84]. To date, nine variants 
of mcr have been identified in humans and different ani-
mals [85]. The existence of mcr genes in mobile genetic 
elements raises concerns about their potential horizontal 
transfer in the food chain, posing a risk to public health 
[14]. Since 2006, the coexistence of mcr genes with other 
resistance determinants, such as ESBL and/or carbapene-
mase genes, has been reported in Enterobacterales. Nota-
bly, an increase in the prevalence of mcr-1 genes has been 
observed among ESBL-producing E. coli strains in ani-
mals, while their occurrence remains low in non-ESBL-
producing E. coli strains. This suggests that the use of 
extended-spectrum cephalosporins may have contrib-
uted to the dissemination of mcr-1 [86, 87]. A study con-
ducted in Turkey revealed a close genetic relationship 
between mcr-1 genes found in chicken meat and isolates 
of human origin, indicating the emergence and spread of 
mcr-mediated colistin resistance in E. coli across various 
sources with zoonotic potential in the food chain [88].

In this study, none β-lactamase resistance genes includ-
ing tetA, tetB, sul and flor were identified with high iso-
lation rates ranging from 27.7% to 86.2%. In the same 
line, a previous study has reported high prevalence of 
tetA (72.58%), and sul1 (44.67%) [89]. The investiga-
tion of resistance determinants in our study indicated 
that ESBL-encoding genes were highly prevalent in the 
isolates. TEM, SHV, OXA, CMY, and CTX-M beta-
lactamases are the most prevalent beta-lactamases in 
Gram-negative bacteria. In accordance, a study in Egypt 
reported that 57.55%, 46.23%, and 23.58% of the isolates 
had TEM, CTX-M, and SHV genes, respectively [64], In 
Bangladesh, Rahman, et al. [89] reported only blaSHV 
gene from ESBL-E. coli isolates, while in the Nether-
lands, blaCTX-M-1(58.1%) is the most prevalent gene 

found in chicken meat, followed by blaTEM-52 (14%) 
and blaSHV-12 (14%) [90]. In Singapore, Guo, et al. [91] 
found that out of 225 ESBL-producing E. coli isolates, 
76.4% carried blaCTX-M genes, 45.3% carried blaTEM 
genes and 23.1% carried blaSHV genes. Additionally, 
Lim, et al. [92] emphasized the prevalence of CTX-M 
genes as ubiquitous ESBL genes in ESBL-producing E. 
coli.

Although our isolates were sensitive to imipenem 
by phenotypic test, carbapenem resistance genes were 
detected in the isolates by PCR. This indicates that not 
all carbapenemase-producing isolates exhibit pheno-
typic resistance to carbapenems due to either lack of 
expression or the level of gene expression is less than the 
required to exhibit phenotypic resistance [93, 94].

Treatment of infections caused by ESBL-producing E. 
coli requires high doses of antibiotics, which can lead to 
antibiotic resistance and adverse effects on patients [95]. 
Nanoparticles, such as silver nanoparticles, are consid-
ered alternatives to antibiotics for treating various infec-
tions. Silver nanoparticles have large surface area to 
volume ratio, allowing for increased contact with bacte-
ria and resulting in direct interaction with the bacterial 
cell wall to produce antibacterial activity [96]. Our results 
showed that the MIC50 of AgNPs-H2O2 was 0.625 μg/mL 
against ESBL-producing E. coli. Another study in Egypt 
reported that the average MIC value of AgNPs against 
ESBL-producing E. coli was 27  μg/ml [95]. In India, an 
average MIC values of 11.25-45  μg/mL was reported 
[97],[103] while in Mexico, an MIC of 10  μg/mL was 
demonstrated for AgNPs [98]. The discrepancies in MIC 
values could be attributed to differences in the particle 
size of AgNPs [95]. Shafreen, et al. [99] argued that silver 
nanoparticles suspensions prepared by biological meth-
ods and with concentrations higher than 100 μg/mL may 
lose their antibacterial effect on microorganisms.

Conclusions
Results of present study showed high prevalence of viru-
lent MDR ESBL-producing E. coli in retail meat products 
and workers in retail meat shops in Egypt. Therefore, reg-
ular monitoring of retail meat and application of hygienic 
food safety practices by food handlers are required for 
protecting consumers. Silver nanoparticles are consid-
ered a promising alternative for treating MDR ESBL-
producing E. coli infections and reducing the risk of 
antimicrobial resistance.
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