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Abstract The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD 
comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. 
Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized 
by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10–20% of affected individuals. NAFLD further
more progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease 
now affects almost 25% of the world’s population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects 
lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a 
gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. 
Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney dis
ease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the 
cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment 
strategies include glucagon-like peptide 1 receptor antagonists, sodium–glucose transporter 2 inhibitors, Fibroblast Growth Factor 
analogues, Farnesoid X receptor agonists, and peroxisome proliferator–activated receptor agonists. Here, we review epidemi
ology, pathophysiology, and therapeutic options for NAFLD.
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1. Introduction
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing 
globally and is expected to become the leading cause of liver transplant
ation by 2030, with expanding costs for the healthcare systems.1 NAFLD 
comprises a large spectrum of disease entities from simple hepatic steatosis 
to non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepa
tocellular carcinoma (HCC). NAFLD has an estimated prevalence of 25% 
in the general population2 with even higher prevalence in populations with 
metabolic diseases. Patients with type 2 diabetes (T2D) exhibit a NAFLD 
prevalence up to 75%,3 and severely obese patients show prevalence rates 
of even 90%.4,5 A recently published cross-sectional population-based 
study estimated the prevalence of advanced fibrosis in Germany at 1%.6

NAFLD has evolved as a prototypic systemic disease in the past decade, 
and importantly extrahepatic diseases such as cardiovascular disease 
(CVD) or extrahepatic malignancies are the major contributors to mortal
ity in this population.7–9 The stringent associations of NAFLD with its 
mortality-driving co-morbidities are not well understood but may include 
various aspects including continuous low-grade inflammation observed in 
NAFLD.10,11

NAFLD is defined by an excessive hepatic fat accumulation, associated 
with insulin resistance (IR) and evidence of steatosis based on imaging tech
niques or histology. Furthermore, secondary causes of hepatic steatosis 
like alcohol consumption (>30 g for men and >20 g for women) need 
to be ruled out.12 In 2020, Eslam et al. proposed alternative diagnostic cri
teria for NAFLD and also suggested an alternative term: metabolic asso
ciated fatty liver disease (MAFLD). Instead of the exclusion of alcohol 
use, ‘positive criteria’ were defined. MAFLD is present in patients with ob
served hepatic steatosis [as detected by ultrasound, computed tomog
raphy, magnetic resonance spectroscopy, or controlled attenuation 
parameter (CAP, FibroScan)] and overweight [body mass index (BMI) 
≥25 kg/m2 in Caucasians or BMI ≥23 kg/m2 in Asians] or T2D. In lean/nor
mal weight patients, two of the following factors need to be present in add
ition to hepatic steatosis: increased waist circumference, arterial 
hypertension, elevated triglycerides, decreased plasma high-density lipo
protein cholesterol (HDL-c), pre-diabetes, elevated homoeostasis model 
assessment of insulin resistance (HOMAR) score, or increased plasma 
high-sensitivity C-reactive protein. A controversial discussion has evolved 
around this new, inclusive, diagnostic definition.13 Some studies indicate 
that using the new definition rather than the old one results in a higher 
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detection of patients suffering from liver disease,14 which would result in 
better/optimized patient care. On the other side, the new definition cri
teria fail to include NASH, the aggressive form of NAFLD including inflam
mation and liver injury. However, there are still some unmet needs for this 
new definition and therefore we will use the term NAFLD throughout 
this review. Historically, NAFLD was and still is associated mainly with 
obese individuals; however, in the past years, the recognition of lean 
NAFLD as an entity of NAFLD has emerged. Recently, a new clinical prac
tice guideline has been published,15 which supports the importance of 
diagnosing lean NAFLD patients [e.g. NAFLD and BMI <25 
(non-Asian) and <23 kg/m2 (Asian)] and also identifies co-morbidities 
such as T2D, dyslipidaemia, hypertension, and fibrotic changes of the li
ver. However, a screening of otherwise healthy people for lean NAFLD 
is currently not recommended but should be considered in T2D patients 
older than 40.15

1.1 Pathophysiology of NAFLD
The pathophysiology of NAFLD is complex and heterogenous, already illu
strated by the fact that NAFLD comprises a clinical spectrum from simple 
steatosis to cirrhosis as end stage of liver disease. Many different factors are 
involved in inducing metabolic associated changes in the liver. An overcon
sumption of nutrients can lead to dysbiosis in the gastrointestinal tract; fur
ther a translocation of microbial-associated molecular patterns to the liver 
via the portal vein and into the systemic circulation via an increased perme
ability of the intestinal barrier can induce pro-inflammatory reactions in the 
liver. On the other side, certain dietary components can also directly trig
ger relevant disease mechanisms in liver tissue.16–18

1.1.1 Lipotoxicity
One of the characterizing features of NAFLD on histopathological level is 
the accumulation of lipid droplets in hepatocytes.19 Therefore, a possible 
disease-driving role of lipids and lipid-derived compounds has been as
sumed since a long time. Harbouring a SNP in PNPLA3 (rs738409, 
I148M) increases the genetic susceptibility towards the development of 
NAFLD.20 This protein is in close proximity to lipid droplets within the 
hepatocyte.21,22 The I148m alteration in PNPLA3 leads to an altered re
modelling of fatty acids in the hepatocytes; further this variant leads to 
an accumulation of PNPLA3 on lipid droplets, as the degradation of the 
protein via the ubiquitination pathway is reduced compared with the wild- 
type protein.21–23 The knockdown of the protein resolves steatosis in an 
experimental murine steatosis model, indicating that a knockout/inhibition 
of the enzyme would be a possible treatment target.22 Recently, the ger
minal centre kinase III (GCKIII) kinases Mammalian sterile 20-like 
(MST)-3 and MST4 were described to correlate positively with increased 
histopathological disease severity in NAFLD patients.24–27 These kinases 
associate with lipid droplets within the hepatocyte26–28 and control 
lipid-induced metabolic stress in hepatocytes. siRNA silencing experiments 
in human hepatocytes showed that reduced levels of MST3, MST4, and ser
ine/threonine-protein kinase 24 (STK24) led to a decrease in triacylglycerol 
(TAG) synthesis and thereby to a reduction in lipid droplet formation. 
Further, it seems that these three proteins inhibit β-oxidation and thereby 
drive oxidative stress, which is a key pathomechanism of lipotoxicity in 
NAFLD.24–29

Another compound with possible lipotoxic functions is free choles
terol.30 The expression of 3-hydroxy-3-methylglutaryl (HMG) CoA reduc
tase, the rate-limiting enzyme in cholesterol synthesis, is up-regulated in 
liver tissue of NAFLD patients compared with lean and obese controls.31

This up-regulation was paralleled by a dephosphorylation, thus more 
activation of HMG CoA reductase and an increase in free cholesterol 
synthesis.31 An accumulation of excess free cholesterol can lead to the de
velopment of cholesterol crystals in lipid droplets, which was associated 
with fibrosing NASH in a small human cohort.32 Further, free cholesterol 
could drive sterile inflammation by interacting with YAP-TAZ, which was 
also markedly increased in liver tissue of human NAFLD patients and mur
ine livers of NAFLD models.33–36 Free cholesterol but not free fatty acids 
(FFAs) or triglycerides sensitized the liver towards the development of 

steatohepatitis induced by tumour necrosis factor (TNF) and fatty acid 
synthetase (FAS) in rodent models. This is due to depletion of mitochon
drial glutathione,37 indicating an inflammation driving role of free choles
terol. Decreased glutathione levels can lead to augmented reactive 
oxygen stress (ROS) production and thereby to pro-inflammatory pro
cesses within the cell.37 Cholesterol is metabolized into bile acids (BAs), 
which are then secreted into the gut. In the gut, BAs act in the small intes
tine and play an important role in the uptake of cholesterol, fat, and vita
mins (fat soluble). Primary BAs are metabolized by the intestinal 
microbiome to secondary BAs and also influence the constituency of the 
microbiome.38,39 In the terminal ileum, almost all BAs are actively reab
sorbed.38 BA can act as signalling molecule through different receptors, 
such as Farnesoid X receptor (FXR) or the G protein–coupled bile acid re
ceptor 1 (GPBAR1 also known as TGR5).40 Reduced hepatic fat accumu
lation as a result of reduced lipogenesis is observed after activation of 
FXR.41 Ileal FXR influences hepatic metabolism also through the produc
tion of fibroblast growth factor 15 (FGF15; FGF19 in humans) in the small 
intestine and subsequent increased oxidation of fatty acids and decreased 
hepatic lipogenesis.40 In mice, nor-ursodeoxycholic acid, by targeting 
mTORC1 in CD8+ T cells, ameliorated experimental cholestatic liver in
jury, indicating therapeutic mechanisms beyond hepatocyte metabolism42

(Figure 1).

1.1.2 Dietary components affecting NAFLD
Besides overconsumption of calories and consecutive weight gain, fruc
tose is a key player in the development and progression of NAFLD. 
Fructose is derived from the diet via sweetened beverages and pro
cessed food. Fructose increases lipogenesis by enhancing the available 
substrates for fatty acid synthesis via aldolase B and ketohexokinase ac
tion and also by activating transcription factors such as sterol regulatory 
element-binding protein 1c (SREBP1c) and others.43 A recent small 
study with paediatric and adolescents NAFLD patients described that 
the intakes of total calories, fat, and carbohydrates were similar between 
NAFLD and NASH patients; however, NASH patients had higher total 
intake of fructose, sugar, sucrose, and glucose.44 A meta-analysis includ
ing over 2000 individuals described that an excess of energy delivered by 
sugar-sweetened beverages (mainly by fructose) leads to an increase of 
liver fat.45

1.1.3 Microbiome, the intestine, and NAFLD
A plethora of studies has underlined the importance of dysbiosis in the de
velopment of different stages of liver disease.17,46–54 These microbial 
changes were described on phylum, family, genus, and species level. For in
stance, Proteobacteria seem to be increased in NAFLD,47–49,52 whereas 
Ruminococcaceae or Bifidobacteriaceae were described to be decreased in 
NAFLD patients compared with healthy controls.53,55 Faecalibacterium 
prausnitzii, a rather anti-inflammatory bacterial strain, is decreased in 
NAFLD patients,55,56 while Robinsoniella is an example for a genus to be in
creased in NAFLD.52

Two murine landmark studies from the early 2000s could show that the 
microbiome plays an essential role for the development of experimental 
NAFLD and body fat storage. One of these studies described that germfree 
mice that were colonized with cecal microbiome from conventionally 
raised mice showed an increase in body weight.57 Li et al.58 demonstrated 
that the probiotic VSL#3 protected against high-fat diet-induced liver dam
age in ob/ob mice. In the meantime, various mainly pre-clinical studies could 
prove that interference with the intestinal microbiome offers a possibility 
to influence the course of NAFLD and related diseases. Treatment with 
Akkermansia muciniphila did ameliorate liver disease, dyslipidaemia, and IR 
in different mouse models.59,60 In a double-blind randomized proof of con
cept study enrolling 40 overweight humans, pasteurized A. muciniphila im
proved insulin sensitivity and reduced plasma cholesterol.61 An important 
role of the microbiota in the development of liver disease was observed by 
the group of Friedman. They observed that the transfer of human micro
biome, obtained from infants born to obese mothers 2 weeks after birth, 
into germfree mice induced hepatic inflammation and an increased 
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susceptibility to inflammation and obesity induced by a western-style 
diet.62 In a recent study, Sookoian et al.63 showed a distinct microbial pro
file in liver tissue of NAFLD patients linked to obesity. Several strains could 
be associated with histologic inflammation. The liver microbiome is poten
tially populated from the gut and might shape the hepatic immune system64

(Figure 1).
Bacteria-derived metabolites can influence inflammatory and metabolic 

processes in the liver and other organs. The faecal metabolomic signature 

of NAFLD patients is altered when compared with healthy individuals. 
Some metabolic active substances are produced by bacterial enzymes 
out of the dietary components such as butyrate, propionate, and acetate, 
so-called short chain fatty acids (SCFAs). These metabolites are increased 
in the faeces of NAFLD patients65 and are bioactive agents, mainly by the 
binding to G protein–coupled receptors (GPCRs).66 However, it is not 
quite understood if SCFAs are drivers of disease progression in NAFLD 
or could also be beneficial as another recent study described an inverse 
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relation between systemic SCFA levels and severity of liver disease in 74 
cirrhosis patients.67 Moreover, SCFAs are mainly produced out of dietary 
fibres, and fibre intake was associated with a lower risk of mortality in 
chronic liver disease in a recently published cohort study using the 
NIH-AARP Diet and Health Study.68 Furthermore, it is believed that 
SCFAs have beneficial effects on obesity and obesity-related diseases.69

Another dietary-derived metabolite shown to play a role in NAFLD and 
related disease is trimethylamine-N-oxide (TMAO), which is produced in 
the liver out of trimethylamine (TMA). The intestinal microbiota are able 
to metabolize choline, carnitine, and phosphatidylcholine into TMA. A pro
spective study with 4007 participants could show a positive correlation be
tween the baseline TMAO level and the risk for a major cardiovascular 
event (death, stroke, or myocardial infarction), which could be explained 
by an increased platelet activation through TMAO.70,71 Recently, it was de
monstrated that TMAO was also measurable in faeces of mice fed a native 
starch diet72 as an earlier study could show that the genome of certain bac
teria includes a TMA monooxygenase, which could indicate a non-hepatic 
source of systemic TMAO.73 Increased circulating TMAO levels were as
sociated with the severity of NAFLD in a recently published study based 
on a case-control study with 60 NAFLD cases and 35 controls and a cross- 
sectional study with 1628 Chinese adults.74 A possible mechanistical ex
planation for the role of TMAO in metabolic diseases could be the activa
tion of protein kinase R (PKR)–like endoplasmic reticulum kinase (PERK) 
through binding of TMAO.75 This is interesting as ER stress, which is partly 
coordinated by PERK, plays an important role in the development of 
NAFLD and related diseases such as T2D.76,77 A recent study with 307 
healthy men from the Men’s Lifestyle Validation Study could identify micro
bial taxa such as Alistipes shahii being associated with TMAO 
concentrations.78

Another possible role for the gut in the development of NAFLD is via 
an increased intestinal permeability and thereby the translocation of bac
teria and bacterial products via the portal vein into the liver and the sys
temic circulation. In a cross-sectional study using patients from the 
FLORINASH cohort, an increase in 16S rDNA concentration in patients 
with fibrosis was described in the discovery cohort comprising of 50 pa
tients and the validation cohort with 71 patients.79 Schierwagen et al.80

described a systemic microbiome that seemed to be circulating in pa
tients who received a transjugular intrahepatic portosystemic shunt 
(TIPS) procedure. Studies over 30 years ago had demonstrated endo
toxaemia in patients with chronic liver disease as a surrogate marker 
of increased intestinal permeability.81,82 In a recent meta-analysis sum
marizing 14 studies with adult and paediatric patients, an increased intes
tinal permeability was shown in NAFLD patients compared with healthy 
controls.83 Lipopolysaccharide (LPS) induces nuclear factor of activated 
B-cell (NF-κB) activation through binding to toll-like receptor 4 (TLR4). 
In a study with 25 NASH and 25 simple steatosis patients, it was found 
that serum LPS levels were higher in the NASH cohort; additionally, 
there was a higher number of TLR4 expressing macrophages in liver bi
opsies of NAFLD patients compared with normal livers.84 An important 
role of TLR4 signalling in the development of liver disease has also mech
anistically been described in mice studies, as TLR4-deficient mice are 
protected from experimental NAFLD and also alcohol-induced liver dis
ease.85–87 The induction of TLR-4 in hepatic Kupffer cells (hKCs) leads to 
the production of pro-inflammatory cytokines enhancing hepatocyte 
dysfunction, necrosis, and apoptosis of hepatocytes and neutrophil 
recruitment into the liver. Moreover, hepatic stellate cells (HSCs) are 
activated by cytokines resulting in generation of extracellular matrix pro
teins leading to fibrosis/cirrhosis.88 hKC and HSC do also ‘communicate’ 
with each other, and this cross talk might be driving pro-inflammatory 
and fibrotic processes in the liver.89 This is partly also regulated by 
TLR4. LPS-dependent production of chemokines in HSC leads to the re
cruitment of hKC, which in turn produce transforming growth factor 
beta (TGFβ) and thereby activate HSC.90 Recently, MER proto- 
oncogene, tyrosine kinase (MerTK) was identified to play an important 
role in this cross talk, as its activation modulated the secreted proteins 
in macrophages and thereby promoted a pro-fibrogenic phenotype in 
human HSC in vitro.91

1.1.4 Insulin resistance
NAFLD patients often also present with other features of the metabolic 
syndrome, and the liver is a central organ for metabolism, so a close rela
tionship between NAFLD and IR is rather expected. IR is one of the main 
players in the pathophysiology of NAFLD as initially described by 
Marchesini et al.92 A rise of FFAs can induce hepatic IR in humans.93

Hepatic IR was associated with intrahepatic diacylglycerol (DAG) content 
in liver biopsies from obese, non-diabetic individuals.94 DAG content in the 
liver was correlated with protein kinase c epsilon-type (PKC-ϵ) activa
tion.94 This axis was also described in a rodent model, where hepatic stea
tosis, induced by a short-term fat feeding, leads to activation of PKC-ϵ and 
c-Jun N-terminal kinases 1 (JNK1) and a possible interference with insulin 
receptor substrates 1 and 2 (IRS-1 and IRS-2) to the development of IR.95

An important driver of IR in the liver is inflammation, as mice expressing a 
constitutively active inhibitor of nuclear factor kappa-B kinase subunit beta 
(IKK-β) only in hepatocytes develop hepatic IR,96 while mice lacking IKK-β 
in hepatocytes are protected against hepatic IR after a high-fat diet, while 
they develop IR in muscle and fat.97 IKK-β is activated by oxidative stress,98

which is elevated in NAFLD patients.99 Further, IKK-β can also be activated 
by pro-inflammatory cytokines such as TNF, which are also elevated 
NAFLD patients.100 As NAFLD is extremely frequent in patients with 
T2D,101,102 IR seems also to be an attractive target for therapeutic modu
lation of NAFLD (see below) (Figure 1).

1.2 Clinical diagnosis of NAFLD
Today, besides liver biopsy, different non-invasive tests (NITs) can be used 
to diagnose NAFLD-like serum biomarkers, transient elastography (TE), 
and magnetic resonance elastography (MRE).

1.2.1 Serum tests
Serum tests comprise simple and inexpensive (non-patented) tests such as 
aspartat aminotransferase (AST)/alanin aminotransferase (ALT) ratio, AST 
to platelet ratio index (APRI), Fibrosis-4 (FIB-4), and NAFLD fibrosis score 
(NFS) compared with patented tests such as the FibroTest®, 
Fibrometer®, and Hepascore®. In a recent meta-analysis, Xiao et al.103

compared the performances of FIB-4, NFS, and APRI for the diagnoses 
of advanced fibrosis in NAFLD patients with summary AUROCS of 0.84, 
0.84, and 0.77, respectively.103 The FIB-4 (age, AST, ALT, and platelet) 
can be used as a guidance to define patients who need further hepatic 
evaluation. Higher FIB-4 scores suggest advanced liver disease and a pos
sible need for referral to a haepatologist. In patients with suspected 
NAFLD, a FIB-4 score < 1.3 rules out severe liver disease and no referral 
to a haepatologist or further diagnostic workup is needed. FIB-4 should 
be repeated in 1–3 years. In patients with suspected NAFLD and 
FIB-4 ≥ 1.3, TE for further workup is needed104,105 (Figure 2).

1.2.2 Transient elastography
TE is a non-invasive tool for evaluating liver stiffness. It has a high applicabil
ity of >95% (in patients who are not morbidly obese), is easy to perform, 
and provides results in real time.12,104 Increased liver stiffness values are as
sociated with liver fibrosis but can also occur in other conditions. However, 
liver stiffness is a physical property of the tissue, which not depends only on 
the amount of liver fibrosis but is also affected by inflammation, obstructive 
cholestasis, food ingestion, exercise, or venous congestion.104 TE enables 
evaluation of liver fibrosis in a broader population and is thereby feasible 
in view of NAFLD epidemic.107 Of note, TE should be repeated regularly 
also in patients already diagnosed with cirrhosis, as an increase in portal 
hypertension is a leading cause of cirrhosis-related complications.108,109

1.2.3 Magnetic resonance elastography
MRE can usually be done on a regular MRI machine. Compared with liver 
biopsy and TE, MRE examines the whole liver, which makes results more 
robust. Another advantage is the higher applicability in difficult examination 
conditions like presence of ascites and obesity than TE. On the other side, 
MRE is costly and time-consuming.
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Figure 2 Diagnostic algorithm adapted from Kanwal et al.106 and the EASL CPG.12 A1AT, alpha 1 antitrypsin; ALT, alanin aminotransferase; AST, aspartat 
aminotransferase; CVD, cardio vascular disease; HDL-c, high-density lipoprotein cholesterol; IgG, immunoglobulin G; VCTE, vibration controlled transient 
elastography.
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1.2.4 Biopsy
Liver biopsy is an invasive procedure with a mortality risk of ∼0.2%. Major 
bleedings occur in ∼0.6%.110 Today, liver biopsy is not universally needed 
to diagnose NAFLD because of the increasing benefit of NITs. Liver biopsy 
is indicated if NITs are discordant, to rule out other confounding liver dis
eases, defining stages of liver fibrosis or study purposes.104,111

1.3 NAFLD and CVD
Beside well-known liver-related mortality, CVD is a common cause for 
death in NAFLD patients. CVD-associated mortality in NAFLD patients in
creased by 14% from 2008 to 2018.112 Simon et al.113 showed recently in
creased overall mortality in all histological stages of NAFLD. Studies have 
proved the role of NAFLD in different cardiac disease manifestations like 
left ventricular dysfunction (LVD), atherosclerotic CV disease, and ischae
mic heart disease. This suggests that NAFLD could be an independent pre
dictor of CVD.114,115 In a recent meta-analysis including 34 043 patients 
with NAFLD, it was shown that NAFLD patients displayed an increased 
risk of both fatal and non-fatal CV events compared with non-NAFLD pa
tients. Interestingly, this study furthered showed an increased risk of CV 
events in individuals with a greater severity of liver disease.9,116 Further, 
studies could show that especially hepatic fibrosis was associated with 
CVD and also liver-related outcome.117,118 Although the clinical associ
ation seems to be solid, a clear pathophysiological link between NAFLD 
and CVD is not established. It is rather thought to be a mixture between 
metabolic dysfunction, low-grade inflammation, dysregulated microbiome, 
and altered metabolism of (microbiome) derived products (e.g. TMAO; see 
above).9

1.4 Management of NAFLD
Although the prevalence of NAFLD and NASH is substantially increasing5

and is already a global burden, effective drug therapies are still missing. 
Cardiovascular disease and malignancies are the leading causes for death 
in patients with NAFLD.119 Therefore, the main treatment goal is to re
duce CVD risk and malignancy risk as well as hepatic steatosis and inflam
mation. Here, we summarize some possible therapeutic strategies in 
NAFLD/NASH but will not discuss the importance of other CVD risk de
creasing therapies such as statins, etc. Today, an increasing number of 
therapeutic options are available for the treatment of NAFLD. 
Important to note, most of them are not yet approved for the treatment 
of liver disease (Table 1).

1.4.1 Probiotics
Multiple pre-clinical studies showed that the intestinal microbiota influ
ences the course of NAFLD. Nevertheless, probiotics are not generally re
commended for treating patients with NAFLD. Only few clinical studies 
tested probiotics in patients with NAFLD. VSL#3,120 different strains of 
Lactobacilli,121 and Lactobacillus bulgaricus and Streptococcus thermophilus122

were shown to be effective in reducing liver enzymes but not liver steatosis 

or fibrosis. More clinical trials are needed to define beneficial bacterial 
strains effective in NAFLD and NASH.

1.4.2 Lifestyle change
An unhealthy lifestyle was associated early with NAFLD.123 Therefore, life
style change is mandatory in every patient with NAFLD. In a prospective 
study including 293 patients with biopsy-proven NASH, Vilar-Gomez 
et al.124 showed a reduction of hepatic steatosis and inflammation after a 
recommended lifestyle change within 12 months. Interestingly, the degree 
of weight loss was independently associated with the degree of NASH. All 
patients who achieved a weight loss ≥ 10% had a reduction of NAFLD 
Activity Score (NAS, histologic score), 90% had resolution of NASH, and 
45% had regression of fibrosis.124 Sustained weight loss is challenging be
cause it requires a transformation of behavioural patterns but depicts a 
cornerstone in NAFLD treatment. Generally, NAFLD patients are recom
mended to lose 7–10% of their body weight.12 Further, patients are advised 
to avoid alcohol consumption12,125 and high fructose intake.126 Physical ac
tivity was shown not only to reduce liver fat127,128 but also to reduce risk of 
CVD, obesity, and T2D.129 The European Association for the Study of the 
Liver (EASL) recommends over 150 min/week of moderate intensity phys
ical activity (three to five sessions per week) combining aerobic and resist
ance training.12,130 Analysing data from 304 patients, Huber et al.6 could 
report a correlation between biopsy-proven lobular inflammation, dia
betes, age, and sex with a lower health-related quality of life in NAFLD pa
tients. The prospect for improvement of the quality of life could help to 
motivate patients to introduce and maintain the sometimes tedious 
changes in lifestyle.

1.4.3 SGLT2 inhibitors
Sodium–glucose transporter 2 (SGLT2) inhibitors inhibit the SGLT2 trans
porter and promote urinary glucose excretion. Hereby, blood levels of glu
cose are decreased and IR can be improved in patients with T2DM.131

Kuchay et al. investigated the effect of empagliflozin on liver fat content 
in patients with T2D and NAFLD. Empagliflozin significantly reduced liver 
fat compared with controls (standard of care).132 In a meta-analysis includ
ing seven RTCs, the effect of SGLT2 inhibitors on NAFLD was investigated. 
Compared with placebo or reference therapy, empagliflozin, canagliflozin, 
or ipragliflozin showed a small improvement in liver fat content, assessed 
by ultrasound, FibroScan, and MRE. Furthermore, SGLT2 inhibitor treat
ment went along with a reduction of body weight (2–3 kg) and HbA1c re
duction (0.8–1.0%). In all RCTs, SGLT2 inhibitors were associated with a 
reduction of transaminases,133 suggesting a possible amelioration of hepat
ic injury.

1.4.4 Glucagon-like peptide 1 receptor agonists
Glucagon-like peptide 1 receptor agonists (GLP1-RAs) seem to exert the 
most promising beneficial effects on NAFLD or NASH. GLP1-RAs mimic 
the effects of physiological GLP1, e.g. stimulation of insulin secretion, 
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Table 1 Available therapeutic options in NAFLD

Liver 
enzymes

Steatosis Inflammation Fibrosis Adverse events Beneficial clinical aspects

GLP1 receptor 

agonists

+ + + + Gastrointestinal Weight loss, reduction of CV events

SGLT2 inhibitors + + ? ? Genitourinary infections, dehydration Reduction of CV events, 
nephron-protection, weight loss

Glitazones + + + + Weight gain (mild), oedema, heart 
failure, bone fractures

reduction of CV events

Bariatric surgery + + + + Invasive procedure, malnutrition Weight loss

CV, cardio vascular; GLP1, glucagon-like peptide 1; SGLT2, sodium–glucose transporter 2.
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inhibition of glucagon, gastrointestinal secretions, and motility. 
Furthermore, it reduces food intake by enhancing satiety.134 In a multi- 
centre placebo-controlled Phase 2 trial including obese patients with 
biopsy-proven NASH, liraglutide 1.8 mg/day for 48 weeks was effective 
to induce histological resolution of NASH and significantly improved histo
logic scores of NASH compared with those receiving placebo.135

Semaglutide 0.1, 0.2, or 0.4 mg was tested in patients with biopsy- 
confirmed NASH and liver fibrosis of Stages F1–F3. NASH resolution with
out worsening of fibrosis was achieved in 40% of the 0.1-mg group, 36% in 
the 0.2-mg group, 59% in the 0.4-mg group, and 17% in the placebo group. 
In the 0.4-mg group, the mean per cent weight loss was 13%.136 Important 
to note, liraglutide and other long-acting GLP1-RAs have been proved to 
reduce risk of adverse CVD and renal outcomes in patients with T2D.137

1.4.5 BAs, BA metabolites, and FXR agonists
As also described above, BA signalling plays an important role in NAFLD 
development. FXR is a major regulator of BA metabolism and is involved 
in lipid and glucose metabolism.138 Different non-BA FXR agonists like tro
pifexor,139 cilofexor,140 and nidufexor141,142 have been tested in NAFLD 
and were proved to reduce liver fat content. Obeticholic acid (OCA), a 
modified BA and FXR agonist, was able to reduce fibrosis and histological 
features of liver disease in NASH patients.143–145 However, in one of these 
trials, an increase of very low-density lipoprotein (VLDL) and low-density 
lipoprotein cholesterol (LDL-c) particles and a decrease of HDL-c was ob
served during treatment but was reverted after discontinuation of the 
study drug, indicating a shift of lipoproteins from the liver to the systemic 
circulation.146 A Phase 2 dose finding study with 198 patients with NAFLD 
could show a reduction of ALT after 12 weeks of treatment with nor- 
ursodeoxycholic acid compared with placebo.147 In a 12-week, rando
mized, placebo-controlled study MET409, a non-BA agonist was shown 
to significantly reduce liver fat content compared with control group.148

1.4.6 PPAR agonists
Peroxisome proliferator–activated receptors (PPARs) are transcription 
factors of nuclear hormone receptors with three subtypes PPAR-α, 
PPAR-γ, and PPAR-β/δ, which regulate lipid metabolism, energy homoeo
stasis, insulin sensitization, and glucose metabolism. Pioglitazone (PPAR-γ 
agonist) is a potent insulin sensitizer and is used in treatment of T2D. In 
a recent meta-analysis, pioglitazone was proved to be effective in reducing 
liver fibrosis and NASH.149–151 Interestingly, similar effects could be shown 
also in patients without T2D.152 Furthermore, pioglitazone displays pro
tective effects on the vasculature, decreasing the risk of ischaemic stroke 
in patients with T2D or prediabetes.153 Pioglitazone lowers levels of trigly
ceride and LDL-c and increases HDL-c. Common side effects are weight 
gain, lower limb oedema as well as bone fractures, predominantly in post- 
menopausal women.153 The pan-PPAR agonist Lanifibranor is under clinic
al investigation in a phase III study. In a phase IIb study, Lanifibranor was ef
fective in reducing NASH fibrosis, liver enzyme levels inflammatory, and 
fibrosis biomarkers.154

1.4.7 Bariatric surgery
Weight loss is the cornerstone of NAFLD therapy,155,156 and the most po
tent therapy to induce weight loss is bariatric surgery.157 Although bariatric 
surgery is not a first-line therapy for NAFLD, it can be discussed for se
lected patients, especially if they qualify for surgery out of other reasons 
(co-morbidities or excessive obesity). An improvement of liver disease 
after bariatric surgery was described in many studies157; in a small clinical 
study from our clinic, we observed an improvement of liver histology after 
bariatric surgery, which was paralleled by an decrease of pro-inflammatory 
cytokines.158,159 A recent study from Germany described a histopatho
logical resolution of NASH in 84% of observed patients 5 years after bar
iatric surgery, even in 45.5% of patients who had bridging fibrosis at 
baseline (i.e. a sign of advanced liver disease), fibrosis disappeared after 5 
years in the follow-up biopsy.160 Together, these data indicate that 

bariatric surgery could be an appropriate therapeutic option for selected 
patients with NAFLD.

1.4.8 Therapeutic options in the future
Thyroid hormones are involved in the regulation of hepatic triglyceride and 
cholesterol metabolism. Resmetirom, a thyroid receptor beta (TR-beta) 
agonist, was shown to improve liver steatosis161 and also lowered LDL-c 
and triglyceride concentration.162 FGF21 was proved to be effective in dif
ferent animal models of obesity and NAFLD. The FGF21 variant 
LY2405319 was tested in patients with T2D mellitus. Here, LY2405319 
improved lipid profiles and tended to decrease body weight, fasting insulin, 
and fasting glucose.163 Although more clinical data are needed, FGF21 
could be an interesting therapeutic target in the future.

2. Conclusion
NAFLD is one of the major and relevant human diseases associated with an 
altered lifestyle with a rapidly growing incidence and prevalence in most 
countries of the world. NAFLD can cause a dramatic burden of disease 
throughout the different stages of chronic liver disease, including cirrhosis 
and associated complications such as HCC and decompensation (e.g. oe
sophageal variceal bleeding, ascites, and hepatic encephalopathy). Besides 
hepatic complications, the metabolic syndrome, T2D, and CVD are com
monly observed in NAFLD patients. Although our understanding of the 
underlying mechanisms in the context of NAFLD is increasing, it is still 
not fully understood how NAFLD influences T2D and CVD on a patho
physiological level. One of the leading hypotheses is a sub-clinical 
pro-inflammatory environment arising from lipotoxicity, IR, and the intes
tinal microbiota. The main cornerstone in the treatment is lifestyle modi
fication including weight loss, dietary intervention, and regular physical 
exercise. Although this is a difficult goal to obtain for many patients, it 
should be recommended and supported by the treating physicians. A range 
of therapeutic options, from conservative management and medical inter
vention towards operative procedures (e.g. bariatric surgery), has been de
veloped with varying outcomes especially for the conservative treatment 
options. The pipeline of new therapeutic approaches is broad with some 
promising candidates. Taken together, NAFLD is a major healthcare issue 
that will rise in the future; thus, an increased awareness from physicians of 
different specialties is needed to tackle this disease.
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