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Abstract

The past decade has seen the rapid growth of model based image reconstruction (MBIR) 

algorithms, which are often applications or adaptations of convex optimization algorithms from 

the optimization community. We review some state-of-the-art algorithms that have enjoyed wide 

popularity in medical image reconstruction, emphasize known connections between different 

algorithms, and discuss practical issues such as computation and memory cost. More recently, 

deep learning (DL) has forayed into medical imaging, where the latest development tries to exploit 

the synergy between DL and MBIR to elevate the MBIR’s performance. We present existing 

approaches and emerging trends in DL-enhanced MBIR methods, with particular attention to the 

underlying role of convexity and convex algorithms on network architecture. We also discuss 

how convexity can be employed to improve the generalizability and representation power of DL 

networks in general.
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1. Introduction

The last decade has witnessed intense research activities in developing model based image 

reconstruction (MBIR) methods for CT, MR, PET, and SPECT. Numerous publications have 

documented the benefits of these MBIR methods, ranging from mitigating image artifacts 

and improving image quality in general, to reducing radiation dose in CT applications. The 

MBIR problem is often formulated as an optimization problem, where a scalar objective 

function, consisting of a data fitting term and a regularizer, is to be minimized with respect 

to the unknown image. Driven by such large scale and data intensive applications, the same 

period of time has also seen intense research on developing convex optimization algorithms 

in the mathematical community. The infusion of concepts in convex optimization into the 

imaging community has sparked many new research directions, such as MBIR algorithms 
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with fast convergence properties, and novel regularizer designs that better capture a priori 
image information.

More recently, deep learning (DL) methods have achieved super-human performance in 

many complex real world tasks. Their quick adoption and adaptation for solving medical 

imaging problems have also been fruitful. The number of publications on DL approaches 

for inverse problems has exploded. As evidence of such fast-paced development, a number 

of special issues (Greenspan et al 2016, Wang et al 2018, Duncan et al 2019) and review 

articles (McCann et al 2017, Lucas et al 2018, Willemink and Noël 2019, Lell and Kachelrie 

2020) have been produced to summarize the current state-of-the-art.

Many articles have discussed the strengths and challenges of AI and DL in general, and 

others have debated about their role and future in medical imaging. A cautionary view is 

that DL should be acknowledged for its power, but it is not the magic bullet that solves all 

problems. It is plausible that DL can work synergistically with conventional methods, e.g., 

convex optimization: where the conventional methods excel may be where DL falters. For 

example, DL is often criticized for low interpretability. Convex optimization, on the other 

hand, is well known for its rich structure and can be used to encode structural information 

and improve interpretability when combined with DL networks. DL is also data hungry 

(Marcus 2018); it requires a large amount of training data with known ground truth for either 

training or evaluation. DL can be used to enhance the performance of conventional MBIR 

methods, which then in turn produce high quality ground truth labels for DL training.

With that as the background, in this paper we review the basic concepts in 

convexoptimization, discuss popular first order algorithms that have seen wide applications 

inMBIR problems, and use example applications in the literature to showcase the relevance 

of convexity in the age of AI and DL. The following is an outline of the main content of the 

paper.

• section 2: Elements in convex optimization

• section 3: Deterministic first order algorithms for convex optimization

• section 4: Stochastic first order algorithms for convex optimization

• section 5: Convexity in nonconvex optimization

• section 6: Synergistic integration of convexity, image reconstruction, and DL

• section 7: Conclusions

• section 8: Appendix – additional topics such as Bregman distance, the relative 

smoothness of the Poisson likelihood, and some computational examples.

2. Elements in convex optimization

We first introduce common notation that is used throughout the paper. Notation that is only 

relevant to a particular section will be introduced locally. We then explain basic concepts 

and results from convex analysis that are helpful to understand the content of the paper, 

especially sections 3,4, and 5.
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2.1. Notation

We denote by ιC the indicator function of a set C, i.e., ιC x = 0 if x ∈ C, and +∞
otherwise. A set C ⊂ Rn is convex if and only if (iff) for all x1, x2 ∈ C, αx1 + 1 − α x2 ∈ C. 

The domain of a function f :Rn R ∪ { + ∞} is defined as dom f = {x ∣ f x < ∞}; 

a function f is proper if its domain is nonempty. A function f is closed if its 

epigraph epi f = x, t ∈ Rn + 1 ∣ f x ⩽ t, x ∈ dom f  is closed. A function f is lower 

semicontinuous if its epigraph is closed (Bauschke et al 2011), lemma 1.24. A function 

f :C ⊂ Rn R ∪ { + ∞} is convex if C ⊂ Rn is a convex set, and for α ∈ 0, 1 , and 

x1, x2 ∈ C, f αx1 + 1 − α x2 ⩽ αf x1 + 1 − α f x2 . We use the abbreviation CCP to denote 

a function f that is convex, closed, and proper. For convenience, we may refer to such 

functions simply as convex.

We denote by ⋅ , ⋅  the inner product of two vectors, i.e., a, b = ∑i aibi, for a, b ∈ Rn. The 

inner product induced norm is denoted by ∥ ⋅ ∥2 or simply ∥ ⋅ ∥, i.e., ∥ x ∥ = x, x . If not 

stated otherwise, the norm we use in this paper is the 2-norm.

2.2. Basic definitions and properties

First order algorithms are categorized according to the type of objective functions they are 

designed for. Among the different types, smooth objective functions are the most common 

assumption and possibly the easiest to work with. Let Q ⊆ Rd. If a convex function f is 

differentiable and its gradient ∇f is Lipschitz continuous, i.e., there exists a constant L > 0
such that

∇f(x) − ∇f(y) ⩽ L x − y , ∀x, y ∈ Q (2.1)

then f is L-smooth on Q. From (Nesterov et al 2018), theorem 2.1.5, such functions can be 

equivalently characterized by

0 ⩽ f(y) − f(x) + ∇f(x), (y − x) ⩽ L
2 y − x 2, x, y ∈ Q (2.2)

This relationship states that an L-smooth function admits a quadratic majorizer for any 

x, y ∈ Q. The constant L in (2.2) is the gradient Lipschitz constant.

A function f :Q ⊆ Rd R ∪ { + ∞} is σ-strongly convex if

f αx1 + (1 − α)x2 ⩽ αf x1 + (1 − α)f x2 − 1
2α(1 − α)σ x1 − x2

2, (2.3)

for α ∈ 0, 1 , and for all x1, x2 ∈ Q. When the function f is differentiable, an alternative 

characterization of σ-strongly convex functions is given by

f(x) + ∇f(x), y − x + 1
2σ x − y 2 ⩽ f(y) (2.4)
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Let f :Q ⊆ Rd R ∪ { + ∞} be CCP, and x ∈ Q, the subdifferential of f at x, denoted by 

∂f x , is defined as:

∂f(x): = {u ∈ Q f(y) ⩾ f(x) + u, y − x , for all y ∈ Q} (2.5)

Elements of the set ∂f x  are called subgradients at x. The subdifferential ∂f x  of a proper 

convex f is nonempty for x ∈ ri domf (Bauschke et al 2011, page 228). Minimizers of a CCP 

f can be characterized by Fermat’s rule, which states that x is a minimizer of f iff 0 ∈ ∂f x
(Rockafellar and Wets 2009, page 422).

The conjugate function f∗ of f :Rd R ∪ { + ∞} is defined as

f∗(t) = sups s, t − f(s) (2.6)

As f∗ can be regarded as the pointwise supremum of linear functions of t that are 

parameterized by s, f∗ in (2.6) is always a convex function for all f. The conjugate function 

of f∗ defines the bi-conjugate:

f ∗ ∗ (p) = supt p, t − f∗(t)

Again, f ∗ ∗  is convex regardless of f. Moreover, it can be shown that if f is CCP, then 

f ∗ ∗ = f (Bauschke et al 2011, Chapter 13); otherwise f ∗ ∗ ⩽ f, and for any convex 

function g ⩽ f, then g ⩽ f ∗ ∗ . That is, the bi-conjugate f ∗ ∗  is the tightest convex 

lower bound, aka the convex envelope, of f. The following duality relationship links the 

subdifferentials of f and its conjugates f∗ (Rockafellar and Wets 2009, proposition 11.3). 

For any CCP f, one has ∂f∗ = ∂f −1, and ∂f = ∂f∗ −1
; more specifically,

v ∈ ∂f(x) x ∈ ∂f∗(v) f(x) + f∗(v) = v, x

In general, f x + f∗ v ⩾ v, x  for all x, v. From the above,

arg max
v

{ v, x − f∗(v)} = ∂f∗ −1(x) = ∂f(x) (2.7)

and similarly,

arg max
x

{ v, x − f(x)} = ∂f∗(v) (2.8)

As elementary examples, when f x = x , x ∈ R, then f∗ y = ι − 1, 1 ; the quadratic function 

1/2 ∥ ⋅ ∥2 is self-conjugate. Other convex-conjugate pairs can be found in (Bauschke et al 

2011, chapter 13), (Boyd et al 2004, chapter 3), and (Beck 2017, appendix B).
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If f is CCP and μ-strongly convex, then its conjugate f∗ is 1/μ-smooth (Bauschke et al 2011, 

proposition 14.2.) Conversely, if f is CCP and L-smooth, its conjugate f∗ is 1/L-strongly 

convex. For this reason, sometimes a L-smooth CCP function is also called L-strongly 

smooth (Ryu and Boyd 2016).

For a CCP f :Rd R ∪ { + ∞} and parameter μ > 0, the proximal mapping and the Moreau 

envelope (or the Moreau-Yosida regularization) are defined by

prox(μf)(x): = arg min
y

{f(y) + 1
2μ x − y 2} (2.9)

eμf(x): = min
y

{f(y) + 1
2μ x − y 2} (2.10)

As f y  is convex, the objective function (2.9) or (2.10) is strongly convex, hence the 

proximal mapping prox μf  is always single-valued. When f y = ιC y , then prox f x : = x∗ is 

the closest point to x such that x∗ ∈ C, i.e., a projection operation. In this sense, the proximal 

mapping (2.9) is a generalization of projection onto convex sets, where f is not limited to 

an indicator function. Examples of the proximal mapping calculation for simple functions, 

either with a closed-form solution or with efficient numerical algorithms, can be found in 

(Combettes and Pesquet 2011, Parikh and Boyd 2014, Beck 2017). In the sequel, certain 

functions may be referred to as being simple, which is interpreted in the same manner, i.e., 

their proximal mapping is easy to compute or exists in closed-form.

If f is CCP, then the Moreau envelope (2.10) is 1/μ-smooth; its gradient ∇eμf, given by

∇eμf(x) = 1
μ x − y∗ , where y∗ = prox(μf)(x) (2.11)

is 1/μ Lipschitz continuous (Bauschke et al 2011). From this perspective, the Moreau 

envelope (2.10) provides a generic approach to approximate a potentially nonsmooth 

function f from below by a smooth one. More precisely, it is shown in (Rockafellar and 

Wets 2009), theorem 1.25 that eμf < ∞, and eμf x  is a continuous function of μ and x such 

that eμf x f x  for all x, as μ 0 .3 Well known pairs of f and eμf are: 1 f y = ι y , and 

eμf x  is a quadratic version of the barrier function; and (2) f y = y , y ∈ R, and eμf x  is the 

Huber function.

The Moreau identity describes a relationship between the proximal mapping of a function f
and its conjugate f∗:

x = prox(τf)(x) + τprox f∗/τ
x
τ (2.12)

3This statement is also valid for a nonconvex function f as long as f is bounded from below. For nonconvex functions, however, it is 
not guaranteed that eμf is smooth.

Xu and Noo Page 5

Phys Med Biol. Author manuscript; available in PMC 2023 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Continuing the analogy that the proximal mapping is a generalized concept of projection, 

then the Moreau identity (2.12), when specialized to orthogonal projections, can be 

interpreted as the decomposition of a vector by its projection onto a linear subspace L
and its orthogonal complement L⊥ = {y ∣ y, x = 0, ∀x ∈ L} (Parikh and Boyd 2014).

The proximal mapping (2.9) can be generalized by replacing the quadratic distance in (2.9) 

by the Bregman distance. Let ℎ be a differentiable and strongly convex function4, consider 

the following ‘distance’ parameterized by ℎ

Dℎ(y; x) = ℎ(y) − [ℎ(x) + ∇ℎ(x), y − x ] (2.13)

which was first studied by Bregman (Bregman 1967), followed up 14 years later by 

Censor and Lent (Censor and Lent 1981), and more work ensued (Censor and Zenios 

1992, Bauschke and Borwein 1997). 5 Convexity of ℎ implies that Dℎ y; x ⩾ 0 for any x, y; 

and strong convexity of ℎ implies that Dℎ reaches its unique minimum when y = x. When 

ℎ = 1
2 ∥ ⋅ ∥ 2

2, then the definition (2.13) leads to Dℎ y; x = 1
2 ∥ y − x ∥2

2. In this sense, Dℎ y; x

is truly a generalization of the quadratic distance function. As another example, if ℎ is the 

weighted squared 2-norm, i.e., ℎ = 1
2 ∥ ⋅ ∥M

2  where M ≻ 0 is a positive definite symmetric 

matrix, then Dℎ y; x = 1
2 ∥ y − x ∥ M

2 . In general, unlike a distance function, Dℎ y; x  is not 

symmetric between y and x; in other words, it is possible that Dℎ y; x ≠ Dℎ x; y .

The Bregman proximal mapping is defined by plugging the Bregman distance (2.13) in 

(2.9), i.e.,

y+(x) = arg min
y

{f(y) + 1
μDℎ(y; x)}

The Bregman distance Dℎ y; x  can be used to simplify computation by choosing an 

ℎ function that adapts to the problem geometry. For example, when f y  is the unit 

simplex in Rd, i.e., f y = ιC y , where C = y ∣ ∑i yi = 1, yi ∈ 0, 1 , the proximal mapping 

(projection onto the simplex) does not have a closed-form solution; but choosing 

ℎ x = ∑i xilog xi, the Bregman proximal mapping can be calculated in closed-form (Tseng 

2008). For convenience, we may denote the Bregman distance simply by D y; x  without 

explicitly specifying the ℎ function.

The Moreau envelope (2.10) is a special case of the infimal convolution of two CCP 

functions defined as:

f(x) = inf
y

{f1(y) + f2(x − y)} (2.14)

4Here strong convexity is defined as in (2.3) but with respect to a general norm, not necessarily the 2-norm induced by an inner 
product. See appendix A.1 for more details.
5The interested readers can find a brief bibliographic review in (Facchinei and Pang 2003, page 1232).
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Since the mapping x, y f1 y + f2 x − y  is jointly convex in x and y, and partial 

minimization preserves convexity, the infimum convolution f is a convex function. If 

both f1 and f2 are CCP, and in addition, if f1 is coercive and f2 is bounded from below, 

then the infimum in (2.14) is attained and can be replaced by min (Bauschke et al 

2011, proposition 12.14). For CT applications, infimal convolution (2.14) has been used 

to combine regularizers with complementary properties (Chambolle and Lions 1997, Bredies 

et al 2010, Xu and Noo 2020). Roughly speaking, the ‘inf’ operation in (2.14) can ‘figure’ 

out which component between f1 and f2 leads to a lower cost, f x , hence is better fitted to 

the local image content.

3. Deterministic first order algorithms for convex optimization

We introduce first order algorithms and their accelerated versions, and then discuss their 

applications in solving inverse problems. Content-wise, this section has partial overlaps 

with a few review papers (Cevher et al 2014, Komodakis and Pesquet 2015), books or 

monographs (Bubeck 2015, Chambolle and Pock 2016, Beck 2017) on the same topic. 

The interested readers should consult these publications for materials that we do not 

cover. Our discussions focus on the inter-relationship between the various algorithms, 

and the associated memory and computation issues when applying them to typical image 

reconstruction problems. Another purpose is to prepare for section 6, where elements from 

convex optimization and DL are intertwined to exploit the synergy between them.

3.1. First order algorithms in convex optimization

Many first order algorithms have been developed in the optimization community. These 

algorithms only use information about the function value and its gradient, which are easy to 

compute even for large scale problems such as those in image reconstruction. The difference 

between the different algorithms often lies in their assumptions about the problem model/

structure.

This section contains three subsections. In the first two subsections, we discuss the primal-

dual hybrid gradient (PDHG) algorithm and the (preconditioned) ADMM algorithm. These 

two algorithms have enjoyed enormous popularity in imaging applications. In the last 

subsection, we discuss more recent developments on minimizing the sum of three functions, 

one of which is a nonsmooth function in composition with a linear operator; the associated 

3-block algorithms can be more memory efficient than the first two which are of the 

traditional 2-block type.

3.1.1. Primal dual algorithms for nonsmooth convex optimization—Consider 

the following model for optimization:

min
x

ϕ(x) = g(x) + ℎ(Kx) (3.1)

where g, ℎ are both CCP, x ∈ Rd and K :Rd Rq is a linear operator with ∥ K ∥, the operator 

norm, known. Since it is often difficult to deal with the composite form ℎ K ⋅  as is, primal 
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dual algorithms reformulate the objective function (3.1) to a min-max convex-concave 

problem. We start by rewriting ℎ ⋅  using its (bi-)conjugate function

ℎ(Kx) = max
z

Kx, z − ℎ∗(z) (3.2)

The primal-dual reformulation of (3.1) is then obtained as

min
x

max
z

g(x) + Kx, z − ℎ∗(z) (3.3)

The dual objective function is given by6

max
z

{−sup
x

{ −Ktz, x − g(x)} − ℎ∗(z)} = max
z

− {g∗ −Ktz + ℎ∗(z)} (3.4)

The primal-dual hybrid gradient (PDHG) algorithm alternates between a primal descent and 

a dual ascent step. A simple variant (Chambolle and Pock 2011) is the following

zk + 1: = arg max
z

{ Kxk, z − ℎ∗(z) − 1
2σ z − zk

2} = prox σℎ∗ zk + σKxk (3.5a)

xk + 1: = arg min
x

{g(x) + Kx, zk + 1 + 1
2τ x − xk

2} = prox(τg) xk − τK∗zk + 1 (3.5b)

xk + 1 = xk + 1 + θ xk + 1 − xk (3.5c)

When θ = 1, and the step sizes σ, τ in (3.5) satisfy τσ ∥ K ∥ 2 < 1, it is shown in (Chambolle 

and Pock 2011) that the algorithm converges at an ergodic rate7 of O 1/k  in terms of a 

partial primal-dual gap.

3.1.2. ADMM for nonsmooth convex optimization—ADMM considers the 

following constrained problem (3.6),

min
x, z

ϕ(x, z) = g(x) + ℎ(z), (3.6a)

s.t. v = Kx + Bz (3.6b)

where g:Rd R ∪ { + ∞}, ℎ:Rm R ∪ { + ∞} are both CCP. The problem data consist of 

v, K, B , K :Rd Rq, and B:Rp Rq are linear mappings, and v ∈ Rq is a given vector. 

6We denote by p∗ and d∗ the primal and dual objective values in (3.1) and (3.4), respectively. In general, weak duality holds, i.e., 
p∗ ⩾ d∗. The equality of the two (strong duality) can be established under mild conditions on g, ℎ, and the linear map K as a 
generalization of Fenchel’s duality theorem. See (Rockafellar 2015, section 31) for more details.
7These rates are measured in terms of a weighted average of the iterates, not the iterates themselves. For (3.5), , O 1/k  is proven for 

xk = ∑i
k xi /k, where xi is from (3.5b).
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The objective function ϕ is separable in the unknowns x, z, x ∈ Rd, z ∈ Rp, which satisfy 

the coupling constraint in (3.6b). We introduce the Lagrange multiplier λ ∈ Rq for the 

constraints, and form the augmented Lagrangian function

L(x, z; λ) = g(x) + ℎ(z) + λ, Kx + Bz − v + μ
2 Kx + Bz − v 2 .

= g(x) + ℎ(z) + μ
2 ‖Kx + Bz − v + λ

μ‖
2

− 1
2μ λ 2 .

(3.7)

where μ > 0 is a constant step size parameter. The basic version of ADMM algorithm 

updates the primal variables x, z, and the Lagrange multiplier λ in (3.7) in an alternating 

manner with the following update equations

zk + 1 ∈ arg min
z

{ℎ(z) + μ
2 ‖Kxk + Bz − v + λk

μ ‖
2
} (3.8a)

xk + 1 ∈ arg min
x

{g(x) + μ
2 ‖Kx + Bzk + 1 − v + λk

μ ‖
2
} (3.8b)

λk + 1: = λk + μ Kxk + 1 + Bzk + 1 − v (3.8c)

Convergence of the dual sequence λk  and the primal objective g xk + ℎ zk  can be 

established when solutions exist for both subproblems (3.8a), (3.8b), i.e., the iterations 

continue. Mild conditions that guarantee the subproblem solution existence and a counter-

example can be found in (Chen et al 2017).

A common situation in applications is that one of the two linear mappings, K, B, is simple.8 

Assuming B is simple, i.e., either B = I or BtB = I, then the update in (3.8a) admits a 

solution in the form of prox ℎ/μ ⋅ . Without further assumptions on K, the update xk + 1 may 

not admit a direct solution. Variants of ADMM with preconditioners or linearizations have 

been proposed to make the subproblem (3.8b) easier. Algorithm 3.1 is such a variant of 

ADMM (Beck 2017) with a preconditioner matrix M on the x update.

Algorithm 3.1.

A preconditioned ADMM algorithm for Problem (3.6).

Input: Choose x0, λ0, let μ > 0.

Output:xK, zK, λK

1 foriter = 0, ⋯, K − 1do

2   zk + 1: = arg minz{ℎ z + μ
2 ‖Kxk + Bz − v + λk

μ ‖
2
}

8If we work with the same problem model (3.1) of PDHG, then there is only one linear mapping.
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3   xk + 1: = arg minx{g x + μ
2 ‖Kx + Bzk + 1 − v + λk

2 ‖
2

+ 1
2 x − xk M

2 }

4   λk + 1: = λk + μ Kxk + 1 + Bzk + 1 − v    /* dual ascent */

If M is chosen to be

M = 1
τ′I − μKtK, (3.9)

then M is a positive definite matrix if 0 < τ′ < μ ∥ K ∥ 2; the minimization problem in 

xk + 1 update of Algorithm 3.1 admits a unique solution in the form of prox(gτ′)( ⋅ ), hence 

simplifying the problem. Convergence analysis of a generalized version of Algorithm 3.1 

(with a preconditioner matrix on z update as well) can be found in (Beck 2017), where 

an O 1/k  ergodic rate in terms of both primal objective and constraint satisfaction was 

established.

The preconditioner 1/2 ∥ ⋅ ∥ M
2  in Algorithm 3.1 can be interpreted in a number of ways. For 

the choice of M in (3.9), the result coincides with finding a majorizing surrogate for the 

quadratic term μ
2 ∥ Kx + Bzk + 1 − v + λk

μ ∥
2
 in (3.8b). Alternatively, the preconditioner matrix 

M appears ‘naturally’ by introducing a redundant constraint in the form of x = M1/2x to the 

original problem (3.6) and applying the original ADMM to solve it (Nien and Fessler 2014).

It is pointed out in (Chambolle and Pock 2011) that for minimizing the same problem model 

g x + ℎ Kx , the sequence xk of Algorithm 3.1, when μ = σ, τ′ = τ, and M specified in (3.9), 

coincides with that of (3.5). In other words, the primal-dual algorithm (3.5) can be obtained 

as a special case of Algorithm 3.1. Moreover, it is shown (OĆonnor and Vandenberghe 

2020) that both the ADMM (3.8) and the PDHG (3.5) can be obtained as special instances of 

the Douglas-Rachford splitting (DRS). Convergence and convergence rates from DRS then 

lead to corresponding convergence statements for ADMM and PDHG.

3.1.3. Optimization algorithms for sum of three convex functions—The 

problem model in (3.1) or (3.6), with sum of two convex functions and a linear operator, 

can be quite restrictive for inverse problems in the sense that we often need to properly 

reformulate our objective function by grouping terms and defining new functions in a 

higher-dimensional space (Sidky et al 2012) to conform to either (3.1) or (3.6). This 

reformulation often involves introducing additional dual variables which increases both 

memory and computation.

A number of algorithms have been proposed for solving problems with sum of three convex 

functions. Specifically, they address the following minimization problem

min
x

ϕ(x) = g(x) + ℎ(Kx) + f(x) (3.10)
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where as before g and ℎ are CCP, K is a linear operator; both g and ℎ can be nonsmooth but 

simple. The new component f is CCP and Lf-smooth. When f is absent, (3.10) is identical 

to (3.1) and can be reformulated as the constrained form in (3.6).

As in the derivation of the (2-block) PDHG, we rewrite the composite form ℎ K ⋅  in (3.10) 

using its conjugate function, the primal dual formulation of (3.10) is then obtained as

min
x

max
z

ϕ(x, z) = g(x) + Kx, z − ℎ∗(z) + f(x) (3.11)

An extension of (3.5) for solving (3.11) was presented in (Condat 2013, Vũ 2013, 

Chambolle and Pock 2016), which simply replaces (3.5b) by the following

xk + 1 = arg min
x

{f xk + ∇f xk , x − xk + g(x) + Kx, zk + 1
2τ x − xk

2} . (3.12)

Compared to (3.5b), the objective function in (3.12) is augmented with the quadratic upper 

bound for the new component f x  in the form of (2.2). Ergodic convergence rate of O 1/k , 

similar to when f = 0, was established with the new step sizes

1/τ − Lf > σ K 2, (3.13)

which also reduces to that of (3.5) when Lf = 0, i.e., when f is absent.

Algorithm 3.2.

A primal dual algorithm (Yan 2018) for Problem (3.11).

Input: Choose x0, z0, set x0 = x0, set τ, σ > 0
Output:xK, zK

1 foriter = 0, ⋯, K − 1do

2   zk + 1: = arg maxz{ Kxk, z − ℎ∗ z − 1
2σ z − zk

2}   /*dual ascent*/

3
  xk + 1: = arg minx{f xk + ∇f xk , x − xk + g x + Kx, zk − 1

2τ x − xk
2}   /

*proximal gradient descent*/

4   xk + 1: = xk + 1 + xk + 1 − xk + τ ∇f xk − τ ∇f xk + 1    /*extrapolation*/

Other algorithms that work directly with sum of three functions can be found in (Chen et 

al 2016, Latafat and Patrinos 2017, Yan 2018). Among these, the work in (Yan 2018) is 

noteworthy for its larger range of step size parameters and small per-iteration computation 

cost.9 This algorithm, given as algorithm 3.2, is convergent when the parameters are:

τσ K 2 < 1, τLf < 2, (3.14)

9In terms of number of gradient evaluations. Some of the 3-block extensions require two gradient evaluations per iteration, while the 
one in (Yan 2018) requires only one.
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Compared to (3.13), the step size rule (3.14) disentangles the effect of ∥ K ∥ and Lf

on the parameters τ, σ, and effectively enlarges the range of step size values that ensure 

convergence. The enlarged range of step size values come at the cost of increased memory 

of maintaining two gradient vectors of ∇f x , evaluated at two consecutive iterations k
and k + 1. Similar to the 3-block extension based on (3.12), this algorithm was shown to 

have O 1/k -ergodic convergence rate in the primal-dual gap. When one of the component 

functions is absent, algorithm 3.2 specializes to other well-known two-block algorithms 

such as the 2-block PDHG (3.5) when f is absent, and the Proximal Alternating Predictor-

Corrector (PAPC) algorithm (Loris and Verhoeven 2011, Chen et al 2013, Drori et al 2015) 

when g is absent.

More recently, a three operator splitting10 scheme was proposed in (Davis and Yin 2017) 

as an extension to DRS. The DRS is preeminent for two-operator splitting: it can be used 

to derive the PDHG algorithm (OĆonnor and Vandenberghe 2020); and when applied to the 

dual of the constrained 2-block problem (3.6), the result is immediately the ADMM (3.8). In 

an analogous manner, the three operator DRS (Davis and Yin 2017) can be used to derive the 

3-block PD algorithm 3.2 as shown in (OĆonnor and Vandenberghe 2020); when applied to 

the dual problem of the following 3-block constrained minimization problem

min
x, y, z

f1(x) + f2(y) + f3(z) (3.15a)

s.t. Ax + By + Cz = b (3.15b)

the result is a 3-block ADMM, shown as algorithm 3.3.

Algorithm 3.3.

ADMM (Davis and Yin 2017) for Problem (3.15a).

Input: Choose x0, z0, set x0 = x0, s.t. μ < 2σ/ A 2
.

Output:xK, zK

1  foriter = 0, ⋯, K − 1do

2    xk + 1: = arg minx{f1 x + λk, Ax }   /*f1σ-strongly convex*/

3    yk + 1 ∈ arg miny{f2 y + μ
2 ‖Axk + 1 + By + Czk − b + λk

μ ‖
2
}

4    zk + 1 ∈ arg minz{f3 z + μ
2 ‖Axk + 1 + Byk + 1 + Cz − b + λk

μ ‖
2
}

5    λk + 1: = λk + μ Axk + 1 + Byk + 1 + Czk + 1 − b

Convergence of algorithm 3.3 requires that f1 x  is σ-strongly convex, and the convergence 

rate is inherited from the convergence rate O 1/k  of the three operating splitting (Davis 

and Yin 2017). In practical applications, ADMM is sometimes applied in a 3-block or 

10Sometimes called Forward Douglas-Rachford splitting, as it includes an additional cocoersive operator (the forward operator) in 
comparison to DRS.
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multi-block form, updating a sequence of three or more primal variables before updating the 

Lagrange multiplier. As shown in (Chen et al 2016), a naive extension of a 2-block ADMM 

to a 3-block ADMM is not necessarily convergent. algorithm 3.3 differs from such a naive 

extension in step 2 only, where the objective function is not the augmented Lagrangian, but 

the Lagrangian itself.

3.2. Accelerated first order algorithms for (non)smooth convex optimization

One obvious omission in the last section is the classical gradient descent algorithms for 

smooth minimization. This omission is due to the enormous popularity of primal-dual 

algorithms fueled by the widespread use of nonsmooth, sparsity-inducing regularizers in 

MBIR. However, gradient descent algorithms have remained vital and have further gained 

momentum due to the (re-)discovery of accelerated gradient methods (Beck and Teboulle 

2009), which are optimal in the sense that their convergence rates coincide with the lower 

bounds from complexity theories (Nemirovskij and Yudin 1983). These accelerated gradient 

methods in turn prompted the development of accelerated primal dual methods. These 

accelerated methods, both the primal dual type and the primal (only) type, will be the topic 

of this section.

3.2.1. Accelerated first order primal-dual algorithms—With more assumptions 

on the problem structure, many of the primal dual type algorithms of section 3.1 can 

be accelerated. For example, the PDHG algorithm (3.5) can be accelerated as shown 

in algorithm 3.4 by adopting iteration-dependent step size parameters τk, σk, αk. Moreover, 

it incorporates the Bregman distance (Chambolle and Pock 2016) in the dual update 

equation.11

Algorithm 3.4.

Primal dual algorithm for Problem (3.3).

Input:x0, z0, let x0 = x0, τk > 0, σk > 0 s. t. σ0τ0 K 2 < 1, αk > 0
Output: xK, zK

1  foriter = 0, ⋯, K − 1do

2    zk + 1: = arg maxz{ Kxk, z − ℎ∗ z − 1
σk

D2 z; zk }   /*dual ascent*/

3    xk + 1: = arg minx{g x + Kx, zk + 1 + 1
2τk

x − xk
2}   /*primal descent*/

4    xk + 1: = xk + 1 + αk xk + 1 − xk    /*extrapolation*/

It was shown in (Chambolle and Pock 2016) that if g is γ-strongly convex, the 

convergence rate of algorithm 3.4 can be improved to O 1/k2  by setting the parameters 

σk + 1 = σk/αk, τk + 1 = αkτk, and αk = 1/ 1 + 2γτk, where γ is the strong convexity parameter of g.

11This version of the algorithm (Chambolle and Pock 2016) is slightly more general than the one presented in (Chambolle and Pock 
2011).
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Instead of re-deriving from scratch, an alternative way to achieve acceleration is to utilize 

the connections between the different algorithms. As discussed in section 3.1, the DRS can 

be used to derive the PDHG algorithm (OĆonnor and Vandenberghe 2020); this association 

can be used to derive an accelerated PDHG algorithm from an accelerated DRS (Davis 

and Yin 2017). Along the same line, since the preconditioned ADMM (Algorithm 3.1) is 

equivalent to the PDHG applied to the dual problem, then an accelerated version of the 

preconditioned ADMM can be obtained from the accelerated PDHG (Algorithm 3.4).

The same strategy carries over to 3-block algorithms. The equivalence between the 3-

operator splitting DRS and the 3-block primal-dual algorithm 3.2 as shown by (OĆonnor 

and Vandenberghe 2020) implies that an accelerated version of algorithm 3.2 can be derived 

from the accelerated 3-operator splitting (Davis and Yin 2017), which has been done 

(Condat et al 2020).

A common assumption in these primal-dual accelerated algorithms is that the objective 

function is either strongly convex or L-smooth to achieve acceleration from O 1/k  to 

O 1/k2 . If the objective function consists of both a smooth component (with Lipschitz-

continuous gradient) and a nonsmooth component in composition of a linear component, 

then the convergence rate of these algorithms will be dominated by the nonsmooth part, 

which is at best O 1/k .

This situation is not satisfactory and indeed can be improved. As demonstrated in (Nesterov 

2005), it is possible to achieve a ‘modularized’ optimal convergence rate, which has a 

O 1/k2  dependence for the smooth component of the objective function, and a O 1/k

dependence for the (structured) nonsmooth component. Although the overall convergence 

rate is still dominated by O 1/k , such algorithms can deal better with large gradient 

Lipschitz constants in the problem model, which may be the case for many inverse problems 

in imaging. Such ‘optimal’ convergence rate has also been achieved by the accelerated 

primal dual (Chen et al 2014) and accelerated ADMM (Ouyang et al 2015) algorithms.

3.2.2. Accelerated (proximal) gradient descent (AGD) algorithms—Much of the 

work on accelerated first order methods was inspired by Nesterov’s seminal 1983 paper 

(Nesterov 1983), which, in its simplest form, considers the problem of minimizing f x , 

where f x  is Lf-smooth. For such problems, the well-known standard gradient descent 

algorithm, i.e., xk + 1 = xk − 1/Lf ∇f xk , converges at a rate of O Lf /k  in the objective value, 

i.e., f xk − f x∗ ⩽ O Lf /k , where x∗ ∈ arg min
x

f x  is assumed to exist. Nesterov showed that 

the following two-step sequence:

xk + 1 = arg min
y

{ ∇f yk , y − yk + Lf

2 y − yk
2} = yk − 1

Lf
∇f yk , (3.16a)

yk + 1 = xk + 1 + θk + 1

θk
1 − θk xk + 1 − xk , k = 0, 1, ⋯ (3.16b)
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together with an intricate interpolation parameter sequence12

1 − θk + 1

θk + 1
2 = 1

θk
2 , θ0 = 1 (3.17)

leads to an accelerated convergence rate of O Lf /k2  for f x‾k . This rate is optimal, i.e., 

unimprovable, in terms of its dependence on k and Lf, as it matches the lower complexity 

bound for minimizing smooth functions using first order information only.

Nesterov’s paper (Nesterov 1983) also considered the constrained minimization problem of 

min
x ∈ C

f x , where C is a closed convex set. The solution can be obtained by replacing (3.16a) 

by a gradient projection step, i.e., x‾k + 1 = projC(yk − 1
Lf

∇f(yk)), where projC is the orthogonal 

projection onto the convex set C. This constrained version of (3.16) can be regarded as a 

precursor to the celebrated FISTA (Beck and Teboulle 2009).

Over the past decade or so, Nesterov’s accelerated algorithms have been extensively 

analysed and numerous variants have been proposed. One such variant, algorithm 3.5, 

see, e.g., (Auslender and Teboulle 2006, Tseng 2008), considers minimizing a composite 

objective function ϕ x = f x + g x , where f is Lf-smooth as before, g is simple, and 

x∗ = arg min ϕ x  is assumed to exist.

Algorithm 3.5.

Min f + g, f is Lf − smooth and g is simple.

Input: Choose x0 = x0, and let θk follow (3.17).

Output:xK

1  foriter = 0, ⋯, K − 1
2    yk = 1 − θk xk + θkxk

3    xk + 1 = arg minx{g x + f yk + ∇f yk , x − yk + θkLfD x; xk }
4    xk + 1 = 1 − θk xk + θkxk + 1

Note that algorithm 3.5 maintains three sequences, x‾k, xk, and yk, which is more complicated 

than the two-sequence update equation (3.16). However, the increased complexity is paid 

off by the flexibility that the gradient descent step (line 3) incorporates the Bregman 

distance, unlike (3.16a) which is limited to the quadratic distance. When g x  is absent, 

and D x; yk = 1/2∥ x − yk ∥2, it can be shown that the sequence x‾k, yk of algorithm 3.5 

coincides with (3.16). Similar to (3.16), the convergence rate of x‾k in algorithm 3.5 satisfies 

ϕ x‾k − ϕ x∗ ⩽ O Lf /k2 .

12The ‘=’ sign in (3.17) can be replaced by ‘⩽’, see, e.g., (Tseng 2008). For example, θk = 2/ k + 2  satisfies the inequality, which 

has been used in (Nesterov 2005). With this choice, the extrapolation step (3.16b) is simplified to yk + 1 = x‾k + 1 + k
k + 3 x‾k + 1 − x‾k .
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An interesting equivalence relationship between algorithm 3.4 and algorithm 3.5 was 

discovered in (Lan and Zhou 2018), using a specialization of the Bregman distance in the 

dual ascent step of algorithm 3.4.13 Let D2 x; zk  in the dual ascent step of algorithm 3.4 be 

the Bregman distance generated by ℎ∗ itself, i.e.,

D2 z; zk = ℎ∗(z) − ℎ∗ zk + ∇ℎ∗ zk , z − zk (3.18)

then the dual ascent step becomes

zk + 1 = arg max
z

{ Kxk, z − ℎ∗(z) − 1
σk

D2 z; zk }

=3.18 arg max
z

{ Kxk + 1
σk

∇ℎ∗ zk , z − 1 + 1
σk

ℎ∗(z)}

=a arg max
z

{ wk + 1, z − ℎ∗(z)} =(2.7) ∇ℎ wk + 1

(3.19)

where in (a) we define wk + 1 as a scaled version of the underlined term:

wk + 1: = Kxk + σk
−1 ∇ℎ∗ zk

1 + σk
−1 =(3.19) Kxk + σk

−1wk

1 + σk
−1 (3.20)

Combining (3.19), (3.20) with algorithm 3.4, the specialized primal-dual update steps are 

then given by

wk + 1 = Kxk + σk
−1wk

1 + σk
−1 (3.21a)

xk + 1 = argmin{g(x) + Kx, ∇ℎ wk + 1 + 1
τk

D1 x; xk } (3.21b)

xk + 1 = xk + 1 + αk xk + 1 − xk (3.21c)

Identifying f x  of algorithm 3.5 with ℎ Kx  in the PDHG algorithm (algorithm 3.4) for 

solving ℎ Kx + g x , further manipulation in appendix A.3 shows that the parameters of the 

two algorithms can be matched such that the sequence xk in (3.21b) coincides with that from 

algorithm 3.5. From line 3 of algorithm 3.5, the relationship between xk and x‾k is that x‾k is 

a weighted average of xk. Convergence of x‾k at a rate of O 1/k2  from algorithm 3.5 then 

translates to an ergodic convergence of (a weighted) xk at the same rate, which is the same 

conclusion from algorithm 3.4.

13Strictly speaking, the relationship established in (Lan and Zhou 2018) is with respect to a variant of algorithm 3.4 that allows the 
Bregman distance to appear in both the primal and dual update equations. See (Lan and Zhou 2018) for more details.
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3.3. Application of first order algorithms for imaging problems

In this section, we discuss how the algorithms of the previous sections can be used to 

solve inverse problems. We first define a prototype problem that is commonly used for CT 

reconstruction. We then apply some representative algorithms to the prototype problem. It is 

often needed to reformulate our problem into the model form (either (3.1), (3.6), or (3.11)). 

We explore different options for such reformulation, and discuss the associated memory and 

computation cost.

3.3.1. Problem definition—CT reconstruction can often be formulated as the following 

minimization problem:14

min
x

Φ(x), Φ(x) = 1
2 ∥ y − Ax ∥w

2 + H(x) + G(x), (3.22)

where y ∈ Rm is the measured projection data, A ∈ Rm × d is the system matrix or the 

forward projection operator, 0 < w ∈ Rm is the statistical weights associated with the 

projection data y, x ∈ Rd is the unknown image to be reconstructed. Let x∗ ∈ arg min
x

Φ x , 

and we always assume x∗ exists.

Without loss of generality, we assume the statistical weights are scaled such that 0 < wj ⩽ 1, 

for j = 1, ⋯, m.15 The scaling factor can be absorbed into the definition of the regularizers 

H x  and G x , which encode our prior knowledge on x. Here we distinguish the two 

assuming that G is a simple function and H is not. A popular example of H x  in compressed 

sensing is the TV regularizer, given by

H(x) =
i

H Kix , (3.23)

where Kix = xi − xi, i1, xi − xi, i2, xi − xi, i3 , for i = 1, ⋯, d, is the finite difference operator, 

xi, i1, xi, i2, xi, i3 represent the 3-dimensional neighbors of xi. If H z = ∑j zj , then H x  is the 

anisotropic TV; if H z = ∥ z ∥, then H x  is the isotropic TV.

The simple expression of H x  in (3.23) can indeed encompass a wide variety of 

regularizers, by specifying Ki to be a generic linear operator, e.g., a (learned) convolution 

filter, and by specifying H to be a generic potential function that can be either (non)smooth 

or (non)convex. The last term G x  in (3.22) encodes simple (sparsifying) constraints on 

the unknown x. For example, sometimes it is physically meaningful to confine x to a 

convex set C, e.g., when x represents the linear attenuation coefficient of the human body, 

then C is the non-negative orthant. In this case G x = ιC x . For convenience, we also use 

F x = ∥ y − Ax ∥w
2 /2 to denote the data fitting term in (3.22).

14The quadratic data-fitting model is commonly used in CT. For PET and SPECT reconstruction, the data-fitting term is often the 
negative Poisson log-likelihood, whose gradient is not (globally) Lipschitz continuous. See appendix A.2 for more details.
15This scaling is needed in section 4.5 where the weights appear in the Bregman distance.
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3.3.2. Using the two-block PDHG algorithm (3.5)—In the context of CT 

reconstruction, the regularizer H x  can be (non)smooth and may often involve a linear 

operator, e.g., the finite difference operator. So it is natural to recast our prototype problem 

to Problem (3.1) according to

F (x) + G(x) g(x) (3.24a)

H(x) ≡
i
H Kix ℎ(Kx) (3.24b)

Following the biconjugacy relation (3.2), we may write

i
H Kix =

i
max

zi
{ Kix, zi − H∗ zi }

where the dual variables zi, i = 1, ⋯, n, are separable. This reformulation leads to the 

following update equations corresponding to (3.5a) and (3.5b):

• Dual update:

zk + 1 = arg max
z i

{ Kixk, zi − H∗ zi − 1
2σ zi − zi, k

2} (3.26)

Note that the maximization problem is separable in zi, hence can be done in 

parallel. This update essentially requires calculating prox σH∗ , which is easily 

computable with the Moreau identity (2.12) and our assumption that H is simple.

• Primal update:

xk + 1 = arg min
x

{F (x) + G(x) +
i

Kix, zi, k + 1 + 1
2τ x − xk

2} (3.26)

Again, this update requires calculating the proximal mapping of F x + G x . 

With F x  being the data fitting term, regardless of G x  being simple, this update 

may not be computable in closed form or otherwise obtained efficiently. As a 

practical alternative, xk + 1 is often approximated by running a few iterations of 

the (proximal) gradient descent algorithm. Under the condition of absolutely 

summable errors,16 theoretical convergence results can still be established 

despite the approximate nature of the updates.

Alternatively, we could apply a general proximal mapping step using a weighted quadratic 

difference,17 similar to what we did in the preconditioned ADMM (cf (3.9)), i.e.,

16See section 3.4 Discussion for details.
17The two-block PDHG algorithm was proposed using the quadratic distance only; the three-block extension of PDHG incorporated 
the Bregman distance for both the primal and dual updates in the non-accelerated version of the algorithm.
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xk + 1 = arg min
x

{F (x) + G(x) +
i

Kix, zi, k + 1 + 1
2 x − xk M

2 } (3.27)

Since F x = ∥ y − Ax ∥w
2 /2, if we choose M to be

M = 1
τ I − Atdiag{w}A (3.28)

and τ such that 1
τ > ∥ Atdiag{w}A ∥ + σ∑i ∥ Ki ∥2, (cf (3.13)) then plugging in F x  and M

into (3.27),

F (x) + 1
2 x − xk M

2 = 1
2 y − Ax w

2 + 1
2 x − xk

t 1
τ I − AtwA x − xk

= − y − Axk, wA x − xk + 1
2τ x − xk

2 +  constant

= ∇F xk , x − xk + 1
2τ x − xk

2 + constant

then xk + 1 of (3.27) admits a closed form solution

xk + 1 = argmin{G(x) +
i

Ki
tzi, k + 1 + ∇F xk , x − xk + 1

2τ x − xk
2}

= prox(τG){xk − τ
i

Ki
tzi, k + 1 + ∇F xk }

(3.29)

To summarize, we chose a special preconditioner matrix M that ‘canceled’ the quadratic 

term in the data-fitting function F x , and obtained the primal update xk + 1 in closed form.

3.3.3. Using the three-block PD algorithm 3.2—Since algorithm 3.2 works directly 

with sum of three functions (3.10), a natural correspondence between our prototype problem 

(3.22) and (3.10) is the following

F (x) f(x)

G(x) g(x)

H(x) ≡
i

H Kix ℎ(Kx)

Algorithm proceeds by calculating gradient of F x , and the proximal mapping of G and 

H∗ sequentially, which are all easily computable. The update equations are similar to 

(3.25) and (3.29), and with a different extrapolation step (line 4 of algorithm 3.2), where 

a gradient correction is applied. The step size requirement for convergence is such that 

στ∑i ∥ Ki ∥2 ⩽ 1, and τ∥ AtwA ∥2 < 2.
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3.4. Discussion

We discussed accelerated variants of first order algorithms that achieve the optimal 

convergence rate, e.g., for smooth optimization, the improvement is O 1/k  to O 1/k2 . In 

addition to these techniques, acceleration is often empirically observed by over-relaxation. 

Given a fixed point iteration of the form xk + 1 = Txk, over-relaxation refers to updating xk by

xk + 1 = xk + ρk Txk − xk (3.30)

where ρk is the (iteration-dependent) over-relaxation parameter. The fact that over-relaxed 

fixed point iterations (3.30) are convergent is rooted in α-averaged operators, which are of 

the form T = Tα = 1 − α Id + αN, where Id is an identity map, and N is a non-expansive 

mapping, 0 < α < 1. If the operator T  is 1/2-averaged, i.e., α = 1/2, the relaxation parameter 

ρk ≡ ρ can approach 2 and the fixed point iteration (3.30) remains an averaged operator hence 

still ensure convergence of (3.30).

Many iterative algorithms that we discussed are α-averaged operators. The simple gradient 

descent algorithm for an L-smooth function f, Tx = x − 1
L ∇f x , is 1/2 averaged; the (2-

block) PDHG algorithm (with θ = 1) and the ADMM algorithm are instances of the proximal 

point algorithm, which is 1/2-averaged; Yan’s algorithm (Yan 2018) for minimizing sum 

of three functions and the Davis-Yin’s three operator splitting (Davis and Yin 2017) are 

also averaged operators. All these algorithms can have over-relaxed versions like (3.30) 

with guaranteed convergence if the over-relaxation parameters ρk = ρk α  are chosen properly. 

Theoretical justifications for over-relaxation indeed show that the convergence bound can be 

reduced by ρ > 1, from O 1/k  to O 1/ ρk , see e.g., (Chambolle and Pock 2016), theorem 2.

As we encountered in section 3.3, sometimes it can be difficult to evaluate Txk exactly, 

e.g., when T  is the proximal mapping of a complex function. The inexact Krasnoselskii-

Mann (KM) theorem considers an inexact update of the form: xk + 1 = Tαkxk + αkϵk where 

Tαk = αkN + 1 − αk  Id is αk-averaged operator, and αkϵk quantifies the error in the update 

xk + 1. If the errors satisfies ∑k αk∥ ϵk ∥ < ∞, and ∑k αk 1 − αk ∞, then the iterates xk still 

converges to the fixed point of N (Liang et al 2016). For the over-relaxed version (3.30), 

with properly chosen relaxation parameters ρk, the fixed point iteration (3.30) remains 

averaged, and the inexact KM theorem still applies.

The examples in the previous section showcased the typical steps involved in applying first 

order algorithms to CT image reconstruction: both the problem reformulation and solving 

the subproblems often require problem-specific engineering efforts. Furthermore, developing 

such algorithms also demands substantial researchers’ time. From a practitioner’s point of 

view, the theoretical guarantee of solving a well-defined optimization problem should be 

weighed against the development time behind such efforts. If one is willing to forgo the 

exactness of an algorithm, then a heuristic solution can be obtained via superiorization 

(Herman et al 2012, Censor et al 2017).
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Superiorization is applicable to composite minimization problems, where a perturbation 

resilient algorithm is steered toward decreasing a regularization functional while remaining 

compatible with data-fidelity induced constraints. Superiorization can be made an automatic 

procedure that turns an algorithm into its superiorized version, so that research time for 

algorithm development and implementation can be minimized. Unlike the exact algorithms 

that we discussed in this chapter, superiorization is heuristic in the sense that the outcome 

is not guaranteed to approach the minimal of an objective function. More information on 

this approach can be found from the bibliography site maintained by one of the original 

proponents (Censor 2021).

4. Stochastic first order algorithms for convex optimization

Stochastic algorithms have a long history in machine learning, dating back to the classical 

stochastic gradient descent algorithm (Robbins and Monro 1951) in the 1950’s. There are 

‘intuitive, practical, and theoretical motivations’ (Bottou et al 2018) for studying stochastic 

algorithms. Intuitively speaking, stochastic algorithms can be more efficient than their 

deterministic counterpart if many of the training samples are statistically homogeneous 

(Bertsekas 1999), p 110 in some sense. This intuition is confirmed in practice: stochastic 

algorithms often enjoy fast initial decrease of training errors, much faster than the 

deterministic/batch algorithms. Finally, convergence theory of stochastic algorithms have 

been established to support the practical findings. Nowadays deep neural networks are 

trained exclusively with stochastic algorithms, reiterating their effectiveness and practical 

utility.

Ordered subset (OS) algorithms have been popular in image reconstruction, for the same 

reason that stochastic algorithms have been popular in machine learning. Starting with 

(Hudson and Larkin 1994) for nuclear medicine image reconstruction, OS algorithms have 

continued to thrive due to the ever-increasing data size and high demand on timely delivery 

of satisfactory images. OS algorithms typically partition projection views into groups, and 

perform image update after going through each group in a cyclic manner. Although there 

may not be a stochastic element in these OS algorithms, in spirit they are much akin 

to stochastic algorithms in their use of subsets (minibatches) of data for more frequent 

parameter updates. As such, OS algorithms often enjoy rapid initial progress, which may 

lead to acceptable image quality at a fraction of the computational cost of their batch 

counterpart. However, OS algorithms are often criticized for reaching limit cycles or being 

divergent, due to a lack of general understanding of the algorithmic behavior. It is possible 

that OS algorithms can benefit substantially from the stochastic algorithms for convex 

optimization, particularly for the fact that the latter often come with convergence guarantees.

In the literature, the term ’stochastic algorithms’ can be ambiguous as it may refer to 

(a) algorithms for minimizing a stochastic objective function, e.g., as in expected risk 

minimization; (b) algorithms based on stochastic oracles that return perturbed function 

value or gradient information, and (c) algorithms for deterministic finite sum minimization, 

e.g., empirical risk minimization, where the stochastic mechanism arises only from the 

random access to subsets (minibatches) of components in the objective function. Since our 

primary interest is in solving image reconstruction problems with a deterministic finite-sum 
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objective function, we focus on stochastic algorithms in the third category. In the literature, 

sometimes they are also referred to as randomized algorithms. For deterministic finite-sum 

minimization, stochasticity is optional rather than mandatory, and the option can be used 

effectively for its computational advantages.

A common problem in machine learning is the following regularized empirical risk 

minimization problem

min
x

ϕ(x) = f(x) + g(x), f(x) = 1
n i = 1

n
fi(x) (4.1)

where fi, i = 1, ⋯, n, are CCP, Li-smooth, and the regularizer g x  is CCP, nonsmooth, simple. 

We assume x∗ ∈ argmin ϕ x  exists.

The classical stochastic gradient descent (SGD) algorithm assumes g x = 0 and estimates 

the solution x∗ using

xk + 1 = xk − ηk ∇fik xk , (4.2)

where ik is drawn uniformly at random from {1, ⋯, n}, and ηk > 0 is the step size. A natural 

generalization to handle the composite objective function (4.1) is the following proximal 

variant of (4.2) (Xiao 2010, Dekel et al 2012):

xk + 1 = arg min
x

{g(x) + f xk + ∇fik xk , x − xk + 1
2ηk

x − xk
2} (4.3)

When g x  is absent, (4.3) is identical to (4.2); when g x  is present, (4.3) is a proximal 

gradient variant of (4.2). In both (4.2) and (4.3), ∇fik xk  can be regarded as an estimate 

of the true gradient ∇f xk = ∑i ∇fi xk /n. Clearly, Eξ ∇fξ xk = ∇f xk ,18 thus ∇fξ xk  is 

an unbiased estimator; moreover, computing ∇fi xk  for one component function is n-times 

cheaper than computing the full gradient ∇f xk . If we assume ∥ ∇fi x ∥2 ⩽ M for all i, 

for all x, then it can be shown that Eξ ∥ ∇fξ xk − ∇f xk ∥2 ⩽ M (Konečný et al 2015), 

i.e., ∇fξ xk , as an estimate of ∇f xk , has a finite variance. With a constant step size ηk = η, 

the finite variance of the gradient estimates leads to a finite error bound for the expected 

objective value19, i.e., Ef xk − f x∗ B as k ∞. The error bound B depends on the step 

size η and the gradient variance: B is smaller for smaller η or smaller M.

Due to the finite variance M of the gradient estimate, the convergence of SGD (4.2), 

(4.3) often requires decreasing step sizes. Under the assumption that f x  is L‐smooth and 

μ‐strongly convex, (4.3) converges Eϕ xk ϕ x∗  at a rate of O M /k  using a diminishing 

step size ηk ∼ 1/k; when the component f x  is L‐smooth only, the convergence rate 

18Here the expectation is with respect to ik and conditioned on the trajectory xi, i = 0, ⋯, k.
19The expectation E used in convergence bound is the full expectation with respect to all randomness, i1, ⋯, ik − 1, in the estimate xk.
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(measured by Eϕ x‾k ϕ x∗ , where x‾k = ∑i
k xi/k) decreases to O M / k  with the step size 

rule ηk ∼ 1/ k.

One way to decrease the gradient variance M and thereby improve convergence is to 

replace the single component gradient estimator ∇fik xk  by a minibatch gradient estimator 

∇bf xk = 1
b ∑i ∈ S ∇fi xk , where S is a subset of {1, ⋯, n} of cardinality b drawn uniformly 

at random. Obviously, the minibatch gradient estimator ∇bf xk  remains unbiased. As for its 

variance, it can be shown that ES∥ ∇bf xk − ∇f xk ∥2 ⩽ n − b / b n − 1 M (Konečný et al 

2015), where the conditional expectation is with respect to the random subset. When b ≪ n, 

the gradient variance is approximately M /b: the larger the minibatch size b, the smaller 

the variance. With the minibatch gradient estimator, the per-iteration cost is also increased 

by the factor b. As a result, the total work required for the single-sample SGD and the 

minibatch variant to reach an ϵ accuracy solution is comparable (Bottou et al 2018).

It is possible to generalize the simple SGD algorithm (4.3) and replace the quadratic distance 

by the Bregman divergence as considered in (Nemirovski et al 2009, Duchi et al 2010). The 

convergence and convergence rate remain essentially unchanged, i.e., at O 1/k  with strong 

convexity, or O 1/ k  without strong convexity (Juditsky et al 2011). These rates fall behind 

those of their deterministic counterparts, which are O αk , 0 < α < 1, and O 1/k , respectively, 

and the latter can be further accelerated to achieve the optimal rates with Nesterov’s 

techniques. Despite the slower convergence rate, as we discuss later, SGD may be still 

preferable than their batch counterpart for some large scale machine learning applications 

where a low accuracy solution is sufficient.

As we mentioned already, the main computational appeal of stochastic algorithms is the low 

per-iteration cost. A fair comparison of algorithm complexity should be some measure of 

total work that accounts for both per-iteration cost and the convergence rate dependency on 

iteration. For the objective function (4.1), the total work can be identified with total # of 

accesses to the (component-wise) function value or gradient evaluation, and the proximal 

mapping of the regularizer g. Table 1 lists the total work needed to reach an ϵ-suboptimal 

solution for both deterministic and stochastic algorithms, summarized according to the 

properties of the component functions in the objective function (4.1).

• Type I:fi x  is Li-smooth, g x  is nonsmooth and μ-strongly convex;

• Type II: fi x  is Li-smooth, g x  is nonsmooth and non-strongly convex;

• Type III: fi x  is nonsmooth and Li Lipschitz, g x  is non-strongly convex;

We use AGD as an example to illustrate how to read the table. From section 3.2.2, the 

rate of convergence of AGD for type II problems is O L
k2 . Then to reach an ϵ-suboptimal 

solution, we roughly need K = L
ϵ  iterations. As per iteration cost of a full gradient method 
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is n-times that of stochastic gradient methods, the total work is n L
ϵ . Other items in table 1 

are calculated in a similar manner.

If we compare the total work for GD and SGD for minimizing type II problems, when 

n > L/ϵ, which can happen with a large number of training samples n and low accuracy 

requirement ϵ, then SGD is more computationally attractive than GD. This justifies the 

popularity of stochastic methods for many large scale machine learning tasks even when 

their theoretical convergence rate lags behind their deterministic counterparts.

As seen in table 1, there is an ever-present factor of n in the complexity of deterministic 

algorithms. For stochastic algorithms, this factor is algorithm-dependent. To properly gauge 

the (sub-)optimality of stochastic algorithms, a few studies (Lan 2012, Woodworth and 

Srebro 2016) have investigated the lower complexity bounds for solving (4.1) using first 

order stochastic methods, which are also included in table 1. An intriguing observation 

is that stochastic algorithms have a smaller lower complexity bound, in terms of n
dependency on the number of data samples, than their deterministic counterpart. A subtle 

point when comparing between stochastic and deterministic algorithms is that unlike 

the deterministic algorithms, convergence for stochastic algorithms is often measured in 

expectation. By contrast, the convergence rate for deterministic algorithms is for the worst 

case scenario.

The early SGD methods (4.3) work with very few assumptions on the gradient estimates, 

i.e., finite variance or finite mean squared error (MSE), in case of biased gradient estimators. 

This aspect makes them ideal for problems such as the expected risk minimization or 

even online minimization; at the same time, this generic nature is a bottleneck to faster 

convergence when they are applied to problems with a deterministic, finite-sum objective 

(4.1), where the full gradient is available if needed.

The continuing development of stochastic methods follows the theme of building up more 

accurate gradient estimates over iterations. Such methods employ a variety of mechanisms 

to achieve variance reduction (VR) for the gradient estimates, thereby approaching the same 

convergence rate as their deterministic counterparts. When combined with acceleration/

momentum techniques, first order stochastic methods can reach or even exceed the 

performance of the deterministic algorithms. We discuss representative stochastic algorithms 

that apply variance reduction and/or momentum acceleration for improved convergence. 

These algorithms are effective for type I or type II problems that only involve simple 

nonsmooth functions g x . To deal with structured nonsmoothness for type III problems, we 

will discuss stochastic primal dual algorithms.

4.1. Stochastic variance-reduced gradient algorithms

Many variance reduction techniques, see, e.g., (Konečný and Richtárik 2013, Defazio et 

al 2014, Schmidt et al 2017), have been proposed to improve gradient estimators for 

solving (4.1). These techniques are then combined with SGD to improve convergence. 

Some of these techniques, e.g., SAGA (Defazio et al 2014) and SAG (Schmidt et al 2017), 

require storing all past n gradient information, which can be memory-prohibitive for image 
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reconstruction. We are more interested in memory-efficient variance reduction techniques. 

One such example is SVRG (Johnson and Zhang 2013) and its extension Prox-SVRG for 

solving (4.1), shown in algorithm 4.1.

Algorithm 4.1.

Prox-SVRG algorithm solving (4.1).

Input: Step size η, inner iteration # m = 2n, initial value x0.

Output: xK

1  fors = 0, ⋯, K − 1do

2    v0 = ∇f xs , x0 = xs

3    fork = 0, ⋯, m − 1do

4    Choose ik ∈ {1, ⋯, n} at random, such that Prob ik = i = pi

5    vk: = v0 + 1
pikn

∇fik xk − ∇fik x0   /*variance reduction*/

6    xk + 1: = arg min
x

{g x + vk, x + 1
2η x − xk

2}  /*proximal gradient descent*/

7    xs + 1: = i = 1
m xi/m

This algorithm has an inner-outer loop structure. In each outer iteration, a full gradient v‾0

(line 2) is calculated and subsequently used to ‘anchor’ the stochastic gradient vk (line 5) 

for the next m inner iterations. The actual parameter update is performed on line 6, which is 

similar to (4.3) with vk as the gradient estimate. It is easy to see that the gradient estimate 

vk is unbiased, as E vk = ∇f xk ; moreover, it is shown (Johnson and Zhang 2013, Xiao and 

Zhang 2014) that the variance of the gradient estimate can be bounded by the suboptimality 

of the solution candidates xk, x‾s. More specifically,

E{ vk − ∇f xk
2} ⩽ C ϕ xk − ϕ x∗ + ϕ xs − ϕ x∗ (4.4)

The constant C in (4.4) is related to the gradient Lipschitz constant of the component 

functions fi and the sampling scheme. From (4.4), it is seen that convergence of the 

algorithm implies that gradient variance indeed tends to 0, hence the name variance 

reduction. For type I problems, Prox-SVRG achieves linear convergence (Xiao and Zhang 

2014), i.e., E ϕ x‾s − ϕ x∗ ρs, where the geometric coefficient 0 < ρ < 1 depends on 

problem parameters such as the gradient Lipschitz constants, the strong convexity parameter, 

and the number of inner iterations m; For type II problems, (Prox-)SVRG achieves sublinear 

convergence O 1/k .20 Both rates match the deterministic counterparts for the same type 

problems.

Compared with SGD, the convergence rate improvement of Prox-SVRG comes with 

additional computation and memory cost. SGD computes one gradient per iteration; Prox-

SVRG has a total # of 2m + n gradient computations per iteration, which occurs on line 5 2m

20Such results are obtained with a reduction technique. See section 4.6 for more details.
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and line 2 n . Prox-SVRG also needs to store two additional variables v‾0 and x‾0, i.e., two 

times the memory. Both costs are manageable for typical image reconstruction problems. 

Comparing with the simple GD for type I problems, the computational savings in terms of 

total work come from the fact that n + L
μ ≪ nL

μ  for typical problem settings (cf table 1).

Variance reduction can work with both unbiased and biased gradient estimators. In addition 

to (Prox-) SVRG, other unbiased gradient estimates employing VR include SAGA (Defazio 

et al 2014) and S2GD (Konečný and Richtárik 2013). SAG (Schmidt et al 2017) and 

SARAH (Nguyen et al 2017), on the other hand, are biased estimators that achieve VR. One 

version of SARAH amounts to replacing line 5 of algorithm 4.1 by the following:

vk = vk − 1 + 1
pikn

∇fik xk − ∇fik xk − 1 , v0 = v0 (4.5)

The gradient estimator (4.5) recursively builds up the gradient information by making use 

of the most recent update of vk and xk, unlike SVRG which reuses the value at the start 

of the inner loop. One immediate observation is that vk is a biased gradient estimate, i.e., 

E vk = ∇f xk − ∇f xk − 1 + vk − 1. Nevertheless, linear convergence of SARAH was proved 

for type I problems similar to (Prox-)SVRG.

4.2. Variance-reduced accelerated gradient

The variance reduced SGD methods are able to match the convergence rate of conventional 

deterministic algorithms. In the past decade, deterministic convex optimization algorithms 

have undergone rapid developments: the most advanced deterministic algorithms can now 

achieve the optimal convergence rates thanks to Nesterov’s momentum techniques. A natural 

question is whether the variance reduced stochastic algorithms can directly benefit from 

the momentum techniques. This question was first answered in the affirmative by Katyusha 

(Allen-Zhu 2017).

Algorithm 4.2.

Katyusha  ns for solving (4.1).

Input: Inner iteration m = 2n, τ2 = 1/2, initial value x0.

Output:xS

1  fors = 0, ⋯, S − 1 do

2    τ1, s = 2
s + 4

3    v = ∇f xs

4    fork = 0, ⋯, m − 1do

5    yk = τ1, szk + τ2xs + 1 − τ1, s − τ2 xk  /*Nesterov’s momentum + ‘negative’ momentum*/

6    Choose ik ∈ {1, ⋯, n} at random, such that Prob ik = i = pi = 1/n

7     vk: = v + 1
pikn

∇fik yk − ∇fik xs
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8     zk + 1: = arg minx{g x + vk, x + 3τ1, sL
2 x − zk

2}

9     xk + 1 = τ1, szk + 1 + τ2xs + 1 − τ1, s − τ2 xk

10    xs + 1: = i = 1
m xi/m

There are different versions of Katyusha for type I and II problems. Algorithm 4.2 shows 

Katyusha  ns  for type II problems, where the superscript ‘ns’ stands for non-strongly convex. 

Structure-wise, Katyusha is like a combination of Prox-SVRG and algorithm 3.5, the variant 

of Nesterov’s acceleration method we discussed in section 3.2.2. Katyusha inherits the 

inner-outer loop structure and the variance reduced gradient estimator from Prox-SVRG. 

Indeed, when setting the parameters τ1, s = 1 and τ2 = 0, algorithm 4.2 is almost identical to 

Prox-SVRG (except for the step size η). At the same time, Katyusha employs the multi-step 

acceleration technique of Nesterov’s for generating the sequence yk, zk + 1, xk + 1  (line 5, 8, 9). 

One distinctive feature of Katyusha is that there is a fixed weight τ2 assigned to the variable 

x‾s at which the exact gradient is calculated in the outer loop (line 5, 9 . At a high level, 

this so-called ‘negative momentum’ serves to ensure that the gradient estimates do not stray 

far while Nesterov’s momentum acceleration is taking effect. Convergence and convergence 

rate are established for the expected objective value of x‾s, see table 1.

Note that from table 1 the rate of Katyusha  ns  is dominated by n/ ϵ, its sample size 

dependency n is higher than the lower complexity bound n of stochastic algorithms, 

which makes it not more advantageous than AGD. Following Katyusha, many others, e.g., 

(Shang et al 2017, Zhou et al 2018, Lan et al 2019, Zhou et al 2019, Song et al 2020), 

have demonstrated accelerated convergence rate, some of which more closely match the 

lower complexity bound. These algorithms invariably use an inner-outer loop structure, and 

stabilize gradient estimates using the full gradient calculated at the anchor point x‾s in every 

outer iteration. As such, a question arises whether the momentum technique is applicable to 

other variance reduced stochastic gradient algorithms, such as SAGA and SARAH, which 

does not involve an ‘anchor.’

This question was recently answered by (Driggs et al 2020) which showed that an ‘anchor 

point’ is not necessary to achieve accelerated convergence rate. An alternative property, 

MSEB, was introduced to ensure both the MSE and the bias of the gradient estimator 

decrease sufficiently quickly as the iteration k continues; accelerated convergence is shown 

for all MSEB gradient estimators, which include SVRG, SAGA, SARAH, and others. Thus 

a more unified acceleration framework was developed. Using algorithm 3.5 as a template, 

we can replace the exact gradient ∇f yk  by any MSEB gradient estimate ∇f yk , and 

accelerated convergence can be established.

4.3. Primal dual stochastic gradient

The classical SGD algorithms replace the exact gradient by a perturbed one, e.g., from a 

stochastic oracle. In an analogous manner, stochastic primal-dual algorithms replace the 

exact gradient for both the primal and the dual variables by their stochastic estimates. 
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Again consider our problem model (3.1), the classical stochastic primal dual algorithm 

(Nemirovski et al 2009, Chen et al 2014) have the following form

zk + 1 = arg max
z

{ Kz xk , z − ℎ∗(z) − 1
2σk

D2 z, zk } (4.6a)

xk + 1 = arg min
x

{g(x) + x, Kx zk + 1 + 1
2τk

D1 x, xk } (4.6b)

where the exact gradients Kx and Ktz in (3.5) are replaced by their estimates Kx x , Kz z . 

Under the finite MSE assumption of the gradient estimates, (4.6) converges at a rate 1/ k

with diminishing step size parameters τk, σk ∼ 1
k  (Nemirovski et al 2009).

Similar to variance reduction methods in stochastic primal algorithms, the 1/ k convergence 

speed can be much improved by considering the deterministic, finite sum nature of our 

model problem. For machine learning and image reconstruction, the composite function 

ℎ K ⋅  in the objective often can be decomposed as the following

min
x

g(x) + ℎ(Kx), where ℎ(Kx) =
i = 1

n
ℎi Kix (4.7)

where ℎi are CCP, Ki, i = 1, ⋯, n, are linear operators Ki:Rd Rmi, m = ∑i
n mi. For machine 

learning, the finite sum part of the objective usually refers to the averaged training loss 

from n training samples. In this case, there is always a factor of 1/n for the definition of 

ℎ Kx  in (4.7). For image reconstruction, the finite sum mostly comes from the data-fidelity 

term or the regularizer. Here in (4.7) we adhere to the convention for image reconstruction 

without introducing an artificial scaling 1/n. This will necessitate some minor changes to 

the machine-learning oriented algorithms that we subsequently introduce. We will point out 

such adaptation as we proceed.

By making use of the conjugate functions ℎi
∗ of ℎi, the primal problem (4.7) leads the 

following primal-dual problem:

min
x

max
{zi} i = 1

n
Kix, zi − ℎi

∗ zi + g(x) (4.8)

where zi ∈ Rmi, i = 1, ⋯, n, are the dual variables. Note that the dual variables zi are fully 

separable in (4.8).

The following stochastic primal dual coordinate (SPDC) descent algorithm, adapted from 

(Zhang and Xiao 2017, Lan and Zhou 2018) for our problem model (4.7)21, can be seen as a 

stochastic extension of the simple deterministic PDHG algorithm (3.5).

21By removing the factor 1/n corresponding to the definition of ℎ in (4.7).
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For iterations k = 1, ⋯, draw ik randomly from {1, ⋯, n} such that Prob ik = i = pi. Proceed as 

follows:

zi
k + 1 =

arg max
z

{ Kixk, z − ℎi
∗(z) − 1

2σi
z − zi

k 2} i = ik

zi
k i ≠ ik

(4.9a)

Kx = uk + 1
pik

Kik
t zik

k + 1 − zik
k

(4.9b)

xk + 1 = arg min
x

{g(x) + Kx, x + 1
2τik

x − xk 2} (4.9c)

uk + 1 = uk + Kik
t zik

k + 1 − zik
k

(4.9d)

xk + 1 = xk + 1 + θ xk + 1 − xk (4.9e)

SPDC maintains the algorithm structure of (3.5) with important changes in the dual (4.9a) 

and primal (4.9c) update steps. We first notice that the dual update (4.9a) corresponds to a 

random coordinate ascent for the dual variables zi . Let ẑi
k + 1 be the maximizer of (4.9a) for 

all i done in parallel, i.e.,

zi
k + 1 = arg max

z
{ z, Kixk − ℎi

∗(z) − 1
2σi

z − zi
k 2} ∀i

From (4.9a) we have

zi
k + 1 =

zi
k + 1  with probability pi

zi
k  with probability 1 − pi

If the algorithm is initialized with u0 = ∑i Ki
tzi

0, then by (4.9d), we have uk = ∑i Ki
tzi

k for all 

k. Conditioning on zk, and calculating the expectation of the gradient estimate (4.9b) with 

respect to ik only,

Eξ{uk + 1
pξ

Kξ
t zξ

k + 1 − zξ
k } = uk +

i

1
pi

Ki
tpi z i

k + 1 − zi
k =

i
Ki

tz i
k + 1 . (4.10)

which coincides with the exact gradient in (3.5b). In other words, the stochastic gradient 

for the primal update equation (4.9c) is unbiased: (4.9b) and (4.9c) agree with (3.5b) on 

average (Lan and Zhou 2018). Linear convergence of (4.9) was shown for type I problems 

under two specific sampling schemes, a uniform sampling and a data-adaptive sampling. 

The step size parameters σ, τ, and θ in general depend on the strong convexity parameter μ
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and the sampling scheme pi . Further analysis on the relationship between stochastic dual 

coordinate ascent and variance reduced stochastic gradient can be found in (Shalev-Shwartz 

and Zhang 2013, Shalev-Shwartz 2015, 2016).

Algorithm 4.3.

Stochastic primal-dual hybrid gradient (SPDHG) for (4.8).

Input: Choose x0, z0, u0.Set θ = 1; step size σi,τi, pi
−1σiτ K1

2 < 1.

Output:xK

1  Set u0 = i Ki
tzi

0do

2  fork = 0, ⋯, K − 1do

3    Choose ik at random from {1, ⋯, n}, such that Prob ik = i = pi

4

zi
k + 1: =

arg max
z

{ z, Kixk − ℎi
∗ z − 1

2σi
z − zi

k 2} i = ik

zi
k i ≠ ik

 (4.11)

5 uk + 1: = uk + Kik
t zik

k + 1 − zik
k

 (4.12)

6 Kx: = uk + 1 + θ
pik

Kik
t zik

k + 1 − zik
k

 (4.13)

7 xk + 1: = arg min
x

{g x + Kx, x + 1
2τik

x − xk 2} (4.14)

8 end

A variant of SPDC, shown in algorithm 4.3, was proposed in (Chambolle et al 2018) 

and further analyzed in (Alacaoglu et al 2019) with additional convergence properties. 

Comparing with (4.9), the major difference lies in the gradient estimator Kx of the primal 

update (line 6, 7) which combines the dual update of (4.9d) and a dualextrapolation step, the 

latter similar to the dual-extrapolated variant of the deterministic PDHG (Chambolle et al 

2018). For type III problems, algorithm 4.3 has a convergence rate of O 1/k  in terms of the 

expected primal-dual gap (Chambolle et al 2018, Alacaoglu et al 2019) when the step size 

parameters τi, σi satisfies pi
−1τiσi∥ Ki ∥2 < 1 for all i

Our presentation of algorithm 4.3 is much simplified from (Chambolle et al 2018) in 

order to compare and draw links with SPDC (Zhang and Xiao 2017, Lan and Zhou 

2018). The original publication (Chambolle et al 2018) allows fully operator-valued step 

size parameters, i.e., σi, τi can be symmetric, positive definite matrices Si, T i such that 

∥ Si
1/2KiT i

1/2 ∥2 < pi. Moreover, the random sampling scheme (line 3 of algorithm 4.3) can be 

more flexible, e.g., groups of dual variables can be selected together as long as the sampling 

is ‘proper’ in the sense that each dual variable is selected with a positive pi. In addition, 

accelerated convergence for type I and II problems can be achieved with more sophisticated, 

adaptive step size parameters similar to the deterministic PDHG algorithm 3.4. Interested 

readers are referred to (Chambolle et al 2018) for the full generalization.
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4.4. Other stochastic algorithms

The two primal-dual algorithms we presented, SPDC (4.9) and SPDHG, both perform 

randomized updates of the dual variables. For the following problem

min
x

f(x) + ℎ(Kx), f(x) =
i

fi Aix (4.15)

where fi is Li-smooth, f x  is μ-strongly convex, μ ⩾ 0, and ℎ is convex, nonsmooth, 

a stochastic primal dual algorithm, based on the deterministic primal dual fixed point 

(PDFP) algorithm (Chen et al 2013), was proposed in (Zhu and Zhang 2020a, 2021) that 

perform randomized update of the primal variable x . At each iteration, the x-update uses 

an estimated gradient ∇f to approximate ∇f x . Without employing variance reduction 

techniques, sublinear convergence was proved with diminishing step sizes for type I 

problems (Zhu and Zhang 2020). When combining with VR techniques as in SVRG to 

calculate ∇f, the convergence rate was improved to linear with constant step sizes (Zhu 

and Zhang 2021). The same algorithm can also be applied to type III problems with O 1/k
convergence.

The problem model (4.15) has also been studied in the dual form, which is

min
{yi}, z

f1
∗ y1 + ⋯fn

∗ yn + ℎ∗(z) (4.16a)

subject to A1
ty1 + ⋯ + An

tyn + K∗z = 0 (4.16b)

Problem (4.16) can be seen as a multi-block generalization of the 3-block ADMM (3.15a). 

Just like a naive extension of the 2-block ADMM to 3-block ADMM may fail to converge, 

it is unknown if the 3-block ADMM can be generalized to multi-blocks and remain 

convergent. However, a randomized multi-block ADMM for (4.16) can be shown to 

converge linearly for type I problems (Suzuki 2014). Furthermore, the relationship between 

a randomized primal-dual algorithm and a randomized multi-block ADMM was studied in 

(Dang and Lan 2014), so that convergence results and parameter settings from one algorithm 

can be adapted to the other.

4.5. Applications

Here we apply the SPDHG (Algorithm 4.3) to solve our prototype reconstruction problem 

(3.22). Instead of the reformulation in (3.24), we can split the objective function (3.22) 

according to

G(x)   g(x) (4.17a)

F (x) + H(x) = 1
2 j = 1

J
yj − Ajx wj

2 +
i = 1

I
H i Kix

i
ℎi Kix (4.18a)
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where Aj is the projection operator for the j-th (group of) projection view s , yj, wj are the 

corresponding measured projection data and statistical weights. Applying the conjugacy 

relationship for 1
2 ∥ ⋅ ∥wj

2  and Hi in the finite sum part of (4.17b), we obtain the following 

dual representation:

F (x) + H(x) ≡
j

F j(x) +
i

Hi Kix =
j

1
2 yj − Ajx wj

2 +
i

Hi Kix

=
j

J
max

ξj
yj − Ajx, ξj − 1

2 ξj wj−1
2 +

i

I
max

zi
Kix, zi − Hi

∗ zi

The separable dual variables are zi, ξj, for i = 1, ⋯, I, j = 1, ⋯, J. Owing to the flexibility of 

the sampling scheme, we may randomly sample one dual variable from each of two groups. 

That is, each update involves one subset of projection views and one subset of regularizers. 

Accordingly, algorithm 4.3 instantiate to the following steps

• Draw random variables jk from {1, ⋯, J}, and ik from {1, ⋯, I}, such that 

Prob jk = j = pj
(2), and Prob ik = i = pi

(1). Perform randomized dual update.

ξj
k + 1 =

arg max
ξ

{ yj − Ajxk, ξ − 1
2 ξ wj−1

2 − 1
2σj

ξ − ξj
k 2} j = jk

ξj
k j ≠ jk

(4.18a)

zi
k + 1 =

arg max
z

{ Kixk, z − H i
∗(z) − 1

2σi
z − zi

k 2}, i = ik

zi
k i ≠ ik

(4.18b)

Both updates can be performed in closed form given our assumptions. In 

particular, from (4.18a), for j = jk we have

ξj
k + 1 = arg max

ξ
{ yj − Ajxk, ξ − 1

2 ξ wj−1
2 − 1

2σj
ξ − ξj

k 2}

  = wj
−1 + σj

−1 −1 yj − Ajxk + σj
−1ξj

k
(4.19)

• Gradient estimate update according to (4.12)

vk + 1 = vk − Ajk
t ξjk

k + 1 − ξjk
k

(4.20a)

uk + 1 = uk + Kik
t zik

k + 1 − zik
k

(4.20b)

• Primal update:

Kx = vk + 1 + uk + 1 − θ
pik

(1)pjk
(2) Ajk

t ξik
k + 1 − ξik

k + θ
pik

(1)pjk
(2) Kik

t zik
k + 1 − zik

k
(4.21a)
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xk + 1 = arg min
x

{G(x) + Kx, x + 1
2τik, jk

x − xk
2} (4.21b)

which can also be obtained in closed-form since G x  is assumed simple. 

Convergence is guaranteed by setting θ = 1 and the step sizes such that

σjτij Aj
2 < pj

(2), σiτij Ki
2 < pi

(1),  for i = 1, ⋯, I; j = 1, ⋯, J (4.22)

Instead of going through the conjugate functions 1/2 ∥ ⋅ ∥wj−1
2  and updating the dual variable 

ξ using (4.19), we could take advantage of the quadratic form of the data fitting term 

F j x , and obtain an algorithm that applies gradient descent on subsets of projection views 

∇F j x . This results in algorithm 4.4, whose derivation is provided in appendix A.4. It is 

an application of SPDHG with a special diagonal preconditioner Sj = wj
−1σj

−1 to replace the 

scalar 1/σj in (4.19). Since we assume that the statistical weights are normalized such that 

wj ⩽ 1, the step size choices in (4.22) remain valid.

Algorithm 4.4.

Applying SPDHG to solve (3.22).

Input: Step size σj, τi, j as in (4.22), initial value x0, z0, v0
.

OutputxK

1  u0 =
i
Ki

tzi
0
; v0 = v0

2  fork = 0, ⋯, K − 1do

3    Draw ik from {1, ⋯I}, such that Prob ik = i = pi
1

4    Draw jk from {1, ⋯J}, such that Prob jk = i = pj
1

5    vk + 1 =
∇F j xk + σj

−1vj
k

1 + σj
−1 j = jk

vj
k j ≠ jk

6    vk + 1 =
arg max

z
{ Kixk, z − Hi

∗ z − 1
2σi

z − zi
k 2} i = ik

zi
k i ≠ ik

  /* same as (4.18b) */

7    vk + 1 = vk + vk + 1 − vk

8    uk + 1 = uk + Kik
t zik

k + 1 − zik
k

  /* same as (4.20b) */

9    Kx = vk + 1 + uk + 1 + θ
pik

1 pjk
2 vjk

k + 1 − vjk
k + Kik

t zik
k + 1 − zik

k

10   xk + 1 = arg min
x

{G x + Kx, x + 1
2τik, jk

x − xk 2}  /* same as (4.21b) */
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4.6. Discussion

We presented three algorithms, Prox-SVRG, Katyushans, and SPDHG, that each solves type 

I, type II, type III problems directly. In machine learning, algorithms developed for solving 

one type of problems can be employed to solve a different type of problems indirectly 

through a ‘reduction’ technique (Shalev-Shwartz and Zhang 2014, Lin et al 2015, Allen-Zhu 

and Hazan 2016). A type II problem can be made type I by adding a small quadratic term 

in the form of μ
2 ∥ x − x ∥2; or a type III problem can be made type I by (1) adding a 

small quadratic term and (2) applying a smoothing technique to the nonsmooth Lipschitz 

component. Then an algorithm for solving type I problems can be applied to the augmented 

problem. In fact, as type I problems are prevalent in machine learning, many stochastic 

algorithms e.g., (Prox-)SVRG, SDCA (Shalev-Shwartz and Zhang 2013), SPDC (Zhang and 

Xiao 2017), are originally developed for solving type I problem only, then later extended 

to other problem types (Shalev-Shwartz and Zhang 2016, Lan and Zhou 2018) using the 

reduction technique. The idea is similar to those used in deterministic first order algorithms, 

see e.g., (Nesterov 2005, Devolder et al 2012). But augmentation with a constant quadratic 

term alters the objective function and the solution, causing a solution bias. To remove the 

solution bias, it is often needed to recenter the quadratic term by updating x or to reduce the 

quadratic constant μ according to a schedule using an inner-outer loop algorithm structure. 

Such indirect methods are often not as practical as the direct ones: to achieve the best 

convergence rates, the solution accuracy for the inner loop algorithm and the parameter 

scheduling both need to be controlled, which is achieved by estimating the optimal function 

value and/or an estimated distance to the solution x∗.

Our discussion has focused on randomized algorithms for deterministic, finite sum 

objective functions, as they are the most common model for image reconstruction. For 

special data-intensive applications, such as single pass PET reconstruction (Reader et al 

2002), it is possible that we would only see each data sample once. Variance reduction 

techniques assuming deterministic finite sum objective functions will not be applicable, 

and we have to resort to the classical stochastic gradient descent (SGD) algorithms (4.3). 

Such classical SGD algorithms can also benefit from Nesterov’s momentum technique 

(Devolder et al 2014, Kim et al 2014). For the composite nonsmooth convex problem of 

minx ϕ x = f x + g x , where f is L-smooth, and g is M Lipschitz, the accelerated stochastic 

approximation (AC-SA) algorithm (Lan 2012) amounts to replacing line 3 of algorithm 3.5 

by

xk + 1 = arg min
x

{g xk + f yk + γk ∇ϕ yk , x − xk + D x, xk }, (4.23)

where ∇ϕ is a generic (sub)gradient estimator for ϕ. Assuming ∇ϕ is unbiased, and has 

finite variance σ2, then with appropriate stepsize parameters, i.e., θk, γk, it is shown in (Lan 

2012) that AC-SA can achieve the convergence rate of O L
k2 + M + σ

k , which coincides with 

the lower bound dictated by complexity theory (Nemirovskij and Yudin 1983). Despite the 

fast rate of O 1
k2  from the acceleration for the smooth component f, the finite variance 
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of the gradient estimator σ  contributes to the slow convergence 1/ k on top of the 1/ k
convergence rate from the M-Lipschitz nonsmooth function g.

5. Convexity in nonconvex optimization

Nonconvex optimization is much more challenging than convex optimization. To obtain 

efficient and effective solutions, it is necessary to introduce structure to nonconvexity. In 

this context, convexity also plays important roles in nonconvex optimization. The nonconvex 

objective function often can be decomposed into components that can be either convex, 

nonconvex, smooth, or nonsmooth. The different combinations give rise to different models 

for nonconvex optimization.

In the following, we first introduce some basic definitions relevant for nonconvex 

optimization, some of which are generalizations from the convex to the nonconvex setting, 

then we discuss solution algorithms for two types of problems: convex optimization with 

weakly convex regularizers, and model-based nonconvex optimization. Weakly convex 

functions are nonconvex functions that can be ‘rectified’ by a strongly convex function. 

A prominent example is image denoising with weakly convex regularizers, where the whole 

objective function may remain convex despite the nonconvex regularizer. For model-based 

nonconvex optimization, we discuss composite objective functions of the form g x + ℎ Kx , 

where g is smooth, and ℎ can be either smooth, nonsmooth, convex, or nonconvex. The 

different problem models then lead to different solution algorithms.

5.1. Basic definitions

A smooth (nonconvex) function f with Lipschitz continuous gradient satisfies

∇f(x) − ∇f(y) ⩽ L x − y , (5.1)

where L > 0 is the Lipschitz constant of the gradient ∇f. From (Nesterov et al 2018, lemma 

1.2.3), (5.1) is equivalent to

− L
2 x − y 2 ⩽ f(x) − f(y) + ∇f(y), (x − y) ⩽ L

2 x − y 2
(5.2)

Notice that (5.2) coincides with (2.2) for a convex f on the upper bound; regarding the 

lower bound, a smooth convex f satisfies a tighter lower bound (0) than a nonconvex 

function −L ∥ x − y ∥2 /2 . Given (5.2), it can be shown that L
2 ∥ x ∥2 − f x  is convex22, 

and its gradient is simply Lx − ∇f x . This observation leads to the following statement: any 

smooth f with Lipschitz continuous gradient can be written as the difference of convex (DC) 

functions, i.e.

f(x) = f1(x) − f2(x) (5.3)

22Using the definition that a convex function is lower bounded by its linear approximation.
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where both f1 and f2 are convex. For f satisfying (5.2), we can always choose f1 = L
2 x 2

and f2 = L
2 ∥ x ∥2 − f x , which are both convex. Generically speaking, given the DC 

decomposition (5.3), if f1 is L-smooth, and f2 is l-smooth, then we have

− l
2 x − y 2 ⩽ f(x) − [f(y) + ∇f(y), (x − y) ] ⩽ L

2 x − y 2
(5.4)

Without loss of generality, we can always assume 0 < l ⩽ L (by setting L to be the larger 

one). Hence (5.4) can be regarded as a refined version of (5.2) (Themelis and Patrinos 2020). 

If f is convex, then we have l = 0, and L = Lf which is the gradient Lipschitz constant of 

f. If f is twice continuous differentiable, denote by ∇2f ≡ H the Hessian matrix, then we 

have L = max λmax H , λmin H , and l = λmin H . In the literature, such f is also designated 

as L-upper smooth, l-lower smooth, see e.g., (Allen-Zhu and Yuan 2016).

DC functions encompass a large class of nonconvex functions. Many popular nonconvex 

regularizers, such as the minimax concave penalty (MCP) (Zhang et al 2010), the 

smoothly clipped absolute deviation (SCAD) (Fan and Li 2001), the log prior log 1 + x /μ , 

the truncated l1 min{ x , L}, for some L > 0 , and the l1 − l2 ∥ x ∥1 − α ∥ x ∥2, for 

x ∈ Rn, 0 < α ⩽ 1) (Lou and Yan 2018), are all DC functions. See (Hartman et al 1959, 

Le Thi and Dinh 2018, de Oliveira 2020) for additional examples. In addition to smooth 

functions, DC functions include another important subclass, namely the weakly convex 

functions, that are characterized by

f(s) is σ weakly convex f(s) + σ′
2 s 2 is convex for σ′ ⩾ σ (5.5)

Among the DC examples that we cited, the truncated l1 and l1 − l2 are not weakly convex, 

while the remainders are.

The proximal mapping and the Moreau envelope continue to hold a prominent position for 

nonconvex analysis as well. Recall their definitions:

prox(μf)(t): = arg min
s

{f(s) + 1
2μ s − t 2}, μ > 0 (5.6)

eμf(t) = inf
s

{f(s) + 1
2μ s − t 2} (5.7)

From (Rockafellar and Wets 2009, theorem 1.25), let f :Rd − ∞, ∞  be a proper and 

closed function, and inff > − ∞. Then for every μ > 0, prox μf t  of (5.6) is nonempty and 

compact, and eμf t  is finite and continuous in x, μ .

Here we compare and contrast three cases:
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• If f is convex, the existence and uniqueness of prox μf t  for μ > 0 comes from 

the strong convexity of the objective in (5.6), and the Moreau envelope (5.7) is 

smooth with 1/μ-Lipschitz gradient.

• If f is a generic nonconvex function, the proximal mapping (5.6) can be multi-

valued, and the Moreau envelope is continuous but not necessarily smooth.

• If f is a σ-weakly convex, then for μ < σ−1, f s + 1/ 2μ ∥ s − t ∥2 is strongly 

convex, the minimization problem in (5.6) is strongly convex with a unique 

solution; the Moreau envelope is smooth with Lipschitz gradient. For μ > σ−1, 

the properties of prox μf  and eμf t  are similar to that of a generic nonconvex 

function.

Many nonconvex functions are simple in the sense that their proximal mapping (5.6) either 

exists in closed-form or is easily computable. We provide an example of the proximal 

mapping calculation (5.6) in appendix A.5, highlighting some peculiarities associated with 

nonconvexity.

For nonconvex minimization, as a global solution is in general out of the question, 

convergence is often characterized by critical (or stationary) points: the iterates xk  are 

such that xk x∗, where x∗ is a critical point of the objective function ϕ characterized 

by 0 ∈ ∂ϕ x∗ , and ∂ϕ x  is the limiting subdifferential of ϕ. For nonconvex functions, the 

limiting subdifferential is one among a few characterizations that extend the subdifferential 

from the convex to the nonconvex setting (Rockafellar and Wets 2009, chapter 8). It 

coincides with the (regular) subdifferential for convex functions.

5.2. Convex optimization with weakly convex regularizers

The Moreau envelope (5.7) provides a generic recipe for constructing 

nonconvex regularizers. Let ℏ x  be a Lipschitz continuous convex function, i.e., 

∥ ℏ x − ℏ y ∥ ⩽ Ω ∥ x − y ∥ for Ω > 0. And denote by eμℏ its Moreau envelope, which is 

convex and smooth with gradient Lipschitz constant 1/μ. It can be shown that (Nesterov 

2005)

eμℏ(x) ⩽ ℏ(x) ⩽ eμℏ(x) + μ
2 Ω2

(5.8)

In other words, eμℏ can be regarded as a smooth approximation of (the potentially 

nonsmooth) ℏ, and the approximation accuracy can be controlled by μ. Define

ℎ = ℏ(x) − eμℏ(x) (5.9)

then 0 ⩽ ℎ ⩽ μΩ2/2. Obviously, ℎ has a DC decomposition; moreover, ℎ is always weakly 

convex as the Moreau envelope eμℎ can be ‘rectified’ by a strongly convex function: 

−eμℏ x + σ
2 ∥ x ∥2 can be made convex by having σ > μ−1. As an example of such 

construction, if ℏ t = α t , then ℎ is the minimax concave penalty (MCP) (Ahn et al 2017, 

Selesnick et al 2020).
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For image denoising, the composite objective function takes the form of 

ϕ x = g x + λℎ Kx , where g is the ρ-strongly-convex data fitting term, λ > 0 is the penalty 

weight, and K is a linear operator that encourages transform domain sparsity. Using the DC 

construction of ℎ as in (5.9), we have

g(x) + λℎ(Kx) = g(x) + λ ℏ(Kx) − eμℏ(Kx) = g(x) − λeμℏ(Kx) + λℏ(Kx) (5.10)

As eμℏ K ⋅  is smooth with gradient Lipschitz constant ∥ K ∥2 / 2μ , if we choose the penalty 

weight λ such that 0 ⩽ λ ∥ K ∥2 /μ < ρ, then the strong convexity of the data fitting term 

can offset the weak convexity of ℎ K ⋅ . The objective function remains strongly convex, 

which can be handled by the convex optimization algorithms that we discussed in section 

3.1. For example, by splitting the objective according to (5.10), then use the proximal 

gradient descent if the proximal mapping of the composition ℏ K ⋅  is easy to calculate, if 

not then use the primal-dual or ADMM. In any of these approaches, as the (underlined) 

first term of (5.10) is smooth, it is typically replaced by its quadratic upper bound using 

(2.2). Due to its special structure, its gradient calculation can be conveniently obtained as 

∇g x − λKt∇eμℏ Kx , where

∇eμℏ(t) = t − s∗ /μ, s∗ = arg min
s

{ℏ(s) + 1
2μ s − t 2}

In other words, we do not need the explicit expression of the Moreau envelope for its 

gradient calculation; knowing the proximal mapping is sufficient. This shortcut becomes 

handy when the Moreau envelope does not have a closed form expression, see, e.g., (Xu and 

Noo 2020).

The above approach, of introducing a weakly convex regularizer and incorporating it into 

an overall convex optimization problem, heavily relies on the strong convexity of one 

component in the objective function. As such, this approach seems to be limited to image 

denoising with a small penalty weight λ. In applications such as image restoration, the 

data fitting term g ⋅  is composed with a linear operator A, the composition g Ax  may not 

be strongly convex due to the nonempty null space of A. This limitation can be partially 

addressed using the generalized Moreau envelope proposed in (Lanza et al 2019, Selesnick 

et al 2020). Consider the following problem model,23

ϕ(x): = g(Ax) + λR(x), g(Ax) = 1
2 Ax − b 2, R(x) = ℎ(Kx) − Mℎ

B(x) (5.11)

where ℎ ⋅  is a convex function, and the generalized Moreau envelope is defined by

Mℎ
B(x) = inf

y
{ℎ(Ky) + 1

2 x − y B
2 }, (5.12)

23This is a simplified model compared to that in (Lanza et al 2019). The interested readers should consult (Lanza et al 2019) for more 
details.
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The matrix B is a positive semidefinite matrix to be determined. If ker K ∩ ker B = ∅, then 

the inf of (5.12) is attained (Lanza et al 2019) and can be replaced by min. Under these 

conditions, it is straightforward to show that 1
2 ∥ x ∥B

2 − Mℎ
B x  is a convex function. This 

property will help to specify the matrix B such that the whole objective function ϕ x  (5.11) 

is convex. First, rewrite ϕ x  as

g(Ax) + λR(x) = 1
2 Ax − b 2 − λMℎ

B(x) + λℎ(Kx)

= 1
2 Ax − b 2 − λ

2 x B
2 + λ

2 x B
2 − λMℎ

B(x) + λℎ(Kx)
(5.13)

As the underlined term is convex, the whole objective is convex if

AtA − λB ≽ 0. (5.14)

Two strategies for choosing B were proposed in (Lanza et al 2019), one of which requires an 

eigenvalue decomposition of AtA. Once convexity is ensured, a number of first order convex 

algorithms can be applied to solve the minimization problem. Numerical studies in (Lanza et 

al 2019) showed good convergence properties and demonstrated the superior performance of 

nonconvex regularizers in image deblurring and inpainting applications.

Although theoretically appealing, a number of issues make this approach not ideal for image 

reconstruction with A being the forward projection operator. First, the quadratic data fitting 

term for image reconstruction often involves data-dependent statistical weights. In this 

case, the condition (5.14) should be replaced by Atdiag w A ≽ λB, where 0 ⩽ w ∈ Rp is the 

statistical weights. Since w is patient-dependent, performing an eigenvalue decomposition 

for each patient may not be feasible for the typical size of A in image reconstruction. 

Furthermore, the unconventional definition of the generalized Moreau envelope (5.12) 

together with the data-dependent B matrix complicates the associated minimization problem, 

which in (Lanza et al 2019) was solved using an ADMM subproblem solver. Such iterative 

subproblem solvers ‘unavoidably distort the efficiency and the complexity of the initial 

method.’ (Bolte et al 2018)

The two approaches discussed so far, with or without strong convexity in the objective, 

share the feature that they rely on an explicit DC decomposition of the weakly convex 

regularizer, which can be a limitation if such a decomposition is not readily available. There 

are situations where it is more convenient to work with a DC function without knowing its 

explicit decomposition. The approach in (Mollenhoff et al 2015) can be regarded as a step in 

this direction. It considers the same problem model as before,

ϕ(x) = g(x) + ℎ(Kx) (5.15)

where g is ρ-strongly convex, and ℎ is ω-weakly convex. The proposed algorithm in 

(Mollenhoff et al 2015) directly splits between the strongly convex g and the weakly convex 

ℎ, and avoids an explicit DC decomposition of ℎ and component-regrouping.
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The direct splitting in (Mollenhoff et al 2015) relies on a ‘primal only’ version 

(Strekalovskiy and Cremers 2014) of the PDHG algorithm (3.5), which originally was 

proposed for problems such as (5.15) in whicheach component g and ℎ is required to be 

convex. The PDHG algorithm proceeds by calculating the proximal mapping of g and ℎ∗ in 

an alternating manner, where ℎ∗ is the convex conjugate of ℎ. The primal only version of 

PDHG replaces the proximal mapping of ℎ∗ by that of ℎ using the Moreau identity (2.12). 

The resulting algorithm (5.16) is equivalent to the original PDHG when g and ℎ are both 

convex, and it is directly applicable to nonconvex problems.

zk + 1 = arg min
z

{ℎ(z) − zk, z + σ
2 z − Kxk

2} = prox(ℎ/σ)
zk + σKxk

σ (5.16a)

zk + 1 = zk + σ Kxk − zk + 1 (5.16b)

x+1 = arg max
x

{g x + Kx, zk + 1 + 1
2τ x − xk

2} (5.16c)

xk + 1 = xk + 1 + θ xk + 1 − xk (5.16d)

Note that the first two steps (5.16a) and (5.16b) are equivalent to (3.5a) of the PDHG, and 

the rest steps (5.16c) and (5.16c) are identical to that of PDHG. The constants σ, τ, θ are step 

size parameters to be determined to ensure convergence.

Assume ℎ is ω-weakly convex, and g is ρ-strongly convex, such that ρ > ω ∥ K ∥2. These 

conditions guarantee that ϕ x  of (5.15) is strongly convex. Denote by x∗ = arg minx ϕ x
the unique minimizer. It is shown in (Mollenhoff et al 2015) that if σ = 2ω, and 

στ ∥ K ∥2 ⩽ 1, θ ∈ 0, 1 xk of (5.16) converges to x∗ in an ergodic sense at a rate of 1/k. 

In other words, let x‾k = ∑i
k xi/k, then ∥ x‾k − x∗ ∥2 ⩽ C /k. When g is convex but not strongly 

convex, under additional assumptions, e.g., that ℎ is differentiable and ∇ℎ is uniformly 

bounded, it was shown that the sequence xk, zk, zk  remains bounded.

Note that as ℎ is ω-weakly convex, then setting σ > ω already guarantees the uniqueness of 

the solution to the subproblem (5.16a). However, as analyzed in (Mollenhoff et al 2015), 

the larger parameter size requirement σ = 2ω  is both necessary and sufficient to ensure 

convergence.

We notice that in terms of convergence rate, (5.16) is not optimal: as the objective is strongly 

convex, the optimal convergence rate for this problem class is ϕ xk − ϕ x∗ ∼ O 1/k2 . If an 

explicit DC decomposition of ℎ is available, the optimal rate can be achieved by regrouping 

and splitting between convex components, and applying the optimal first order algorithms. 

However, what makes (5.16) interesting is that it directly splits between convex and 

nonconvex component functions, and may be applied to truly nonconvex problems. Indeed, 
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as demonstrated by numerical studies (Mollenhoff et al 2015), the practical convergence of 

(5.16) on nonconvex problems goes beyond the theoretical guarantees.

5.3. Model based nonconvex optimization

We consider the following nonconvex optimization problem

min
x ∈ Rd

ϕ(x), ϕ(x) = f(x) + ℎ(Kx)
(5.17)

where f x  is nonconvex and smooth with Lipschitz continuous gradient, and ℎ is potentially 

nonsmooth, nonconvex, but simple in the sense that its proximal mapping (5.6) is easily 

computable.

We discuss solution algorithms for two types of the objective function (5.17): (1) K = I, and 

(2) K ≠ I. Many nonconvex algorithms have been developed to solve type 1 problems; for 

the special case that ℎ is convex and f is smooth nonconvex, proximal gradient descent type 

algorithms date back to at least (Fukushima and Mine 1981). When the linear operator K is 

present, i.e., for type 2 problems, if the nonconvex function ℎ is smooth, then a large number 

of algorithms are available, in the form of both gradient descent type and ADMM; If ℎ is 

nonsmooth, algorithm options become more model dependent. We will discuss the available 

algorithm options under different assumptions for the nonsmooth ℎ and the linear operator 

K.

5.3.1. Type 1: ϕ = f + h, f nonconvex smooth, h simple, K = I—The classical 

proximal gradient algorithm for nonconvex optimization (Nesterov 2013, Teboulle 2018) 

takes the following form

xk + 1 = arg min
x

{ℎ(x) + f xk + ∇f xk , x − xk + 1
2γk

x − xk
2} (5.18)

If ℎ is absent, (5.18) reduces to the gradient descent algorithm for smooth nonconvex 

minimization. If ℎ is convex, the objective function in (5.18) is strongly convex, hence the 

sequence xk  is uniquely defined. If xk  is bounded, then convergence to a critical point 

of ϕ can be ensured by setting the step size γk, such that γk = γ ⩽ 1/Lf, Lf being the gradient 

Lipschitz constant of f (Attouch and Bolte 2009, Attouch et al 2013, Bolte et al 2014). Note 

that boundedness of xk can be guaranteed by the boundedness of the level set of ϕ, which in 

turn can be ensured if both f and ℎ are coercive, or if ℎ is coercive, and inff > − ∞.

Generalizations of the basic algorithm (5.18) have been pursued in different directions. We 

summarize these developments into two groups: (1) ℎ is convex, and (2) ℎ is nonconvex.

Continuing the case that ℎ is convex, the Inertial Proximal algorithm for Nonconvex 

Optimization (iPiano) (Ochs et al 2014) incorporates an inertial term into (5.18). A generic 

version of iPiano is the following:
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yk = xk + βk xk − xk − 1 (5.19a)

xk + 1 = arg min
x

{ℎ(x) + f xk + ∇f xk , x − yk + 1
2γk

x − yk
2} (5.19b)

Compared with (5.18), an additional ‘inertial term’, βk xk − xk − 1 , is incorporated into the 

update equation of xk + 1. If βk = 0 for all k, then (5.19) is identical to (5.18). Numerical 

examples in (Ochs et al 2014) show that by setting βk > 0, the inertial term may help 

overcome spurious stationary points and reach a lower objective value.

Various step size strategies are proposed for (5.19) to ensure convergence. The simplest 

case, the constant step size setting, requires that βk = β ∈ 0, 1 , and γk = γ < 2 1 − β /Lf. 

With such parameter settings, if the objective ϕ is coercive, then the objective function 

ϕ xk  converges, the sequence xk  from (5.19) remains bounded, and the whole sequence 

xk  converges to a critical point of ϕ .24 Furthermore, a convergence rate, measured by 

μK ≜ min0 ⩽ k ⩽ K ∥ xk − xk − 1 ∥2, is shown to be μK ∼ O 1/K  (Ochs et al 2014).

The update equations of (5.19) looks like FISTA (which additionally requires f to be 

convex). Indeed, a FISTA-like algorithm, called proximal gradient with extrapolation (PGe) 

(Wen et al 2017), has been investigated for the same class of objective functions as iPiano. 

The update equations of PGe are given in (5.20).

yk = xk + βk xk − xk − 1 (5.20a)

xk + 1 = arg min
x

{ℎ(x) + f xk + ∇f yk , x − yk + 1
2γk

x − yk
2} (5.20b)

Comparing (5.20) with (5.19), the only apparent difference is in (5.20b): the gradient of f is 

evaluated at the extrapolated point yk, while in (5.19b) the gradient is evaluated at the current 

estimate xk.

The extrapolation parameter βk (5.20a) depends on the refined gradient continuous property 

of (5.4). Let f satisfies (5.4) for lf and Lf. It is shown (Wen et al 2017) that if γk = 1/Lf

and the extrapolation parameter βk is such that 0 ⩽ βk ⩽ β < Lf
Lf + lf

, then the sequence xk of 

(5.20) is bounded if the objective ϕ has bounded lower level set; with an additional (local) 

error bound assumption (Wen et al 2017), Assumption 3.1,25 the objective ϕ xk  is R-linearly 

convergent, and the sequence xk from PGe (5.20) is also R-linearly convergent to a critical 

point of ϕ.

24Convergence of the whole sequence requires that the objective function satisfies the Kurdyka-Lojasiewicz (KL) property. See 
section 5.4.
25Loosely speaking, this assumption states that if successive iterates from (5.20b) are ‘close,’ then it is guaranteed that the iterates are 
‘close’ to the set of stationary points.
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When f is convex, then lf = 0, and the upper bound of βk becomes Lf
Lf + lf

= 1, which is 

satisfied by the parameter settings of FISTA. The paper (Wen et al 2017) subsequently 

concludes that FISTA with the fixed restart scheme (e.g., βk = k/ k + 3  for k = 0, ⋯, K − 1, 

with a fixed K so that βk ⩽ β < 1 holds) is also R-linearly convergent. Note that this is a local 

convergence result; the results we previously cited, such as O 1/k2  for the objective (Beck 

and Teboulle 2009) or convergence of the iterates (Chambolle 2015), are global.

Now we consider generalization of (5.18) to the case where ℎ is nonconvex. First, we 

observe that the proximal mapping of ℎ may be multi-valued, which prompts the following 

modification of (5.18)

xk + 1 ∈ arg min
x

{ℎ(x) + f xk + ∇f xk , x − xk + 1
2γk

x − xk
2} (5.21)

where the only change is that xk + 1 is allowed to be any one among the set of minimizers 

of prox γkℎ 26 Another difference is that to ensure convergence, the step size parameters 

need to be smaller, i.e., γk is chosen such that 0 < γ < γk < γ‾ < 1/Lf. On the other hand, for ℎ
convex in (5.18), the upper bound of the step size γ is indeed 2/Lf(Bolte et al 2014). With the 

smaller step size specification, global convergence of {xk} to a critical point of the objective 

ϕ is established (Attouch et al 2013, Bolte et al 2014) if (1) the sequence xk  is bounded 

and (2) the function ϕ satisfies the Kurdyka-Lojasiewicz (KL) property, both of which can 

be verified for typical objective functions in imaging problems.

As we discussed in section 5.1, many nonconvex functions have a DC decomposition 

Let ℎ = ℎ1 − ℎ2, where both ℎ1 and ℎ2 are convex. It is often the case that the proximal 

mapping of ℎ1 is easier to evaluate than that of ℎ. Such examples include the l1 − l2 potential 

function (Lou and Yan 2018), MCP (Zhang et al 2010), SCAD (Fan and Li 2001), and 

the log prior log 1 + x /ϵ . In all but the first example, the component ℎ2 is smooth with 

Lipschitz continuous gradient. For such nonsmooth nonconvex ℎ, the objective function can 

be rewritten as:

ϕ(x) = f(x) + ℎ(x) = f(x) − ℎ2(x) + ℎ1(x) (5.22)

which is in the form of a smooth nonconvex component f x − ℎ2 x  plus a nonsmooth 

convex component ℎ1. Then the basic proximal gradient algorithm (5.18), and the inertial/

momentum variants, iPiano (5.19) or PGe (5.20), are all applicable for solving (5.22) using a 

splitting of ϕ according to (5.22), i.e., f − ℎ2 and ℎ1.

This idea we just outlined is a special case of the investigation undertaken in (Wen et al 

2018), which studied the convergence of a variant of PGe (5.20), called pDCAe (proximal 

difference of convex algorithm with extrapolation), under the condition that f is smooth 

CCP and the less restrictive condition that ∇ℎ2 is locally Lipschitz continuous. Convergence 

26Such ‘under-specification’ of an update scheme also appears in the 3-block ADMM for convex optimization. cf algorithm 3.3.
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and convergence rate were established under standard assumptions such as bounded level-set 

of ϕ, and that ϕ is a KL function.

The DC-based splitting of (5.22) may have some advantages in terms of the step size 

parameter compared to a direct splitting according to f and ℎ as in (5.21). When both ∇f
and ∇ℎ2 are globally Lipschitz continuous, the step size for the splitting (5.22) depends on 

the Lipschitz constant of ∇f − ∇ℎ2 which is max Lℎ2, Lf .27 The step size for implementing 

(5.22), using (5.18) or its variants, can approach 2/max Lf, Lℎ2 , which is larger than the step 

size of using (5.21) 1/Lf if Lℎ2 < 2Lf. The larger step size combined with the momentum/

inertial options may improve the empirical convergence.

5.3.2. Type 2: ϕ = f x + h K . , f nonconvex smooth, h simple—The literature 

becomes more model-specific for type 2 problems where K is a nontrivial linear mapping, 

and even more so when ℎ is both nonconvex and nonsmooth. If ℎ is smooth, we could 

always group it with the smooth component f, and apply gradient descent algorithms (5.18) 

for nonconvex smooth minimization. Such regrouping may increase the gradient Lipschitz 

constant, which reduces the step size parameter. Therefore it can be computationally 

advantageous to split the objective function and treat each component separately even when 

simple gradient descent algorithm works. Below we discuss algorithm options for type 2 

problems, separating the cases that ℎ is smooth or nonsmooth.

If ℎ is smooth, many nonconvex variants of ADMM (Li and Pong 2015, Hong et al 2016, 

Guo et al 2017, Liu et al 2019, Wang et al 2019) are potentially applicable. As is typical 

for applying ADMM, we start by reformulating the optimization problem into the following 

constrained form

min
x

f(x) + ℎ(z)  where z = Kx (5.23)

The augmented Lagrangian is given by

Lρ(x, z, λ) = f(x) + ℎ(z) + λ, z − Kx + ρ
2 z − Kx 2, ρ > 0

ADMM then proceeds by updating x, z, and λ with respect to the Lagrangian. It is shown 

(Hong et al 2016, Guo et al 2017, Liu et al 2019) that if the penalty parameter ρ is 

large enough,28 then the iterates from ADMM converge to a critical point of the objective 

function. The different papers (Hong et al 2016, Guo et al 2017, Liu et al 2019) considered 

different problem models, all including (5.23) as a special case, some works, e.g., (Li and 

Pong 2015, Liu et al 2019), also considered linearized and/or proximal version to simplify 

the subproblems. The lower bound of eligible penalties ρ were provided depending on the 

problem model.

27By assuming that f and ℎ2 are both convex, cf (5.3), (5.4).
28For convex problems, the penalty weight ρ is only required to be positive; the value of ρ may affect convergence rate. For 
nonconvex problems, there is a lower bound ρ0 such that ρ ⩾ ρ0 is needed to ensure convergence.
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One condition required by convergence in (Hong et al 2016, Guo et al 2017, Liu et al 

2019) is that the linear operator K is of full column-rank. When K is the conventional 

finite-difference operator for 2D and 3D images, K has a null space consisting of constant 

images, hence is not full column rank (nor full row rank). This condition can be fulfilled 

using a slightly modified definition of the finite difference operator K as discussed in (Liu 

et al 2021a). Alternatively, if the data fitting term f x  contains another linear operator (e.g., 

the forward projection operator) as in f Ax + ℎ Kx , then the problem can be reformulated 

as

min
z1, z2, x

f z1 + ℎ z2 ,   where Ax = z1, Kx = z2

If the stacked matrix At ∣ Kt t
 has full column rank, which is equivalent to 

∅ = Ker A ∩ Ker K , then the ADMM from (Hong et al 2016, Guo et al 2017, Liu et al 

2019) can be applied with the conventional definition of the finite difference matrix.

In addition to nonconvex ADMM, block coordinate descent algorithms could be applied 

to type 2 problems with smooth ℎ K ⋅ , provided that ℎ is the Moreau envelope (5.7) of 

another nonconvex nonsmooth function ℏ. In this case, the objective can be rewritten as

f(x) + ℎ(Kx), ℎ(z) = min
v

{ 1
2μ z − v 2 + ℏ(v)} (5.24)

where ℏ is nonconvex, possibly nonsmooth, and μ > 0 is a parameter characterizing the 

‘closeness’ between ℎ and ℏ (see also (5.8) for the case when ℏ is convex). Such ‘half-

quadratic’ expressions (Nikolova and Ng 2005, Nikolova and Chan 2007) are known for 

a large number of nonconvex functions, see, e.g., (Wang et al 2008). If in addition, ℎ
is separable, a property that we exploited in (4.7) when using a stochastic primal dual 

algorithm, then ℎ can be further decomposed as

ℎ(Kx) =
i

ℎi Kix ℎi(u) = min
v

{ 1
2μi

u − v 2 + ℏi(v)} (5.25)

The original problem is converted to the following

min
x, {vi}

f(x) +
i

1
2μi

Kix − vi
2 +

i

ℏi vi (5.26)

where the unknowns are x and the auxiliary variables vi  from the half-quadratic form. The 

objective function (5.26) consists of a smooth nonconvex component (the underlined term) 

and a possibly nonsmooth, nonconvex, block separable component. This special structure 

makes it amenable to the block coordinate descent (BCD) algorithms adapted to nonconvex 

problems, such as PALM (Bolte et al 2014) or its inertial version (Pock and Sabach 2016), 

and the BCD algorithms (Xu and Yin 2013, 2017). As a simple 2-block example, these BCD 

algorithms work with the following problem model:
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H x1, x2 + r1 x1 + r2 x2

where r1 and r2 are proper and closed, and H ⋅ , ⋅  is such that for a fixed x2, H ⋅ , x2  is 

smooth with Lipschitz gradient constant L1 x2 , and likewise for any fixed x1, H x1, ⋅  has a 

gradient Lipschitz constant L2 x1 . PALM proceeds by applying proximal gradient descent 

and updating the block variables in an alternating manner:

x1
k + 1 ∈ arg min

x1
{r1 x1 + ∇x1H x1

k, x2
k , x1 − x1

k + γ1L1 x2
k

2 x1 − x1
k 2}

x2
k + 1 ∈ arg min

x2
{r2 x2 + ∇x2H x1

k + 1, x2
k , x2 − x2

k + γ2L2 x1
k + 1

2 x2 − x2
k 2}

where γ1, 2 > 1 are the step size parameters. Such a scheme can also be extended to a 

multi-block setting. If the regularizers r1, 2 are convex or if the smooth components H are 

multi-convex, i.e., convex with respect to each block unknown xi but not jointly, then larger 

step sizes and larger extrapolation parameters can be used (Bolte et al 2014, Xu and Yin 

2017).

The half-quadratic form (5.24) also sheds light on a possible approach to handle nonsmooth 

nonconvex composite regularizers. Intuitively speaking, the smaller the constant μ in (5.24), 

the closer ℎμ ≡ ℎ approximates ℏ .29 (Rockafellar and Wets 2009), theorem 1.25. At a fixed 

μ, the objective f ⋅ + ℎμ K ⋅  is differentiable with Lipschitz continuous gradient, so that 

gradient descent can be applied to reduce the objective; as μ 0, the objective approaches 

f ⋅ + ℏ K ⋅  which is nonconvex and nonsmooth. If in conjunction with gradient descent 

the parameter μ decreases as a function of iteration, it is reasonable to expect that the 

solution approaches that of the nonsmooth objective f ⋅ + ℏ K ⋅ . Such an idea of applying 

smooth minimization for solving nonsmooth problems has been studied for convex problems 

(Nesterov 2005, Tran-Dinh 2019, Xu and Noo 2019). For nonconvex minimization, the 

same idea was investigated in (Bohm and Wright 2021) for dealing with nonsmooth, 

weakly convex, composite regularizers ℏ K ⋅ . The proposed variable smoothing algorithm 

combines gradient descent with an iteration-dependent, decreasing sequence of smoothing 

parameters μk as the following:

xk + 1 = xk − 1
Lk

∇f xk + Kt∇ℎμk Kxk , μk = 1
2ρk−1/3, k = 1, 2, ⋯ (5.27)

where Lk is the iteration dependent gradient Lipschitz constant of f ⋅ + ℎμ K ⋅ , and ρ is 

weak convexity parameter of ℏ v , i.e., ℏ v + ρ ∥ v ∥2 /2 is convex. Note that the gradient 

evaluation ℎμ can be obtained as

29Here ℎμ ≡ ℎ, the subscript μ makes the dependency on μ explicit.
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∇ℎμ(z) = z − v∗ /μ, v∗ = arg min
v

{ 1
2μ z − v 2 + ℏ(v)} (5.28)

Since ℏ v  is ρ-weakly convex, v∗ is uniquely defined in (5.28) for μ < ρ−1, a condition 

satisfied for μk for all k (5.27). Assuming that ℏ v  is Lipschitz continuous, convergence and 

convergence rate of (5.27) and an improved epoch-wise version were established (Bohm and 

Wright 2021) for the criteria of the gradient suboptimality and a feasibility condition.

5.4. Discussion

As we mentioned before, the literature becomes more model-specific for nonconvex, 

nonsmooth composite problems. For ADMM type algorithms we only focused on those 

that work with smooth nonconvex regularizers. There is in fact a large number of nonconvex 

ADMM algorithms that work with nonsmooth, nonconvex composite ℎ K ⋅ . For example, 

(Bot et al 2019) considered the following problem model

min
x, y

f(x, y) + ℎ(Kx) + g(y) (5.29)

where the assumptions on ℎ and K are as before, and f is differentiable with Lipschitz 

continuous gradient, and g is similar to ℎ, which can be nonconvex, nonsmooth, and 

simple. This problem model can be regarded as a generalization of PALM (Bolte et al 

2014), in which one of the proximable term ℎ now is further composed with a linear 

operator K. It also includes our type 2 problem as a special case, i.e., when the unknown 

y and g are absent. A full-splitting, ADMM algorithm was proposed in (Bot et al 2019), 

exploiting the proximal mapping of g, ℎ, and the linear operator K, and the gradient ∇f x, y , 

separately. The convergence of the proposed algorithm requires that K is full row rank 

(surjective), a common assumption shared by other ADMM algorithms for dealing with 

nonsmooth composite functions, see e.g., (Li and Pong 2015, Sun et al 2019). If K is the 

finite-difference operator for a 1-D signal, then K is full row rank (Willms 2008). For 2-D 

or 3-D problems, K is not full row-rank; this issue was circumvented using a relaxation 

in (Sun et al 2019). There are also specialized ADMM algorithms (You et al 2019, Liu et 

al 2021a) that work with specific nonconvex nonsmooth composite regularizers and/or data 

fitting terms The paper (Liu et al 2019) compiled a fairly comprehensive list of different 

ADMM algorithm, with their specific problem models and convergence requirements.

We encountered some functions that have a difference of convex (DC) decomposition, 

e.g., all differentiable functions with Lipschitz continuous gradients are DC Moreover, 

all multivariate polynomials are DC functions (Bačák and Borwein 2011), and many 

nonsmooth functions are continuously to be discovered to have a DC decomposition 

(Nouiehed et al 2019). The pervasiveness of DC functions make DC programming and 

difference-of-convex algorithms (DCA) an important subfield in nonconvex programming, 

for which tools from convex optimization are available for algorithm design and analysis. 

As a simplest example, consider min
x

f1(x) − f2(x), where f1, f2 are both convex. A DCA 

starts by rewriting f2 using its conjugate function as f2(x) = max
y

x, y − f2
∗(y). The objective 
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is then augmented to min
x, y

f1(x) − x, y + f2
∗(y). The DCA then minimizes with respect to x

and y in an alternating manner. As minimization with respect to y at xk for iteration k is 

equivalent to setting y ∈ ∂f2 xk , DCA is intimately related to iterative linearization (Candes 

et al 2008, Ochs et al 2015), majorization-minimization (Hunter and Lange 2000, 2004), 

and the convex-concave procedure (Yuille and Rangarajan 2003). Traditionally, DCAs often 

rely on iterative subproblem solvers from convex programming, which makes them not 

‘fully splitting.’ More recent DCAs incorporate elements such as proximal gradient mapping 

so that the subproblems can have closed-form solutions (Wen et al 2018, Banert and Bot 

2019). DCAs are applicable to a diverse array of nonconvex problems, including sparse 

optimization (Gotoh et al 2018) and compressed sensing (Zhang and Xin 2018) which 

overlap with inverse problems in image. Interested readers are encouraged to consult these 

state-of-the art developments (Le Thi and Dinh 2018, de Oliveira 2020).

For nonconvex minimization problems, a generic recipe for convergence proofs can be found 

in (Attouch et al 2013, Bolte et al 2014, Teboulle 2018). Consider the problem: min F x , 

and suppose an algorithm generates iterates xk , for k = 1, ⋯. To prove convergence of xk to 

a critical point of F , the recipe amounts to (1) proving subsequence convergence, (2) proving 

the whole sequence convergence. The first step depends on the specific algorithm structure 

and can be established via a few conditions on the sequence xk  (sufficient descent, 

subgradient bound, and limiting continuity) (Attouch et al 2013). The second step, verifying 

the whole sequence convergence, requires an additional assumption on the objective F , and 

is independent of the specific algorithm. The additional assumption is that F  satisfies the 

(nonsmooth) Kurdyka-Lojasiewicz (KL) property, which characterizes the ‘sharpness’ of F
at a critical point x∗ through a reparametrization function, also known as a disingularization 

function. The exponent of the reparametrization function, i.e., the Lojasiewicz exponent, 

leads to a convergence rate estimate for xk (Attouch and Bolte 2009, Attouch et al 2010).

We only discussed deterministic algorithms for nonconvex nonsmooth minimization. Driven 

by applications in deep neural networks, stochastic algorithms for nonconvex nonsmooth 

optimization are undergoing tremendous growth. The problem model in these developments 

mostly focuses on type I problems of section 5.3, which are potentially applicable to 

nonconvex minimization with simple nonsmooth regularizers. The developments themselves 

are still at an early stage; their practical impact, especially in imaging applications, is yet to 

be investigated. The recent publications (Reddi et al 2016, Fang et al 2018, Lan and Yang 

2019, Pham et al 2020, Tran-Dinh et al 2021), and the references therein, should be a good 

starting point to gain more in-depth knowledge about the latest development.

6. Synergistic integration of convexity, image reconstruction, and DL

The previous sections focused on first order (non)convex optimization algorithms that 

serve as the backbone of many model-based image reconstruction (MBIR) methods for 

CT, MRI, PET, and SPECT. Over the past few years, many of these MBIR methods 

have been integrated with DL, the most notable30 being the framework of variational 

networks (VN) (Hammernik et al 2018). In the VN framework, the overall reconstruction 

pipeline has a recurrent form that resembles an iterative algorithm, except that learnable 
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CNNs replace the regularizers in the MBIR objective function. In a broader context, DL 

has come to interact with other parts of MBIR as well, including data acquisition and 

the hyperparameters (for the regularizers). During the same time, the machine learning 

community has seen active research in embedding convex optimization layers within a DL 

network, for structured or interpretable predictions, or for improved data efficiency. In a 

nutshell, a convex optimization layer encapsulates a convex optimization problem (Amos 

2019): the forward pass solves a convex optimization problem for given input data; end-

to-end learning through convex optimization layers require backpropagating the gradient 

information from the solution, argmin, to the input data. In the following, we discuss these 

recent research trends of (1) embedding CNN modules as part of the MBIR reconstruction 

pipeline, and (2) embedding convex optimization modules as part of the DL pipeline, and the 

associated imaging applications.

6.1. Embedding CNN within MBIR pipeline

A weakness of the conventional MBIR methods with our prototype objective function (3.22) 

is that the regularizer (3.23), which encodes sparsity in a transform domain, may be overly 

simplified and unable to capture the salient features of the complex human anatomy. This 

has prompted more sophisticated regularizer designs that adapt better to the local anatomy 

(Bredies et al 2010, Holt 2014, Rigie & La Rivière 2015, Xu and Noo 2020). Despite 

their sophistication, such hand-crafted sparsifying transforms are often outperformed by the 

data-driven approaches that learn a sparsifying transform using dictionaries (Xu et al 2012), 

the field of experts models (Chen et al 2014), or convolutional codes (Bao et al 2019). These 

learned transform-domain sparsity can be regarded as predecessors of CNN-parameterized 

regularizers.

The framework of VN borrows ideas from first order, splitting-based algorithms in section 2, 

so that the reconstruction pipeline resembles the recurrent structure of first order algorithms. 

The reconstruction pipeline retains the module for data-consistency so as to benefit from the 

human knowledge of the underlying imaging physics; on the other hand, the weakness 

of hand-crafted regularizers is overcome by CNN-parameterized regularizers. In terms 

of implementation (figure 1), the VN approach unrolls an iterative algorithm to a fixed 

number of iterations, each populated by the recurrent module of data fitting + regularization/

denoising. The whole reconstruction pipeline can be trained in an end-to-end supervised 

manner in a deep learning library (DLL).

Many of the first order algorithms that we discussed are now enhanced by CNN using 

unrolling and reincarnated to learning based methods. For example, FISTA-net (Xiang et al 

2021), ADMM-net (Yang et al 2016), learned primal-dual reconstruction (Adler and Öktem 

2018), iPiano-net (Su and Lian 2020), SGD-net (Liu et al 2021b), and many others (Gupta et 

al 2018) are obtained in this manner based on the namesake first order algorithms.

Variational networks lead to more interpretable network architectures, which is a welcoming 

departure from the mysterious black-box nature of DL solutions (Zhu et al 2018, Häggström 

30Here we focus on integration of DL and MBIR. DL can also be integrated with analytic reconstruction, e.g., for sinogram 
preprocessing (Ghani and Karl 2018, Lee et al 2018) or learning short scan weights (Würfl et al 2018).
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et al 2019). On the other hand, the name ‘variational networks’ can be misleading. With 

the iteration-dependent CNN parameters (figure 1(b)), the connection between VN and the 

iterative algorithm from which it is derived is broken. It is unclear if the solution (at 

inference time) solves a variational problem (Schonlieb 2019). In terms of solution stability, 

both VN and other black-box DL methods exhibit discontinuity with respect to the data 

(Antun et al 2020).

In addition to the instability issues, currently these unrolling-based methods have difficulty 

for 3D reconstruction due to the GPU memory requirement for CNN training. Here 

the memory requirement refers to the combined memory of CNN parameters plus 

the intermediate feature maps; both need to reside in the GPU for efficient gradient 

backpropagation. The memory issue could be alleviated using a greedy (iteration-by-

iteration) training strategy (Wu et al 2019, Lim et al 2020, Corda-D’ncan et al 2021) instead 

of end-to-end training. Another strategy that removes the intermediate feature maps from 

the GPU memory is proposed in (Kellman et al 2020), which uses reverse recalculation 

that recalculates, in a layer-wise (i.e., per iteration) backward manner, the layer input 

from the layer output. The same paper (Kellman et al 2020) also discussed other memory 

saving strategies for gradient backpropagation. For example, as the reverse recalculation of 

(Kellman et al 2020) is approximate, it should be combined with forward checkpointing if 

accumulation of numerical errors occurs.

The VN approach replaces the regularizer in the MBIR objective function by a CNN. A 

different approach, shown in figure 2, that embeds a CNN module within the MBIR pipeline 

is to use a CNN as parameterization of the unknown image x itself (Gong et al 2018a, 

2018b). More specifically, x is constrained to be the output of a CNN, x = CNNθ z . If the 

CNN is pretrained to be a denoising module, its output x naturally suppresses noise and 

encourages smooth image formation which is reasonable for PET reconstruction (Gong et 

al 2018a). With a pretrained CNN, the reconstruction problem is formulated as: min
x, y

f(Ax; y), 

where x = CNNθ z , and A is the forward projection matrix, y is the projection data, f
modeling the data consistency which is the negative Poisson log-likelihood. The constrained 

minimization problem is then solved by ADMM, alternatingly minimizing two subproblems: 

(a) updating x which is a typical reconstruction problem, (b) updating the input to the 

CNN, z, with the aid of a DLL’s automatic differentiation capability. A variation of this 

approach is to update the CNN parameters θ (hence its output x) while holding the input z
fixed, which can be the same patient’s MR or CT image. In this case, the CNN learns to 

transform a patient’s MR or CT image to the PET image in a self-supervised manner guided 

by the data consistency term (Gong et al 2018b).

A second area where CNNs can potentially help MBIR is hyperparameter optimization. In 

the MBIR objective function, the regularizers, either learned or hand-crafted, are combined 

with the data fitting term through some weighting coefficients, aka the hyperparameters. 

Hyperparameter tuning is a critical and challenging issue: critical due to its direct impact 

on the solution quality; challenging because the relationship between image quality and 

the hyperparameters is qualitatively understood but quantitatively not well characterized. 

Currently hyperparameter tuning mostly relies on trial and error or grid search. These 
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strategies are inefficient and limit the hyperparameters to a small number (Abdalah et al 

2013). Ideally, the hyperparameters should adapt tothe local image content. That is, the 

hyperparameters should be spatially variant and the number of hyperparameters is on the 

same scale as the image size. Grid search or trial and error strategies are infeasible due to the 

size of the search space.

For generic hyperparameter tuning, a novel parameter tuning policy network (PTPN) 

was proposed (Shen et al 2018) that can adjust spatially variant hyperparameters in an 

automated manner. PTPN tries to imitate a human observer’s intuition about hyperparameter 

adjustment: if the image is too blurry, then try less smoothing by reducing the 

hyperparameters; if the image is too noisy, then try the opposite. In PTPN (Shen et al 2018), 

such intuition was learned using the formalism of reinforcement learning (Sutton and Barto 

2018), specifically through a deep Q-network (Mnih et al 2015), that generates a discretized 

increment to the current hyperparameter given an image patch. Implementation-wise, PTPN 

runs outside of an inner loop that performs image reconstruction till convergence with the 

current hyperparameters, then image patches are presented to PTPN to see if adjustments are 

needed, and if so, rerun the inner loop using the newly adjusted hyperparameters. And the 

process continues. As such, PTPN indeed imitates and automates the human tuning process. 

However, this imitation is computationally costly as each new test image may need multiple 

iterations of PTPN tuning, each of which involves running an inner loop reconstruction till 

convergence.

Another application of reinforcement learning for hyperparameter selection was proposed 

in (Wei et al 2020) that specifically works with a plug-and-play (PnP) MBIR combined 

with ADMM. The learned parameters consists of (a) a probabilistic 0-1 trigger that signals 

termination of the iterations, and (b) sets of scalars in the form of σk, μk , where k is the 

iteration number, and σk and μk are respectively the prior strength for the PnP module and 

the penalty parameter in the augmented Lagrangian of the ADMM. Unlike PTPN that works 

with the converged solution of an iterative algorithm, (Wei et al 2020) directly works with 

the intermediate results; this plus the mechanism that triggers termination may lead to an 

overall more efficient parameter tuning strategy.

The above two approaches implement a hyperparameter tuning strategy in the sense that 

both involve dynamic, iteration-dependent, adjustment of the hyperparameters at inference 

time. Neither strategy learns a direct functional relationship that maps the patient data 

(or a preliminary reconstruction) to the desirable hyperparameters. An explicit functional 

relationship may be too complicated, but the power of CNN is exactly to approximate 

complicated functional mappings. The hyperparameter learning concept of (Xu and Noo 

2021) aims to directly learn a CNN-parameterized functional mapping between the input and 

the desirable hyperparameters (figure 3). The training architecture consists of two modules 

connected in serial: (1) a CNN module that maps the patient data to the hyperparameters; 

(2) an image reconstruction module (e.g. MBIR or sinogram smoothing + FBP) that 

takes the hyperparameters to generate the reconstructed image. Training is done in an 

end-to-end supervised manner with the ground truth images as training labels. At inference 

time, the CNN module and the MBIR module can be detached: the hyperparameters are 
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generated by running the patient’s data in a feedforward manner through the CNN; the actual 

reconstruction can be performed separately outside of a DLL.

In addition to hyperparameter learning and regularizer design, a third area where DL has 

entered the MBIR pipeline is data acquisition itself, i.e., to learn a system matrix.

Most works on system matrix or sampling pattern learning originated in MR and 

ultrasound (Milletari et al 2019), where there is more flexibility in data acquisition patterns. 

More recently, learning-based trajectory optimization has also emerged for advanced 

interventional C-arm CT systems (Zaech et al 2019). Regardless of modalities, system 

matrix learning faces a few common issues that affect the learning strategy:

i. Whether it is parameter-free learning or parameterized learning. Parameter-free 

learning (Stayman and Siewerdsen 2013, Gözcü et al 2018) often refers to the 

scenario where there is a finite set of candidate sampling patterns, and the task 

is to choose a subset in a certain optimal manner. Due to the combinatorial 

nature of the subset selection problem, the optimal subset is often obtained 

in a greedy, incremental, manner, choosing the next candidate based on the 

current candidates until a performance criterion is achieved, or a scan time 

budget is exhausted. On the other hand, it may be possible to parameterize the 

sampling pattern and optimize with respect to these parameters. Then continuous 

optimization algorithms, e.g., gradient descent, can be applied (Aggarwal and 

Jacob 2020).

ii. What is the criterion for an optimal sampling scheme. Most approaches for 

sampling pattern learning include a reconstruction operator in the learning 

pipeline and perform supervised learning with known ground truth images. In 

this case, the criterion for optimality is simple: using a loss function to measure 

the discrepancy between the ground truth and the reconstruction. Alternatively, 

if a surrogate image quality measure, parameterized by the sampling pattern, is 

available, it is possible to directly learn to predict the surrogate measure using a 

regression network (Thies et al 2020).

iii. Whether the clinical task requires online or offline learning. Online or active 

learning (Zaech et al 2019, Zhang et al 2019) aims to predict the next sampling 

position given the past sampling history; offline learning is to prescribe the 

whole sampling scheme before the acquisition starts. For some real time 

acquisitions, online learning may be the only option. However, if a preview or 

a fast scan acquiring scout views is possible, then they can be used to plan an 

entire trajectory before acquisition starts.

iv. Whether system matrix learning is performed in isolation or in conjunction 

with reconstruction learning. Learning a system matrix can be performed for 

a fixed reconstruction algorithm, be it direct inversion, an MBIR method, 

or a CNN-based reconstruction module (Gözcü et al 2018). Alternatively, it 

is reasonable to expect that jointly optimizing the sampling pattern and the 

reconstruction operator can leverage the interdependency between the two and 

maximize performance (Aggarwal and Jacob 2020, Bahadir et al 2020).
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Overall, sampling pattern or system matrix learning is still an under explored area of 

research. We presented some common design issues that likely transcend the boundaries of 

different imaging modalities. It is possible that system matrix learning finds applications in 

other modalities such as CT for dynamic bowtie designs (Hsieh and Pelc 2013, Huck et 

al 2019), or SPECT for multi-pinhole pattern optimization (Lee et al 2014), or view-based 

acquisition time optimization (Ghaly et al 2012, Zheng and Metzler 2012, van der Velden et 

al 2019).

6.2. Embedding convex optimization layers within DL pipeline

Optimization is the backbone of machine learning (ML) and deep learning (DL). At the top 

level, almost all DL training is based on minimizing an objective function, and applying 

stochastic gradient descent to obtain the network parameters. Optimization also appears at a 

lower level. Common DL modules such as ReLU, softmax, and sigmoid can be interpreted 

as nonlinear mappings where the output is the solution of a convex optimization problem 

(Amos 2019, chapter 2). For example, ReLU is simply the proximal mapping of the non-

negativity constraint. The softmax and sigmoid are the generalized proximal mappings using 

the Bregman distance instead of the quadratic distance (Nesterov 2005). Active research 

is going on in the ML community to incorporate more generic convex optimization layers 

(COL) as standard modules of DL to inject domain knowledge, and to increase the modeling 

power and the interpretability of DL networks.

Figure 4 illustrates how a COL may be used as a module in a DL network. The input to the 

COL is the output of the previous layer plus additional nuisance parameters; the output of 

the COL layer is the solution of a convex optimization problem and serves as the input to the 

next layer.

Applications of COL can be found in reinforcement learning (Amos et al 2018), adversarial 

attack planning (Biggio and Roli 2018, Agrawal et al 2019a), meta learning (Lee et al 2019), 

and hyperparameter learning for convex programs (Amos and Kolter 2017, Bertrand et al 

2020, McCann and Ravishankar 2020). A fundamental question arising from end-to-end 

training of such deep networks is how to backpropagate the gradient for the COL. More 

specifically, the forward pass of a COL solves

x∗ = argminf(x; θ) (6.1)

where f is a generic convex function of x, and θ lumps the input from the previous layer 

and the nuisance parameters. Given the loss function l (not shown in figure 4) for training, 

end-to-end learning requires backpropagating the gradient at the output of the network ∇x∗l
to the network inputs ∇θl. In principle, such backpropagation can be obtained by applying 

the chain rule from elementary calculus:

∂l
∂θi

=
j

∂x∗ , j

∂θi

∂l
∂x∗ , j

= ∂x∗

∂θi

t
∇x∗l (6.2)
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where ∇θl = ⋯∂l/ ∂θi⋯ t, and ∂x∗ , j/ ∂θi {ji} ≡ ∂x∗/ ∂θ is the Jacobian matrix. In practice, 

unless the problem size is small, it is more preferable to obtain ∇θl directly, without an 

explicit matrix-vector product using the Jacobian matrix which is often infeasible.

Depending on the type of convex programs, methods for gradient calculation can be roughly 

grouped into four categories: (i) analytic differentiation, (ii) differentiation by unrolling, 

(iii) argmin differentiation using the implicit function theorem (Amos and Kolter 2017), 

and (iv) differentiation using fixed point iterations (Griewank and Walther 2008, Jeon et al 

2021). We use the simple (unconstrained) problem (6.1) to illustrate key concepts in these 

methods. Very often it is more informative to specialize to a concrete example. In this case, 

we consider the following quadratic programming problem:

f(x; θ) = 1
2xtQx − btx, (6.3)

where θ = {Q, b}, and Q ≻ 0, i.e., Q is a symmetric positive definite matrix.

i. Obviously there is a closed form solution to (6.3), i.e., x∗ = Q−1b. Applying (6.2):

∇bl = ∂x∗

∂b
t
∇x∗l = Q−t∇x∗l = Q−1∇x∗l ≜ z (6.4)

Furthermore, applying the matrix calculus rule: ∂Y −1
∂t = − Y −1∂Y

∂t Y −1, for t ∈ R, 

and specializing it to a symmetric matrix,

∂l
∂Qij

=(6.2) ∇x∗l t ∂x∗
∂Qij

= ∇x∗l t −Q−1 eij + eji
2 Q−1b

where eij  is a matrix of compatible dimension of all zeros except at i, j  with 

value 1. Arranging all elements ∂l/ ∂Qij into the matrix form, and recalling the 

definition of z in (6.4), it can be verified that

∇Ql = − Q−1 b ∇x∗l t + ∇x∗l bt

2 Q−1 = − x∗zt + zx∗
t

2
(6.5)

The additional computation for the backward pass, ∇bl and ∇Ql, amounts to 

solving (6.3) one more time with b replaced by ∇x∗. In practice, the matrix 

inverse Q−1 is not calculated; instead the matrix vector product Q−1b or 

Q−1∇x∗ is calculated by applying the conjugate gradient algorithm to (6.3). 

Analytic differentiation is possible if there is a closed form expression for the 

solution, which is unavailable for most convex optimization problems. This 

rather stringent requirement limits the applicability of this approach to simple 

problems.
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ii. For the generic setting (6.1), the forward pass of the COL often relies on an 

iterative algorithm, e.g., a gradient descent algorithm. For the specific problem 

(6.3), the gradient descent algorithm leads to the following update equation:

xk + 1 = xk − γ ∇f xk; θ = xk − γ Qxk − b = (I − γQ)xk + γb (6.6)

where xk is the estimate of x∗ at kth iteration, γ > 0 is a step size parameter. 

Unrolling amounts to expand the recurrence (6.6) a fixed number of steps, for 

k = 0, ⋯, K − 1, and let x∗ = xK. Since each step of the recursion only consists of 

elementary operations (similar to a fully connected layer), the backward pass can 

be calculated, from the last step of the recursion to the first.

∇xkl = (I − γQ)t∇xk + 1l, k = K − 1, ⋯, 0. (6.7a)

∇Ql = − γ
i = K − 1

0 ∇xi + 1l xi
t + xi ∇xi + 1l

t

2 , ∇bl = γ
i = K − 1

0
∇xi + 1l (6.7b)

It is clear that differentiation through unrolling requires storing all intermediate 

solutions xk in memory, which may limit the number of unrolling stages, and 

consequently the quality of both the forward and backward calculation.

iii. Argmin differentiation in the generic setting starts with the first order optimality 

condition. That is, assuming f is differentiable, then we have 0 = ∇xf x; θ x∗. For 

the specific problem (6.3), this leads to

0 = Qx∗ − b (6.8)

Then differentiating both sides of (6.8) with respect to the parameters gives

0 = dQx∗ + Qdx∗ − db (a) ∂x∗

∂b = Q−1, ∂x∗

∂Qij
= − Q−1 eij + eji

2 x∗ (6.9)

where in (a) of (6.9) we set dQ = 0 and db = 0 to derive the next two 

relationships, respectively. Applying the Jacobian relationship (6.2), elementary 

manipulation will lead to the same results as in (6.4) and (6.5). Argmin 

differentiation has been applied to a generic quadratic programming problem 

(with an objective function (6.3), and with linear equality and inequality 

constraints) by taking matrix differentials with respect to the KKT conditions 

(Amos and Kolter 2017). It has also been applied to disciplined convex programs 

(Agrawal et al 2019a), to cone programs (Agrawal et al 2019b), to semidefinite 

programs (Wang et al 2019), and other problem instances with applications in 

hyperparameter optimization and sparsifying-transform learning (Bertrand et al 

2020, McCann and Ravishankar 2020). A weakness of argmin differentiation 

is that it is problem-specific: the gradient backpropagation formulas need to be 

derived for each class of problems.
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iv. Differentiation through the fixed point of an iterative algorithm has been studied 

in the context of automatic differentiation (or algorithmic differentiation), see, 

e.g., (Christianson 1994, Griewank and Walther 2008). A recent application 

is the so-called fixed-point iteration (FPI) layers (Jeon et al 2021) to model 

complex behaviors for DL applications. Unlike the previous three categories, 

differentiation through the fixed point can be applied to a wider class of convex 

problems;31 its implementation is also simple and can be obtained by simple 

adaptation of the forward computation. To illustrate the concept, we apply the 

gradient descent algorithm as an example of a fixed point algorithm to estimate 

the solution x∗ of (6.3). Specifically, for k = 0, ⋯,

xk + 1 = xk − γ ∇f xk = (I − γQ)xk + γb (6.10)

The fixed point equation of (6.10) satisfies

x∗ = (I − γQ)x∗ + γb (6.11)

Now differentiate (6.11) with respect to b:

∂x∗

∂b = (I − γQ)∂x∗

∂b + γI ∂x∗

∂b = (I − (I − γQ))−1γI (6.12)

Note that the underlined term directly evaluates to γQ −1. But this is only because 

we are working with a quadratic problem; taking this route will not help to derive a 

numerical algorithm for ∇bl, which is what we intend to do. So we continue without such a 

simplification. Combining (6.12) with the chain rule (6.2):

∇bl = ∂x∗

∂b
t
∇x∗l = γ(I − (I − γQ))−t∇x∗l (6.13)

Denote the underlined term in (6.13) as x‾, which satisfies a fixed point equation similar to 

(6.11), i.e.,

x ≜ (I − (I − γQ))−t∇x∗l x = (I − γQ)x + ∇x∗l (6.14)

The fixed point x‾ can be obtained iteatively by

xk + 1 = (I − γQ)xk + ∇x∗l, (6.15)

which is the same gradient descent algorithm as in (6.10) with the same step size γ, but 

applied to ∇x∗l instead of γ b. Plugging (6.14) in (6.13) leads to

∇bl = γx (6.16)

31Most iterative algorithms, e.g., gradient descent, primal dual, the proximal point algorithms, can be considered as fixed point 
iterations. The technique we discuss here is in principle applicable to these algorithms.
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We can obtain ∇Ql in a similar manner, i.e., by taking derivatives with respect to the fixed 

point equation (6.11), which will lead to

∇Ql = − γ x∗xt + xx∗
t

2
(6.17)

For the quadratic problem (6.3), differentiation through fixed point iteration amounts to 

(6.15), (6.16), (6.17). It is straightforward to verify that this procedure leads to the same 

results as in (6.4) and (6.5). In this special case, the forward pass and the backward pass are 

essentially identical, the convergence of the backward pass is guaranteed by the convergence 

of the forward pass.

For the generic problem (6.1), the backward pass can be derived by simple modifications of 

the forward pass (Griewank and Walther 2008, Jeon et al 2021). In terms of convergence, it 

was shown in (Jeon et al 2021) that if the forward pass has a gradient Lipschitz constant that 

is less than 1, i.e., a contraction mapping, then the backward algorithm for computing the 

gradient is also a contraction.

Unlike differentiation by unrolling, differentiation through fixed point iteration is of constant 

memory. There is no need to store the intermediate updates xk, only the fixe point x∗

matters. In practical implementation, the fixed point iterations (FPI) for both the forward 

and the backward pass of the COL must be stopped at a finite iteration. The effect of finite 

termination, however, is unclear. Moreover, the FPI for most convex programs, e.g., gradient 

descent or primal-dual update (Chambolle and Pock 2021), are not contractions and may not 

have a unique fixed point. The applicability of differentiation through such convex programs 

is yet to be investigated.

The use of convex optimization layers as a module within a large DL network is still at 

its early stage. Its utilities to machine learning in general are still being discovered. For 

imaging problems, an interesting application is hyperparameter optimization for convex 

programs, e.g., MBIR, as we discussed in section 6.2. For this application, the combination 

of rigorous formulations of MBIR problems, the representation power of DL networks, 

and a formalism for gradient backpropagation through the convex programs for end-to-end 

training, is promising to remove the bottleneck of MBIR and elevate its performance.

6.3. Discussion

We show in table 2 a comparison of the different ways of combining DL and MBIR in terms 

of their training/testing efficiency and memory cost. This list is not exhaustive, for example, 

it does not include the more recent research on combining DL and MBIR in a sequential 

manner, where DL-produced images are subsequently refined by MBIR (Wu et al 2021a, 

Hayes et al 2021). Synergistic combination of DL and MBIR is picking up momentum. It 

is without doubt that future ingenuity will lead to more innovative network designs and/or 

novel synergistic use of DL and MBIR.

Putting the ever improving performance aside for a moment, we notice that, with very 

few exceptions (Yu et al 2020, Li et al 2021), commonly used performance metrics 
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are almost exclusively simple quantitative image quality (IQ) indices such as PSNR and 

SSIM. Such IQ indices are easy to compute; they can be standardized to enable expedited 

performance evaluation with published datasets (Moen et al 2021). However, unlike natural 

images, medical images must be interpreted by a radiologist to make diagnosis. The simple 

quantitative IQ indices may not correlate with radiologists’ performance (Myers et al 1985, 

Barrett et al 1993), which can hinder eventual clinical translation.

Another factor hindering clinical translation is that DL networks are often unable to 

correctly assess their decision uncertainty (Blundell et al 2015). Such network uncertainty 

may arise from a lack of knowledge of the underlying data generation process or the 

stochastic nature of the training/testing data (Der Kiureghian and Ditlevsen 2009). This issue 

can be addressed by recent research efforts that provide network prediction together with 

network uncertainty (Gawlikowski et al 2021). For image generation (Edupuganti et al 2021, 

Narnhofer et al 2021, Tanno et al 2021), the uncertainty map may aid clinical decision 

making; furthermore, the uncertainty map can also improve the robustness of incorporating a 

DL-predicted prior image into MBIR (Leynes et al 2021, Wu et al 2021b).

7. Conclusions

The success of DL methods in tackling traditional computer vision tasks has earned its 

entrance to other fields, including medical imaging. The initial results have generated 

tremendous excitement over the potential of DL for solving inverse problems, leaving many 

to wonder if it is ‘game over’ for the more conventional MBIR.

With this question in mind, in this paper we reviewed concepts in convex optimization 

and first order methods, which are the backbone of many MBIR problems. We presented 

examples in the literature of how DL and convex optimization can work strategically 

together and mutually benefit each other.

As in any fast-developing field, the landscape of medical imaging is constantly changing and 

sudden influx of ideas creates opportunities, challenges, and even confusions. We are at a 

crossroads where it is ‘difficult to see; always in motion is the future.’ But we are ‘designers 

of our future and not mere spectators’ (Sutton and Barto 2018, chapter 17); the choices we 

make will determine the direction of the path that we take. Convex optimization and the 

reincarnated form in which it remains relevant are among the choices. We hope this paper 

can inject some new enthusiasm into this elegant subject.
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Appendix

A.1. Bregman distance

The Bregman distance Dℎ ⋅ , ⋅  of (2.13) is parameterized by a differentiable function ℎ, 

which is a σ-strongly convex function with respect to a general norm (2.3), not necessarily 

the 2-norm ∥ ⋅ ∥2 induced by an inner product. Any norm, such as ℓp , p ⩾ 1 will do. 

For example, the function ℎ = ∑i xilog xi that we used for calculating Bregman proximal 

mapping of the unit simplex, is not strongly convex in the 2-norm; it is strongly convex in 

the ℓ1 norm (Beck and Teboulle 2003, Nesterov 2005).

Similarly, the norm in the characterization of L-smooth functions ((2.1) and (2.2)) 

does not need to be the 2-norm. For (2.2) this requires that ⋅ , ⋅  be interpreted as 

linear functionals; and for (2.1), we need to distinguish between a (primal) norm ∥ ⋅ ∥
and its dual norm ∥ y ∥∗ : = supx { y, x , ∥ x ∥ ⩽ 1}. More specifically, (2.1) is replaced 

by ∥ ∇f x − ∇f y ∥∗ ⩽ L ∥ x − y ∥. With the general norm, the duality between strong 

convexity and (strong) L-smoothness still holds: a function f is L-smooth with respect 

to norm ∥ ⋅ ∥, then its conjugate f∗ is 1/L-strongly convex with respect to the dual 

norm ∥ ⋅ ∥∗, and vice versa, see e.g., (Juditsky and Nemirovski 2008, Kakade et al 

2009). Nesterov’s accelerated gradient descent also extends to Bregman proximal gradient 

algorithms, as seen in algorithm 3.5. Other accelerated variants applicable to the Bregman 

distance can be found in (Nesterov 2005, Auslender and Teboulle 2006).

The main practical advantage of the Bregman distance is that it can be used to adapt to the 

problem geometry. A ‘conventional’ L-smooth function (defined by the 2-norm) has a global 

majorizer that is a quadratic function, which subsequently defines the gradient update for 

gradient-descent type methods. Analogously, for the general L-smooth function defined by 

the Bregman distance, the global majorizer can now be chosen to fit the problem structure, 

e.g., by having a smaller Lipschitz constant for a ‘custom’ distance function, which then 

leads to larger step sizes and faster convergence. See (Nesterov 2005), Sec 4 for an example 

of the effect of different norms on the Lipschitz constant.

A.2. Relative smoothness and the Poisson likelihood

A standard assumption in first order algorithms for smooth minimization is that the objective 

function is L-smooth, as defined by (2.2) in the convex setting or (5.2) in the nonconvex 

setting. This assumption is certainly satisfied by the quadratic data fitting term for most 

CT reconstruction problems, given in the prototype objective function (3.22). On the 

other hand, for SPECT and PET image reconstruction, the data fitting term is usually the 

negative Poisson log-likelihood, i.e., replacing the quadratic data fitting term in (3.22) by the 

following

ϕ(Ax, y) =
ij

aijxj −
i

yilog
j

aijxj . (8.1)
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It is easy to verify that ϕ is differentiable but its gradient is not (globally) Lipschitz 

continuous. As such, the simple gradient descent algorithm and any of its accelerated 

versions are not applicable. One approach to remedy the situation is to modify the data 

fitting term (8.1)—replacing Ax by Ax + r (Krol et al 2012, Zheng et al 2019), where 

r > 0 is a known vector accounting for the fixed background (randoms and scatter). The 

modified function ϕ Ax + r, y  is L-smooth for L = ∥ A ∥2 maxi yi/ri
2 . Other modifications 

for a similar purpose can be found in (Chambolle et al 2018). A potential issue for these 

approaches is that the gradient Lipschitz constant of the modified smooth objective may still 

be quite big, which affects the step size and convergence.

A notion of relative smoothness is proposed in (Bauschke et al 2017, Lu et al 2018) to lift 

the Lipschitz gradient requirement in first order algorithms altogether. For the (conventional) 

definition of L-smooth (2.2), an equivalent characterization is that L
2 ∥ x ∥2 − f x  is a 

convex function. In an analogous manner, the notion of being ‘relatively smooth’ is 

characterized by replacing the quadratic function by a differentiable convex function ℎ, 

called the reference function. More precisely,

f(x) is L‐smooth relative to ℎ Lℎ( ⋅ ) − f( ⋅ ) is convex (8.2)

It is shown in (Lu et al 2018) that (8.2) is equivalent to

f(y) ⩽ f(x) + ∇f(x), y − x + LDℎ(y, x), (8.3)

where Dℎ y, x = ℎ y − ℎ x + ∇ℎ x , y − x  is the Bregman distance (2.13), but without 

requiring ℎ is strongly convex in a norm. Obviously, (8.3) is a direct generalization of (2.2) 

by replacing the quadratic distance by Dℎ y, x . The notion of relatively strong convex can 

also be similarly defined, i.e., a function f is μ-strongly convex relative to ℎ, if f − μℎ is 

convex.

With the generalized definition of smoothness, the first order algorithms can be applied 

directly to minimization problems involving such relatively smooth functions. As a simple 

example, consider the composite problem of

min ϕ(x), ϕ(x) = f(x) + P (x) (8.4)

where f x  is L-smooth relative to ℎ, and P  is convex, possibly nondifferentiable. As 

usual, we assume x∗ = argmin ϕ x  exists. The Bregman proximal gradient descent algorithm 

generates xk according to

xk + 1 = argmin{P (x) + f xk + ∇f xk , x − xk + 1
λDℎ x, xk }, k = 0, 1, ⋯ (8.5)

It is shown in (Lu et al 2018) that, setting the step size λ = 1/L, ϕ xk  converges to ϕ x∗  at a 

rate of O 1/k . If f is both L-smooth and μ-strongly convex relative to ℎ, then the gradient 

descent algorithm (8.5) exhibits linear convergence. This algorithm can also be applied to 
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the nonconvex setting (Bolte et al 2018), where both f and P  are nonconvex, by using a 

smaller step size λ.

For practical applications, the difficulty often resides in finding a reference function ℎ for 

the objective f, such that (1) f is relatively smooth, i.e., to show that Lℎ x − f x  is convex 

for a certain L > 0, and (2) the associated subproblem (8.5) is simple with efficient or closed 

form solutions. For the negative Poisson log-likelihood (8.1), it is shown in (Bauschke et al 

2017) that ℎ x = − ∑i log xi works, and an estimate of the Lipschitz constant is L = ∑i yi. 

Applying (8.5) (in the absence of a nondifferentiable P), the uptake equation takes the 

following form:

1
xj

k + 1 = 1
xj

k + δj
k

L , where δj
k ≜ ∇xϕ(Ax, y) xjk =

i
aij −

i
yiaij

j aijxj
k

The practical convergence speed and image properties of this algorithm is unknown. Another 

unknown is whether minimization of relative smooth functions can enjoy the accelerated rate 

of O 1/k2  similar to the (conventional) L-smooth functions by using Nesterov’s acceleration 

techniques.

A.3. Equivalence of a special primal-dual algorithm and the AGD

For convenience, we copy the special primal-dual algorithm (3.21) below.

wk + 1 = Kxk + σk
−1wk

1 + σk
−1 (8.6a)

xk + 1 = arg min{g(x) + Kx, ∇ℎ wk + 1 + 1
τk

D1 x, xk } (8.6b)

xk + 1 = xk + 1 + αk xk + 1 − xk (8.6c)

If we choose w0 ∈ ran K , i.e., w0 is in the range of K, then it is easy to see that wk ∈ ran K
for all k ⩾ 0. In this case, we can reparameterize wk by wk = Kxk; the recursion of wk can be 

obtained from a recursion of xk as

xk + 1 = xk + σk
−1xk

1 + σk
−1 , wk = Kxk (8.7)

Combining (8.7) with (8.6b) and (8.6c), the following update equations:

xk + 1 = xk + σk
−1xk

1 + σk
−1 (8.8a)
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xk + 1 = argmin{g(x) + Kx, ∇ℎ Kxk + 1 + 1
τk

D1 x, xk } (8.8b)

xk + 1 = xk + 1 + αk xk + 1 − xk (8.8c)

will produce sequence of updates that are identical to (8.6).

Next we will show xk + 1 of (8.8a) is identical to yk of algorithm 3.5. Using (8.8a) and (8.8c), 

we remove xk and thereby express xk using {xk} and xk  only:

xk + 1 = σk
−1xk + 1 + αk − 1 xk − αk − 1xk − 1

1 + σk
−1 (8.9)

We now do the same for yk of algorithm 3.5. Copying step 2 and 4 of algorithm 3.5 below:

yk = 1 − θk xk + θkxk (8.10)

xk + 1 = 1 − θk xk + θkxk + 1 (8.11)

We will express yk using the sequence xk  and yk , i.e., to remove dependence on x‾k . 

Toward that end,

xk + 1 =(8.11) 1 − θk xk + θkxk + 1 =(8.10) yk − θkxk + θkxk + 1
(a)

(8.12a)

xk = yk − 1 − θk − 1xk − 1 + θk − 1xk (8.12b)

where in (a) of (8.12a) we decrease k by 1 to obtain (8.12b). Finally, we combine (8.12) and 

(8.11),

xk + 1 =(8.12a) yk − θkxk + θkxk + 1 (8.13a)

=(8.11) 1 − θk xk + θkxk + 1 (8.13b)

=(8.12b) 1 − θk yk − 1 − θk − 1xk − 1 + θk − 1xk + θkxk + 1 (8.13c)

Re-arranging the equality relationship between (8.13a) and (8.13c), then

yk = 1 − θk yk − 1 + 1 − θk θk − 1 + θk xk − 1 − θk θk − 1xk − 1 (8.14)

If we do a term by term matching between (8.14) and (8.9), and set the parameters according 

to
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θk = 1
1 + σk

−1 , and αk − 1

1 + σk
−1 = 1 − θk θk − 1 αk − 1 = 1 − θk θk − 1

θk

then with compatible initializations, we have yk  of algorithm 3.5 coincides with {xk + 1} of 

the special primal-dual algorithm; furthermore, by setting τk
−1 = θkLf, the two sequences xk

also coincides (Lan and Zhou 2018).

The convergence of f + g x‾k  of algorithm 3.5 at rate O 1/k2  then implies the ergodic 

convergence of a weighted sequence of xk. More specifically, from (8.11), x‾k is a weighted 

average of xk as shown below:32

xk = 1 − θk − 1 xk − 1 + θk − 1xk
= 1 − θk − 1 1 − θk − 2 xk − 2 + θk − 2xk − 1 + θk − 1xk
= 1 − θk − 1 ⋯ 1 − θ1 θ0x1 + ⋯ + 1 − θk − 1 1 − θk − 2 θk − 3xk − 2
+ 1 − θk − 1 θk − 2xk − 1 + θk − 1xk

=(3.17) θk − 1
2

θk − 2
2

θk − 2
2

θk − 3
2 ⋯θ1

2

θ0
2 θ0x1 + ⋯ + θk − 1

2

θk − 3
2 θk − 3xk − 2 + θk − 1

2

θk − 2
2 θk − 2xk − 1 + θk − 1xk

= θk − 1
2

θ0
x1 + ⋯ + θk − 1

2

θk − 3
xk − 2 + θk − 1

2

θk − 2
xk − 1 + θk − 1

2

θk − 1
xk

= θk − 1
2

i = 1

k
θi − 1

−1 xi

Furthermore,

i

k 1
θi − 1

= 1
θ0

+ 1
θ1

+ ⋯ + 1
θk − 1

=(3.17) 1
θ0

+ 1
θ1

2 − 1
θ0

2 ⋯ + 1
θk − 2

2 − 1
θk − 3

2 + 1
θk − 1

2 − 1
θk − 2

2 = 1
θk − 1

2

In other words, x‾k is a weighted average of xk. Then convergence of x‾k is equivalent to the 

ergodic convergence of the weighted xk at the same rate.

A.4. Stochastic PDHG applied to CT reconstruction

The idea is borrowed from (Lan and Zhou 2018), where it was used to draw links between 

PDHG and Nesterov’s AGD algorithm.

Instead of updating ξk using (4.18a), consider

ξj
k + 1 =

argmax
ξ

{ yj − Ajxk, ξ − 1
2 ξ wj−1

2 − 1
2σj

ξ − ξj
k

wj−1
2 } j = jk

ξj
k j ≠ jk

(8.15)

32Recall that the sequence of parameters θk satisfies 
1 − θk + 1

θk + 1
2 = 1

θk
2  for k ⩾ 0.
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where the only change is that we use in (8.15) a weighted quadratic distance, with matching 

weighting coefficients as in the conjugate function 1
2 ∥ ξ ∥wj−1

2 .

Let j = jk. Taking derivative with respect to ξj

0 ≜ yj − Ajxk − wj
−1ξ − σj

−1wj
−1 ξ − ξj

k ξj
k + 1 = wj yj − Ajxk + σj

−1 ⋅ ξj
k

1 + σj
−1 (8.16)

Now we make change variables so that ξk update can be performed equivalently in the primal 

domain. Define vj
k = − Aj

tξj
k, from (8.16), if j = jk,

vj
k + 1 = − Aj

tξj
k + 1 = −Aj

twj yj − Ajxk − σj
−1Aj

tξj
k

1 + σj
−1 = ∇F j xk + σj

−1vj
k

1 + σj
−1 (8.17)

where the last equality is due to the definition of the data fitting term F j x = 1
2∥ yj − Ajx ∥wj

2 . 

This update equation leads to algorithm 4.4.

A.5. The proximal mapping of the log prior

The proximal mapping of a nonconvex function involves a nonconvex optimization problem; 

care should be taken to distinguish between the local and global minimizers. The log prior, 

fμ x = log 1 + x /μ , x ∈ R, is often used in imaging applications (Mehranian et al 2013, 

Zeng et al 2017); we use it as an example to illustrate some typical issues associated with 

nonconvexity. The problem is given as the following:

prox τfμ (x) = arg min
x

{fμ(x) + 1
2τ x − x 2} where fμ(x) = log 1 + x

μ (8.18)

Note that the log prior has a difference-of-convex decomposition. Indeed,

log 1 + x
μ = x

μ − 1
μ |x | − μ log 1 + |x|

μ

from which we recognize the term in the parentheses is just the Fair potential. From our 

discussion in section 5.1, the log prior is 1/μ2 - weakly convex, as the Fair potential itself is 

1/μ-smooth.

It is straightforward to see that prox τfμ x  in (8.18) is an odd 

function, i.e., prox τfμ − x = − prox τfμ x . Furthermore, it can be shown that 

prox τfμ x = μprox τ /μ2 f1 x/μ . Therefore it suffices to consider the following ‘normalized’ 

version of (8.18):

min ϕ(x) ≜ f(x) + q(x),
f(x) = log(1 + x), q(x) = 1

2τ x − x 2, where x ⩾ 0, argmin ≜ x∗
(8.19)
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Our characterization of the solution to (8.19) relies on studying the gradients of the 

component functions f′ x = 1/ 1 + x  and q′ x = x − x /τ in a graphical manner, which 

makes the distinction between the local and the global minima both transparent and intuitive. 

The developed intuition should help similar derivations for the proximal mapping of other 

nonconvex functions.

We plot both f′ x  and (the negated gradient) −q′ x , for x > 0, in one graph as shown in 

figure 5. The gradient −q′ x  intersects the x-axis at x. When x > 0 increases, the green line 

−q′ x  translates to the right. The intersection(s) between f′ x  (the blue curve) and −q′ x
(the green line) satisfy the first order optimality condition; they are the stationary points and 

candidate solutions x∗. Moreover, for any x ⩾ 0, the solution x∗ to (8.19) is non-negative; the 

boundary of the eligible region x = 0 requires special consideration.

Figure 5 shows the solution when τ ⩽ 1. In this case, −q′ x  is ‘more vertical’ than any parts 

of f′ x . When x < τ (figure 5(a)), there is no intersection between f′ x  and −q′ x  within 

the eligible region x ⩾ 0. That is, the first order optimality condition does not hold for any 

x ⩾ 0. On the other hand, since f′ x ⩾ − q′ x , the objective ϕ x  is continuously increasing. 

There is a unique global minimizer at x = 0. When x > τ (figure 5(b)), the green line −q′ x
translates further to the right. There is always a unique intersection between f′ x  and −q′ x , 

marked by the filled red marker x.,  which leads to the solution x∗ = x.. Note that when τ ⩽ 1
the objective ϕ in (8.19) is strictly convex. The solution x∗ depends continuously on the input 

x, which can be verified from figure 5.

When τ > 1 (figure 6 and 7), the green line −q′ x  is ‘more horizontal’ than before, the 

intersections between f′ x  and −q′ x  become more complicated. Figure 6 shows what 

happens for two extreme values of x. If x > τ (figure 6(a)), there is again one unique 

intersection between −q′ x  and f′ x , indicated by the filled red marker x. As f′ x ⩽ − q′ x
for 0 ⩽ x ⩽ x., the objective ϕ x  is continuously decreasing. Therefore this intersection x. is 

indeed the global minimizer x∗.

As x decreases from τ, we notice (figure 6(b)) that there is a critical value xt such that 

when x = xt, f′ x  is tangent to −q′ x ; this coincidence is depicted as the dotted cyan line in 

figure 6(b). When x < xt, there is no intersection between f′ x  and −q′ x . Similar to figure 

5(a), since f′ x > − q′ x  holds for all x ⩾ 0, the function ϕ x  is continuously increasing for 

x ⩾ 0, therefore x∗ = 0 is the global minimizer.

More complications arise when xt ⩽ x ⩽ τ as shown in figure 7. There are two intersections 

between f′ x  and −q′ x , indicated by the open x∘ and filled x.  red markers. We consider the 

two subcases shown in (a) and (b), which have different areas in the two shaded regions, 

area A ≶ area B, When x is slightly exceeding xt (figure 7(a)), area A > area B; we claim that 

the x∘ is a local maximum, and x. is a local minimum, and the global minimizer is at x∗ = 0. 

The reasoning is simple. When x < x∘f′ x ⩾ − g′ x , so the objective ϕ x  increases; when 

x∘ < x ⩽ x∘, f′ x ⩽ − g′ x , so the objective ϕ x  decreases. As the total amount of function 

value increase or decrease is exactly the area of the shaded regions, by our assumption 

that area A > area B, the function value increase is larger than the function value decrease. 
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Therefore, ϕ 0 < ϕ x• < ϕ x∘ , x∗ = 0 is the global minimal, x∘ is a local maximum, and x. is 

a local minimum. Similar analysis for the situation in figure 7(b) will lead to the claim that, 

when area A < area B, ϕ x• < ϕ 0 < ϕ x∘ , x = 0 is a local minimal, x∘ is a local maximum, 

and x∗ = x. is the global minimal.

The solution to (8.19), see figure 8 for an illustration, can be summarized as the following

x∗ = 0 x ⩽ xc

x . x > xc
(8.20)

where x. satisfies the first order optimality condition for (8.19):

0 = 1
1 + x⋅

+ x⋅ − x
τ (8.21)

When there is more than one solutions to (8.21), x. should take the larger value. The cutoff 

(threshold) of (8.20) is xc = τ if τ ⩽ 1. When τ > 1, xc can be calculated from the following 

coupled xc, x′  equations:

1
2τ xc

2 = log 1 + x′ + 1
2τ xc − x′ 2

(8.22a)

0 = 1
1 + x′ + x′ − xc

τ (8.22b)

where (8.22a) is equivalent to the equal area criterion in figure 7, i.e., ϕ 0 = ϕ x′ , 

and (8.22b) simply expresses the intersection between f′ x  and −q′ x  at x′. The closed-

form solution to (8.22) is inaccessible. Instead of using the thresholding form (8.20), in 

practice the global minimizer is often determined by evaluating the objective ϕ at the two 

possible candidates x = 0 and x = x., see, e.g., (Gong et al 2013). Note that when x = xc, 

ϕ 0 = ϕ x′ , and both 0 and x′ are global minima. As x approaches to xc from left and 

right, there is a jump in the solution x∗ from 0 to x′ which is strictly positive (figure 8(b)). 

This discontinuous behavior with respect to the data is also well-known for nonconvex 

optimization.
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Figure 5. 
(a) When τ ⩽ 1 and x ⩽ τ, the objective ϕ continuously increases as a function of x. There 

is a global minimizer at x = 0. (b) When τ ⩽ 1 and x > τ there is a unique intersection point 

(the filled red marker) between the two gradient lines f′ x  and −q′ x .

Figure 6. 
(a) If τ > 1 and x > τ, there is a unique intersection between f′ x  (blue curve) and −q′ x
(green line), indicated by the filled red marker. (b) If τ > 1 and x < xt, there is no intersection 

between the f′ x  and −q′ x . The solution to (8.19) is x = 0. Here xt = τ − 1, xt = 2 τ − 1.
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Figure 7. 
Two cases when xt < x ⩽ τ. The intersections between the blue curve f′ x  and the green 

line −q′ x  are marked by the open and the filled red markers. The former indicates a local 

maximum, the latter indicates a local minimum. There is another local minimum at x = 0. (a) 

When area A > area B, the global minimizer of (8.19) is at x∗ = 0. (b) When area A < area 

B, the global minimizer is at x∗ = x. , the second (larger) intersection point. The critical point 

x = xc separating the two cases is when area A = area B.

Figure 8. 
The thresholding solution given by (8.20). Here we append by symmetry the solution for 

x < 0 as well. (a) If τ ⩽ 1, the objective (8.19) is convex, the solution x∗ is a continuous 

function of x. (b) If τ > 1, the objective (8.19) is nonconvex, the solution x∗ has a jump at 

x = xc, given by (8.22).
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Figure 1. 
(a) An iterative algorithm where the data consistency (DC) term and the regularizer (Reg) 

connects in serial. The loop sign (green) indicates the recurrent nature of the iterations. 

(b) Variational network (VN) unrolls an iterative algorithm and replaces the regularizers by 

CNNs. The multiple CNNs can share weights θk = θ, for all k) or have different weights, 

although the former adheres more to the recurrent nature of an iterative algorithm. The 

serial connection in (a) can model algorithms such as proximal gradient or alternating update 

schemes (Liang et al 2019). Parallel connection is also possible, e.g., as in gradient descent, 

which gives rise to different VN architectures (Liang et al 2019).

Xu and Noo Page 80

Phys Med Biol. Author manuscript; available in PMC 2023 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Using the CNN to parametrize the unknown image x as proposed in (Gong et al 2018a). 

The output of the CNN, which is pretrained to perform image denoising, is the reconstructed 

image. Image reconstruction is formulated to minimize the loss function with respect to z or 

θ.
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Figure 3. 
The hyperparameter learning framework proposed in (Xu and Noo 2021). The CNN, 

parametrized by θ, generates patientspecific and spatially variant hyperparameter η needed 

for optimization-based image reconstruction. End-to-end learning requires backpropagating 

the gradient from the loss to the CNN parameter θ. During testing/inference, the image 

reconstruction module can run outside of a DL library.
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Figure 4. 
A convex optimization layer (COL) outputs the solution of a convex optimization problem 

f x; θ , where θ lumps both the input y and nuisance parameters η. A COL can be 

embedded as a component in a larger network. End-to-end training of such networks 

requires differentiation through argmin.
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Table 1.

Total work of sample algorithms and the lower bounds for reaching an ϵ-suboptimal solution for different 

types of problems, adapted from (Woodworth and Srebro 2016).

non-smooth, L-Lipschitz (type III) L-smooth convex (type II) L-smooth, μ-strongly convex (type I)

GD
O nL2

∈2
O nL

∈ O nL
μ logL

∈

AGD O nL
∈ O n L

∈ O n L
μ logL

∈

lower bound O nL
∈ O n L

∈ O n L
μ logL

∈

SGD O L2/ ∈2 O L2/ ∈2 O L/μ ∈

(Prox-)SVRG NA O L
∈ + nlog 1

∈ O n + L
μ log 1

∈
(Allen-Zhu and Yuan 2016)

Katyusha (Allen-Zhu 2017) NA O n
∈ + nL

∈ O n + nL
μ log 1

∈

lower bound O n + nL
∈

a O n + nL
∈ O n + nL

μ log 1
∈

(Woodworth and Srebro 2016) (Lan and Zhou 2018)

a
For ϵ small enough, see (Woodworth and Srebro 2016) for exact statements.
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Table 2.

A comparison of the different embedding methods in section 6.1 and section 6.2.

variational network CNN-constrained image representation COLf

training timed *** *a ***

testing timee + + +

memory $$$b $ $c

a
This refers to the first variation which uses a pretrained denoising network. In the second variation there is no separate training and testing phase. 

Each test case requires solving a network optimization problem.

b
The increased memory of VN is from the feature maps of the unrolled iterations.

c
By using either argmin differentiation or differentiation through fixed-point iteration to achie ve constant memory footprint.

d
Here we use the training time of a typical denoising network as the baseline  ∗ .

e
The testing time for all three approaches is similar to that of one MBIR + .

f
Hyperparameter learning can be treated as a special case of COL.
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