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ABSTRACT
Fine-scale personal heat exposure (PHE) information can help prevent or minimize weather-related 
deaths, illnesses, and reduced work productivity. Common methods to estimate heat risk do not 
simultaneously account for the intensity, frequency, and duration of thermal exposures, nor do they 
include inter-individual factors that modify physiological response. This study demonstrates new 
whole-body net thermal load estimations to link PHE to heat stress and strain over time. We apply 
a human-environment heat exchange model to examine how time-varying net thermal loads differ 
across climate contexts, personal attributes, and spatiotemporal scales. First, we investigate summer
time climatic PHE impacts for three US cities: Phoenix, Miami, and New York. Second, we model body 
morphology and acclimatization for three profiles (middle-aged male/female; female >65 years). 
Finally, we quantify model sensitivity using representative data at synoptic and micro-scales. For all 
cases, we compare required and potential evaporative heat losses that can lead to dangerous thermal 
exposures based on (un)compensable heat stress. Results reveal misclassifications in heat stress or 
strain due to incomplete environmental data and assumed equivalent physiology and activities 
between people. Heat strain is most poorly represented by PHE alone for the elderly, non- 
acclimatized, those engaged in strenuous activities, and when negating solar radiation. Moreover, 
humid versus dry heat across climates elicits distinct thermal responses from the body. We outline 
criteria for inclusive PHE evaluations connecting heat exposure, stress, and strain while using physio
logical-based methods to avoid misclassifications. This work underlines the value of moving from 
“one-size-fits-all” thermal indices to “fit-for-purpose” approaches using personalized information. 
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Introduction

Advancing personal heat research

Hot weather can lead to a loss of productivity and 
heat-related illnesses and deaths, yet these issues are 
preventable or can be minimized with more indivi
dual-level exposure data[1]. Assessing personal heat 

exposure (PHE) implies evaluating heat exchanges 
between people and their micro-environments within 
the spaces they live, work, and play, indoors and out
doors [2]. Numerous studies converge on the need to 
enhance existing heat risk management strategies, 
monitoring methods, and modeling at finer scales, 
emphasizing exposures to vulnerable groups [1–4]. 
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In particular, a link between heat load and social risk 
is required to assess PHE with physiological indicators 
[5]. Finally, PHE research is fundamental to avoid 
misclassifications in heat-related health outcomes 
that are expected to increase with climate change 
and urban growth [6–8].

Interdisciplinary work is needed to analyze the 
source-to-effect continuum from a hazardous expo
sure (e.g. high heat) to an ensuing health effect (e.g. 
death). Exposure sciences bridge environmental and 
health sciences by addressing whether humans come 
into contact with a toxicant or hazard [9]. Extreme 
heat is a physical hazard that people experience in 
various “doses” (intensity, frequency, and duration). 
Heat stress is any thermal change (net heat load) that 
disturbs the balance between an organism and its 
thermal environment, and thermal strain is the over
all physiological response to thermal stress [10]. 
Building on these definitions, PHE quantifies signif
icant doses of heat that lead to a particular heat strain 
(Table 1). This distinction is essential for distinguish
ing relevant PHE for short-term or long-term heat- 
related health outcomes [6]. As the same environ
ment can add different doses of heat to the body 
based on activity and physiological constraints, the 
use of PHE in research must fully address heat stress 
over time and include the human body as a heat 
source (i.e. metabolic heat production (Hprod)) as 
well as clothing parameters.

Therefore, we extend PHE, which focuses on 
environmental heat loads, to allow for the estima
tion of heat stress and strain over time that can 
cause a rise in core temperature, dehydration, and 
cardiovascular strain. This extension is documented 
in Figure 1, which outlines the new modeling cap
abilities demonstrated in the current paper, wherein 
area “A” defines PHE (i.e. temperature, humidity, 
wind speed, and radiation over time), “B” adds cloth
ing and internal heat production to estimate heat 
stress, and “C” determines whether said heat stress 
is compensable or not based on physiologic factors, 
and thus whether or not heat strain will occur. The 
relevant definitions are listed in Table 1.

Intra and inter-individual assessments of heat 
stress and strain based on PHE

Physiologically, the thermoregulatory system bal
ances the internal heat production and external 

environmental heat fluxes to maintain a stable 
internal temperature [1,11,12]. However, the 
body may or may not compensate during heat 
stress to return to thermal equilibrium (Figure 1). 
Compensable heat stress (CHS) occurs when heat 
loss to the environment is balanced with heat gain; 
hence, a steady-state core temperature can be sus
tained [13]. Conversely, uncompensable heat stress 
(UHS) occurs when evaporative cooling require
ments are not supported due to environmental or 
other conditions (including low sweat production) 
that impede the body’s ability to cool [13]. In 
UHS, the internal body temperature rises, which 
can result in hyperthermia. Generally, hyperther
mia is divided by degree of severity into heat 
cramps, heat exhaustion, and potentially fatal heat
stroke, either classic or exertional [1].

Under varying environmental heat loads, both 
inter- and intra-individual (i.e. features that 
a person can change over time) human factors 
may predispose a person to various levels of heat 
stress and related health outcomes [14–16] 
(Figures 1 and 2). In cities, for instance, higher 
thermal exposures arise at the landscape level, 
transferred to buildings, and finally to individuals 
[7]. Personal factors such as physical characteris
tics (i.e. mass and surface corporal area) and activ
ities [17,18] determine the metabolic rate and, 
thus, internal heat production, while clothing 
affects heat loss. Moreover, age, sex, aerobic fit
ness, acclimatization, medical and neurological 
disorders (i.e. diabetes, Alzheimer’s), physical dis
abilities, alcohol use, certain medications, and 
drugs also modify susceptibility to heat [15,19– 
24]. Other considerations affecting heat risk may 
include socio-demographic and behavioral factors, 
such as infrastructure access and housing insecur
ity [25–27], cultural practices [15,16], digital visi
bility [28], or occupation (e.g. outdoor workers 
[16,29–36]).

Because of these differences, a critical per
spective in PHE research involves explaining 
who is affected by heat exposure and how over
exposure that leads to UHS occurs by connecting 
environmental data with an individual’s physio
logical, behavioral, or subjective responses [4]. 
However, PHE research is highly heterogeneous, 
and current methods are not consistent in quan
tifying PHE to account for the three dimensions 
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of exposure (intensity, duration, and frequency); 
most PHE research has focused on the intensity 
dimension [5]. Hence, there is a need to create 
standardized practices to obtain accurate expo
sures while recognizing the higher multidimen- 

sionality and context-specific nature of PHE. It 
is also evident that geographic gaps in PHE 
research exist (mainly in Latin-American and 
African countries), as well as socioeconomic 
knowledge gaps [2,4,37,38].

Table 1. Connecting personal heat exposure (PHE), which focuses on quantifying environmental heat load, with heat stress and 
strain to demonstrate the modeling goals within the current study. By leveraging the scope and definition of PHE to assess 
compensability under heat stress, we show how heightened PHE can lead to a rise in core temperature, dehydration, and 
cardiovascular strain over time.

PHE 
Definition

“The realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature,  
perceived discomfort, or both.” (Kuras et al.[2] p. 2)  
Environmental heat load! PHE! f Tair;H;Ws; R; Pð Þdt 

*Note: Exposure itself implies intensity, duration, and frequency.
PHE is inherently linked to thermal stress and strain due to the coupling of exposure with duration and frequency to result in  

a meaningful exposure-response relationship.[9]

Heat Stress The net heat load on a person resulting from the combined thermal effects of the environment (air temperature, radiant temperature,  
humidity, and wind), metabolic heat production, and clothing.[68] 

Heat Stress→f (Tair, H, Ws, R, P, M, Iclo)dt= PHE + M & Iclo
Heat Strain Effects on body physiology that occur as a consequence of heat stress[13]; can lead to a rise in body temperature due to  

body heat storage, dehydration from non-replenished sweat losses, and cardiovascular strain, such as heart rate increases to  
maintain blood pressure (Vanos et al[6]).

- Incorporates physiologic factors to determine if heat stress is compensable or uncompensable over time
Heat Strain→(Tair, H, Ws, R, P, M, Iclo, Tsk, , SR) = Heat stress + Tsk, , & SR

temperature (Tair), humidity (H), wind speed (Ws), radiation (R), atmospheric pressure (P), metabolic rate (M), clothing Insolation (Iclo), skin temperature 
Tskð Þ, skin wettedness (ω), and sweat rate (SR). 

Figure 1. Environmental and inter-individual factors influencing a) personal heat exposure (PHE), b) heat stress, and c) heat strain. See . 
Table 1 for definitions. To determine heat strain in individuals over time (t, dt) we must know the spatial-temporal evolution of 
temperature (t), humidity (h), wind speed (Ws), radiation (r), atmospheric pressure (p) of the surrounding environment, their metabolic 
rate (m), clothing insolation (Iclo), skin temperature Tskð Þ, skin wettedness (ω), and sweat rate (SR). Relevant definitions are listed in 
Table 1
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Misrepresentations in PHE research

Misrepresentations across diverse individuals (per
sonal profiles and behaviors) and scales in PHE 
research may be caused by neglecting the hetero
geneous nature of personal experiences and using 
observations that are not representative of an indi
vidual’s situation [5,6,39–42]. 340 thermal stress 
indicators exist, of which 187 can be mathemati
cally calculated using only meteorological data 
[43]. However, meteorology-based indicators only 
partially explain the variance in physiological heat 
strain [44]. For example, many thermal indices 
describe heat/cold exposure from a generalized 
thermal experience, i.e. “average humans” wearing 
the same clothing under specific activities (often 
low metabolic rate) and climates [3]. The use of 
thermal indices to address PHE in which certain 
individuals are underrepresented (e.g. women, 
children, pregnant women) neglects the inherent 
physiological vulnerability in some groups of con
cern – the most critical being older adults who face 
a reduced capacity to sweat and thus limited eva
porative heat loss [45,46]. Finally, misrepresenta
tion due to the use of sparse stationary 
measurements can cause incongruence in heat 

data for decision-making at specific scales [47]. 
For example, Hass et al [48], found a wider range 
of temperature variations in individual experi
enced temperature (IET) collected with wearable 
sensors compared to data from fixed synoptic 
weather stations.

To overcome these misrepresentations, cutting- 
edge research is conducted in different scientific 
fields with diverse measures and settings. For 
instance, thermal physiology often assesses heat 
strain experienced by healthy people in response 
to the intensity, duration, and frequency of heat 
exposure under controlled-laboratory settings 
while using medical-grade equipment for physiolo
gical measurements (e.g. to assess cardiovascular 
and renal strain [12,20,49–51]). Lately, a “receptor- 
oriented” approach has been adopted using nonin
vasive wearable sensors to capture the three expo
sure dimensions in free-living conditions within 
IET studies [5,42,48,52–54] and occupational health 
studies [34,39,52,55–57]. This paradigm shift is 
aligned with the call from the health geography 
field to investigate dynamic environmental expo
sures rather than static approaches [58]. However, 
more methodological and applied work is needed to 

Figure 2. Relationships between the need for heat loss (positive values) or heat gain (negative values) to reach thermal equilibrium 
(Ereq, x-axis) against the potential evaporative heat losses given a set of environmental conditions and clothing insulation (Emax , 
y-axis). The ratio of Ereq-to- Emax relates the degree of thermal stress to heat exerted on the body (skin wettedness, ωreq). Critical 
values of ωreq are represented with black lines: 0.5 for low-efficient heat loss (thick line) and 1 to limit compensable/uncompensable 
heat stress (thin line). The purple lines represent values of Emax sweat for the young/acclimatized and elderly/non-acclimatized when 
the liquid sweat loss is non-replenished. The vertical gray line at Ereq = 0 indicates thermal equilibrium. Therefore, the numbered 
zones correspond to 1) cold stress, 2) compensable heat stress (CHS), 3) CHS with low sweating efficiency (CHS + Low Seff Þ, 4) 
uncompensable heat stress (UHS), 5) CHS with limited sweat rate (CSH + LS), and 6) CHS + Low Seff + LS.
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address the context-specific heat experiences, espe
cially for the most vulnerable, harmonizing and 
improving methods and techniques among scienti
fic disciplines.

Study purpose and objectives

We advance PHE research beyond heterogeneous 
environmental heat loads toward quantifying com
pensability in heat stress (and thus the potential for 
heat strain) across diverse individuals, climates, and 
scales. We apply a human-environment heat 
exchange model to improve PHE assessments 
based on thermal load calculations. Our modeling 
framework leverages 1) long-term, large-scale cli
mate data from three cities and short-term micro
climate data for one city ; and 2) personal attributes 
for three profiles (a middle-aged male, a middle-aged 
female, and a female >65 years) to estimate instanta
neous thermal loads. Emphasis is placed on ther
mally compensable versus uncompensable heat 
stress conditions based on evaporative heat losses. 
We hypothesize that 1) equivalent thermal loads will 
lead to different instances of compensability depend
ing on personal profile, 2) the climate context will 
alter the frequency of CHS and UHS, with hot and 
humid creating the most dangerous conditions; 
and 3) fine-scale microclimate data will facilitate 
a better understanding of an individual’s net heat 
load over time.

Materials and methods:

Human-environment heat exchange models to 
address personal heat exposure

Here, we use the Partitional Calorimetry approach 
outlined by Cramer and Jay [18], which allows sepa
rate calculation of each heat transfer component 
based on the fundamental laws governing dry and 
latent heat transfer. Unlike other methods, 
Partitional Calorimetry is physiologically based but 
not numerically demanding, facilitating easy model
ing of numerous environmental and behavioral 
hypotheses. Human heat exchange models are based 
on the fundamental human heat balance equation:

S ¼ M � Wk � R � C � K � E Wð Þ (1) 

where S represents the rate of internal heat accu
mulation (or storage); M is the production of heat 
by metabolism; Wk is external work rate (or the 
heat produced by the human body) while perform
ing activities; R, C, and K represent dry heat 
transfer by radiation, convection, and conduction, 
respectively; and E is the heat exchange by eva
porative heat dissipation. However, the internal 
heat production (HprodÞ corresponds to the differ
ence between M and Wk. Further, as the surface 
area of skin in direct contact with solid surfaces 
tends to be minor, conduction (K) can be 
neglected. As a result, equation 1 takes the follow
ing form (equation 2):

S ¼ Hprod � R � C � E Wð Þ (2) 

The body heat accumulation (S) (cumulative whole- 
body thermal load change) is estimated by integrating 
Equation 1 over an interval of time (dt) as follows:

S ¼ ò
t1

t0
Hprod � Rskin � Cskin � Cres � Eres � Hevapskin

� �
:dt Jð Þ

(3) 

As environmental heat exchanges occur on the 
skin surface and through respiration, equation 3 
is divided into the convective exchange and eva
porative heat loss associated with skin and respira
tion. Thus, convective fluxes include Cskin and Cres, 
while evaporative losses include Hevap skin and Eres.

To evaluate thermal compensability, we investi
gate the relation of the heat loss required to 
achieve the heat balance (Ereq) and the maximum 
evaporative capacity (Emax) based on the ambient 
environment and clothing (i.e. equation 16 in 
Cramer and Jay [18]). In equation 1, if we assume 
that heat stress is compensable via heat loss by 
sweat evaporation and a rate of body storage (S) 
equal to zero, Ereq can be expressed as:

Ereq ¼ Hprod � Rskin � Cskin � Cres � Eres Wð Þ
(4) 

For the current study, we quantify PHE as the 
instantaneous thermal load (equation 4) to 
account for the potential net heat exchange in an 
instant of time and determine CHS versus UHS. If 
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uncompensable (i.e. UHS: Ereq � Emax) at one 
instant, the thermal load will be positive over 
a longer time and the body will likely gain heat, 
and vice-versa (Figure 2, equation 5). CHS occurs 
when enough heat can be lost to the environment 
so that the body is not in a continuous state of heat 
gain or (S< 0) assuming a steady-state core tem
perature, then:

CHS : Ereq � Emax Wð Þor
Ereq

Emax
¼ ωreq

� 1 NDð Þ (5) 

In equation 5, the skin wettedness “required” for heat 
balance (ωreq) is thus based on the ratio of Ereq to 
Emax [18]. Skin wettednes is also a measure of the 
proportion of wet skin at any given time [59]. When 
ωreq is close to 0.5, the efficiency of sweat declines 
indicating high heat stress (thick black line in 
Figure 2) and also indicates the effectiveness of eva
porative heat loss from the skin surface (Hevap skin). 
Throughout this paper, we use ωreq to help assess 
compensability and degree of thermal stress in com
bination with sweat limits and efficiency, resulting in 
five zones of heat stress (Figure 2).

In addition to environmental and clothing fac
tors, evaporative heat loss also depends on physio
logical factors, such as maximum wettedness 
(ωmax), which is affected by acclimatization, and 
the maximum sweat rate. Here, to include accli
matization, we multiply Emax by ωmax (fraction 
between 0 and 1) based on the given profile 
(Table 2). Second, we calculate the maximum eva
porative heat loss linked with the maximum sweat 
rate (Emax sweat) for each profile (purple lines and 
Zones 5 and 6 in Figure 2). Hence, we assume 
a constant Emax sweat (equation 9 in Morris et al. 
[60] Suppl. Material) based on the assumption that 
all sweat evaporates, therefore neglecting sweat 
efficiency. Finally, as assumed in partitional calori
metry, we fix mean skin temperature at 35°C [61].

Environmental input data

Environmental data needed for the model includes 
air temperature (Tair), mean radiant temperature 
(MRT), relative humidity, wind speed, and 

atmospheric pressure. In the given paper, city 
comparisons are representative of the typical cli
mate at the synoptic scale, and microclimate data 
represent a localized scale.

For climate data, weather observations for 
a “Typical Meteorological Year” (TMY) are used 
based on the warm season (June to September) in 
Phoenix, Miami, and New York: Phoenix-Sky 
Harbor International airport (33.45°N, −111.983° 
W, 337 m.a.s.l), Miami International airport (25.8° 
N, −80.3°W, 11 m.a.s.l), and New York Central 
Park Observatory (40.7793°N, −73.9691°W,40 m. 
a.s.l). These cities allow for the inclusion of differ
ent types of heat: hot-dry, hot-humid, and a mix, 
respectively. Climate data correspond to TMY ver
sion 3 (TMY3) [62] data, often used for building 
energy design and performance modeling.

We also collected microclimate data with 
a high-end human-biometeorological station that 
measures Tair, humidity, wind speed, and six- 
directional short-wave and long-wave radiation 
(to estimate MRT) – also known as MaRTy [63]. 
Diurnal data were collected during the first sum
mer heatwave of 2022 in the southwest US, result
ing in a heat warning [64] for Phoenix from 
June 8–12th. The measurements were taken from 
June 9–11th, 2022, in a single-family home back
yard located in an open low-rise (Local Climate 
Zone 6) neighborhood in Phoenix, Arizona. We 
chose to observe the microclimate in an open 
space (the sky view factor at that location is 
0.909) to be consistent with the measurements 
from weather stations.

Personal profiles: Physiological inputs

We set up three personal profiles: middle-aged 
females, middle-aged males, and females above 
65 years (Table 2) to incorporate inter-individual 
factors such as anthropometrics (consequently, 
metabolic demand and sex), acclimatization, and 
sweat rate (to add aging differences). We did not 
consider intra-individual factors and do not 
address changes over time in the given paper. 
The middle-aged male profile corresponds to the 
average personal profile in the UTCI-Fiala model 
[65], with a mass of 73.4 kg and a surface area (Ad) 
of 1.85 m2. All profiles have equivalent effective 
radiative body area, emissivity, and clothing 
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insulation values (Table 2). We assume standing 
individuals with a clothing level of 0.57 Iclo (trou
sers, short-sleeved shirt). The effect of aging on 
thermoregulation in the model is accounted for 
with a reduction in the maximum sweat rate [45] 
and the ωmax of an unacclimatized person [66]. As 
the variability in the heat experienced between sex 
in this study is expressed with changes in anthro
pometrics, we choose to address the aging effects 
with just one of the two sex profiles to reduce 
redundancy in the results.

We ran the human-environment heat exchange 
model for the three personal profiles and cities to 
compare the following situations:

TMY summertime climate:

● Case 1: Walking (3.5 metabolic equivalents 
(METs)), emulating indoor conditions 
(MRT = Tair), and facing calm winds 
(0.5 m/s).

● Case 2: Climate data same as Case 1, still assum
ing MRT = Tair and calm winds, but varying 
METs to estimate Hprod: resting 1.8 METs 
(standing, fidgeting), walking 3.5 METs (walk
ing, 3.0 mph, moderate speed, not carrying any
thing), jogging 7 METs (jogging, general) [67].

● Case 3: Walking (3.5 METs), MRT = Tair, but 
varying wind speed. Sensitivity test, with 
wind speed according to the Beaufort wind 
scale of calm (0.5 m/s), light breeze (3 m/s), 
and moderate breeze (7 m/s).

● Case 4: Walking (3.5 METs), facing calm 
winds (0.5 m/s), with variable radiation levels: 
Indoor (MRT = Tair) versus partly and fully 
outdoor sun-exposed conditions using syn

thetic MRT values. Only daytime data (6:00 
to 18:59 local time) were assessed.

For Case 4, we estimated synthetic MRT values 
from TMY3 data using an offset value to increase 
the hourly Tair based on normalized solar radia
tion values (Sin). This criterion was chosen to 
simulate realistic MRT daytime variability. 
Hence, we include only the short-wave radiation 
portion of MRT. To obtain the normalized values, 
we take global radiation from TMY data and scale 
them to maximum solar radiation of 1366 W/m 
[2] (the solar constant, Scon). We offset Tair values 
for partly cloudy conditions in a range from 0 and 
+15°C and clear sky from 0 to +30°C. The 15°C 
and 30°C thresholds were chosen based on Tair 
and MRT differences in microclimate measure
ments (Figure 10 c) during a partly cloudy day 
(2022–06-09) and a clear sky day (2022–06-11) in 
Phoenix. Figure 4 displays the MRT values for the 
hottest day in the TMY from Phoenix used to test 
Case 4.

MRTpartlycloudy ¼ Tair þ
Sin

Scon

� �

� 15
� �

ð
�CÞ (6)  

MRTclearsky ¼ Tair þ
Sin

Scon

� �

� 30
� �

ð
�CÞ (7)  

Case 5) Microclimate Data – Summer Heatwave in 
Phoenix: Heat load estimates are calculated on 
extreme heat days using varying degrees of personal 
acclimatization (Table 2). Individuals are assumed to 
be walking (3.5 METs); variable outdoor wind speeds 
and MRT stem from collected microclimate data and 

Table 2. Personal profiles used as examples in the current study. Specific parameters are provided for middle-aged male/female and 
elderly female. Personal variables needed within the model include body mass, effective body radiative area, the area-weighted 
emissivity of the clothed body surface, clothing insulation value, maximum skin wettedness, and maximum sweat rate.

Middle-aged female Middle-aged male Elderly female

Mass (kg) 56.2 73.4 73.9
Height (m) 1.64 1.71 1.62
Ad: Dubois-Dubois surface corporal area (m2) 1.60 1.85 1.78
Effective body radiative area (ND) 0.70 0.70 0.70
Area-weighted emissivity of the clothed body surface (ND) 0.98 0.98 0.98
Insulation value (Iclo) (clo) 0.57 0.57 0.57
Maximum skin wettedness (ωmax) (ND) fully acclimatized (1.0) fully acclimatized (1.0) Unacclimatized (0.85)
Maximum sweat rate linked to Emax sweat (L/h) 0.75 0.75 0.51
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are compared to climate data for the hottest day in the 
Phoenix TMY file.

Case 1 is the control case for climate summertime 
analyses (Cases 2, 3, and 4) with MRT = Tair, and 
a fixed wind speed of 0.5 m/s, while reference climate 
results for Case 5 correspond to the model results from 
TMY data with variable wind speed and estimated 
MRT clear sky. Therefore, Figure 10 has a reference to 
control ωreq (yellow line in Figure 10b) as acontrol case 
because ωreq is estimated using Case 1 data.

Analysis

All results are displayed within diagrams akin to 
Figure 2 using bivariate histograms that illustrate data 
counts over the ratio of Ereq (x-axis) and Emax (y-axis). 
This visualization shows the required skin wettedness 
(ωreq), also known as Heat Stress Index, HSI [68]. The 
color intensity in the bivariate histograms represents 
the percent of hours during summertime for Ereq=Emax 

combinations. Thus, each pixel is interpreted as the 
percentage of time in a city during which its summer 
climate requires people to lose/gain a specific heat flux 
(Ereq) to achieve thermal equilibrium, and the potential 
for heat loss ðEmax and Emax sweat), with results falling 
into one of six zones (Figure 2). The histograms display 
the number of observations in discrete bins, equally 
separated based on a 25 W range.

Results

Overview

Results reveal three critical advancements in mod
eling capabilities that are missing in PHE assess
ments from common approaches. First, we 
demonstrate the ability to model diverse popula
tions using PHE information. Second, we under
line the differential impacts on PHE among 
different “types” of heat (e.g. humid hot, dry 
hot); these thermal load signatures are missed 
when merely assessing Tair or using temperature- 
humidity indices. Third, we quantify how PHE can 
be misrepresented if using sparse weather station 
data that does not correspond to actual microcli
mate data where people are exposed.

Typical summertime climates in three cities

Case 1: Figure 5 displays differences in Ereq, Emax, 
and ωreq between permutations of three personal 
profiles and climates. The elderly female 
(Figure 5c,f,i, right column) is the most likely to 
be under high thermal stress. This profile shows 
a high percentage of time within Zone 3 (CHS + 
Low Seff ), Zone 4 (UHS), and Zone 6 (CHS+ Low 
Seff + LS) within the Phoenix and Miami summer
time: 43.8%, 14.0%, and 36.4%, respectively, in 
Phoenix, summing to 94%, and 63%, 37%, and 
0%, respectively, in Miami, summing to 100%. 
New York results were lower at 48%, 4.6%, and 
0.4%, respectively. These zones depict low effi
ciency in evaporative heat loss and thus a danger 
in rising core temperatures for the older female 
profile if behavioral actions to lower their thermal 
load are not taken.

Figure 5 shows the different nature of the physio
logical constraints caused by thermal stress between 
climate types, as evidenced by the summertime pre
dominance in each of the zones for Ereq/Emax com
binations. For instance, on average for Miami and all 
personal profiles (Figure 5d-f), more than 
86% percent of the summertime weather conditions 
lead to low efficiency in sweat evaporation but are 
still compensable via evaporative heat loss (Zone 3). 
However, if an elderly person is walking during 
summertime, they would remain in Zone 3 for 62% 
of the time, and under UHS (Zone 4) 37% of the time 
(compared to 0.01% for a middle-aged female).

In contrast, the heat stress exerted on people in 
New York and Phoenix summer (higher tempera
tures than Miami, yet drier) is more variable and, 
most of the time, compensable. In those cities, heat 
stress can either be linked to low efficiency in 
evaporative heat loss (ωreq >0.5, or low Seff zones) 
or demand for sweating that exceeds the sweat rate 
of a person, which is more likely to occur in 
elderly people. Phoenix (Figure 3a-c) is character
ized by very low humidity and very high tempera
tures during the summer, except during the 
monsoon season with higher humidity and some 
precipitation. In response, a pedestrian would 
experience CHS with low Seff (Zone 3) during 
66% of the summer.
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Case 2: Figure 6 displays the variability of 
Ereq/Emax combinations when the activity level varies 
for the middle-aged female profile for three climate 
types. Results for the remaining profiles are in Suppl. 
material SS1.

This sensitivity test indicates how people can 
fall into UHS while performing vigorous activ
ities during summertime in dry or humid heat. 
The rate of whole-body heat loss required (Ereq) 

to achieve thermal equilibrium increases with 
exercise intensity, thus shifting histograms to 
the right with intensity moving from fully 
CHS for resting to high UHS frequencies 
when running (i.e. 100% of the time for 
Miami, 79% for Phoenix, and 48% for 
New York).

Case 3: The effect of wind speed changes on 
whole-body heat exchanges for the middle-aged 

Figure 3. The MaRTy human-biometeorological station located in a single-family home backyard in an open low-rise Local Climate 
Zone (LCZ 6, SVF: 0.909) neighborhood in Phoenix, Arizona. The portable station monitors net radiation in three directions to provide 
highly accurate MRT values, air temperature, relative humidity, and wind velocity.

Figure 4. Simulated MRT hourly data for the hottest day in the TMY file from Phoenix (July 16th, 2022). Control corresponds to 
indoor conditions e.g. MRT equal to air temperature.
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Figure 5. Case 1 scenarios – Two-dimensional histograms of the rate of required whole-body heat loss, Ereq (x-axis), and the 
maximum potential evaporative rate, Emax (y-axis,) for three personal profiles (columns) – Middle-aged female; Middle-aged male; 
Elderly female––while walking in the summertime in Phoenix, Miami, and New York (rows). Black diagonal lines: ωreq = 0.5 (thick) 
and 1 (thin). Purple lines: values of Emax sweat for the young/acclimatized and elderly/non-acclimatized (lighter shade) when liquid 
sweat loss is not replenished. Vertical gray line at Ereq = 0 indicates thermal equilibrium.

Figure 6. Case 2 scenarios – Two-dimensional histogram for the rate of required whole-body heat loss, Ereq (x-axis), and the 
maximum potential evaporative rate, Emax (y-axis), for the middle-aged female profile performing different activities (blue =resting, 
grey =walking, pink =jogging). The model was run using hourly TMY summertime data for Phoenix, Miami, and New York. Black 
diagonal lines: ωreq = 0.5 (thick) and 1 (thin). Purple lines: values of Emax sweat for the young/acclimatized when the liquid sweat loss 
is non-replenished. Vertical gray line at Ereq = 0 indicates thermal equilibrium.
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woman is displayed in Figure 7. Results for the 
remaining profiles are in Suppl. Material SS2.

As wind speed increases, Emax also increases, 
which is depicted by the vertical displacement in 
the histograms. However, if the maximum sweat 
rate is exceeded (points above purple lines or 
Zones 5 (CSH + LS) and 6 (CSH + LS + Low 
Seff )), the maximum amount of sweat, Emax sweat, 
will not be enough to maintain thermal equili
brium. This type of thermal stress also exacer
bates the risk of dehydration. The convective 
loss/gain of heat (Cskin) also increases, yet the 
direction (gain or loss) depends on the air-to- 
skin temperature gradient. For example, convec
tion is often a heat gain in the Phoenix summer 
due to the prevalence of temperatures above the 
skin temperature assumed in the model (>35°C), 
which is reflected by the upward histogram 
shifts in Phoenix (Figure 7a). However, in 
New York and Miami, histograms shift left 
with higher winds due to convective cooling 
(Figure 7b-c). At higher wind speeds, the ther
mal environment in Miami and New York 
results in lower ωreq values, and during cooler 
New York nights in a TMY summer, the mod
erate winds can feel cold. In contrast, during the 
dry Phoenix summer, a middle-aged female 
experiences CHS at a ωreq < 0.5 (Zone 2 and 5) 
33% of the time under calm winds and 89% 
under a moderate breeze. However, with higher 

wind speeds, the potential heat losses in Phoenix 
are compromised by 14% (Zone 5) due to sweat 
rate limitations.

Case 4: The results of changing daytime radia
tion levels (comparing indoor, partly cloudy, and 
clear sky conditions) for a middle-aged female 
walking are shown in Figure 8. Results for middle- 
aged males and elderly females are in Suppl. 
Material SS3.

The net effect of heat stress under increased 
radiative fluxes is akin to adding heat via meta
bolic energy (Figure 6). With higher radiation 
increasing the thermal load, more whole-body 
heat loss is required to achieve heat balance 
(Ereq), which is demonstrated by the rightward 
displacement of the histograms moving from 
CHS (Zone 2) to CHS + Low Seff (Zone 3) and 
even into UHS (Zone 4) under clear-sky condi
tions. In Miami, under conditions where 
MRT = Tair, the heat loss through evaporation 
of sweat, although compensable, is inefficient for 
most of the summer (CHS: 14%, CHS + Low 
Seff : 86%, UHS: 0%). These results show that 
CHS can quickly turn uncompensable with 
increased solar radiation. For clear sky condi
tions in Miami, CHS conditions are infrequent 
(10%), while conditions become compensable 
(yet with Low Seff (Zone 3)), 60% of the time, 
and are within UHS 30% of the time if no 
adaptative measures are taken.

Figure 7. Case 3 scenarios – Two-dimensional histogram for the rate of required whole-body heat loss, Ereq (x-axis), and the 
maximum potential evaporative rate, Emax (y-axis), for the middle-aged female personal profile walking while facing different 
constant wind speeds at human height (gray = calm winds (0.5 ms−[1]), light blue = light breeze (3 ms−[1]), dark blue = moderate 
breeze (7 ms−[1]). The model was run using hourly TMY summertime data from Phoenix, Miami, and New York. Black diagonal lines: 
ωreq = 0.5 (thick) and 1 (thin). Purple lines: values of Emax sweat for the young/acclimatized when the liquid sweat loss is non- 
replenished. Vertical gray line at Ereq = 0 indicates thermal equilibrium.
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Figure 9 displays the ωreq hourly variation dur
ing the hottest day in the TMY of Phoenix to 
group model results for all scenarios with climate 
representative data. The model representation of 
each term in equations 2 and 4 (Hprod, Cþ Rskin;

Cres; Eres; Ereq and Emax) for the same day is pro
vided in Supplementary material SS4 and SS5.

For a middle-aged female in Phoenix, the high
est heat stress is experienced during a hot 
summer day when performing a vigorous activity 
(Case 2) and under high solar radiation levels 
(Case 4) (Figure 9). In both cases, the instanta
neous heat load reaches conditions of UHS. In 
contrast, lower PHEs occur while resting or walk
ing at higher wind speeds.

Microclimate data vs. weather station data

Case 5 demonstrates the difference between using 
fine-scale microclimate data versus large-scale cli
mate data for each personal profile (Figure 10) and 
the same comparison for individuals performing 
different activities (Figures 6 and 11). Although 
stationary microclimate data do not precisely fit 
the experienced heat of a person in their daily 
routine, this example demonstrates how the loca
lized, high-end data (i.e. high-accuracy MRT) cap
ture better the heat flux source areas and their 
time variability than standard weather observa
tions. The 20-minute rolling mean of ωreq 
(Figure 10a), shows people experiencing UHS 

Figure 8. Case 4 scenarios – Two-dimensional histogram for the rate of required whole-body heat loss, Ereq (x-axis), and the maximum 
potential evaporative rate, Emax (y-axis), for the middle-aged female personal profile walking in indoor, partly cloudy, and clear sky 
conditions (histogram colors). The model was forced with hourly TMY summertime data from Phoenix, Miami, and New York. Black, gray, 
and purple lines as in .Figure 2

Figure 9. Case 4 – Hourly ωreq estimates for the hottest day in the TMY file from Phoenix (July 16th). Results for the middle-aged 
female profile. Each color corresponds to ωreq for model 1 (Control), 2, 3, and 4. The horizontal lines delimite ω: 0.5 and 1.
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during the daytime while merely walking across 
three extreme heat days in Phoenix. Tair, MRT, H, 
and wind speed that lead to these ωreq values are 
also shown in Figure 10. In contrast, for a similar 
summer day, a regional weather station estimates 
UHS at 8:00 am only (Figure 10b). The datasets 

are not directly comparable because the TMY 
dataset has windier and drier weather conditions 
(Figure 10 f and h) than the microclimate data 
(Figure 10 e and g), as already discussed for 
Cases 1 (Figures 5 and 3, 7), yet provide 
a helpful case study for advancing PHE research.

Figure 10. Case 5 – From top to bottom: (a,b) modeled ωreq (or HSI) for the three personal profiles (Middle-aged Female/Male 
andElderly female, all assumed to be walking); (c, d) air temperature and mean radiant temperature; (e, f) relative humidity; and (g, h) 
wind speed. The left panel corresponds to 1-minute microclimate data during a June 9–11th, 2022 heatwave in Phoenix, AZ, and the right 
panel to the hourly data for the hottest day in the TMY in Phoenix, AZ (July 16th). Graph a represent ωreq as 20-minute rolling means. In 
(a, b), the horizontal lines delimit ωreq: 0.5 and 1, and the yellow line in b) corresponds to the control run (gray line) in Figure 9.
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Figure 11 displays the thermal load differences 
and potential heat loss for all profiles performing 
different activities using microclimate data. Similar 
to Cases 1 and 2 (Figure SS1), the elderly female (or 
a non-acclimatized person) shows a higher probabil
ity of being under high thermal stress (Figure 11c) 
because of low sweat loss (CHS + Low Seff ; Zone 3), 
UHS (Zone 4), limited sweat rate (Zones 5 and 6), 
and a combination of the three factors. For instance, 
performing a vigorous activity, such as jogging, dur
ing a heat wave would result in UHS not only for the 
elderly, but would yield UHS 90% of the time in 
a middle-aged female, 98% of the time in a middle- 
aged male, and 100% of the time in an elderly female. 
Additionally, comparing Phoenix results using the 
two meteorological forcing methods, the microcli
mate exposure results in problems arising in heat 
dissipation if water is not well replenished even 
when resting (seen by comparing Zone 5 (CHS 
+LS) and Zone 6 (CHS + Low Seff +LS) in Figure 11 
a,b,c and Figure 6 a,b,c).

Discussion

Contextual findings and relationships

This work extends PHE research by linking heat 
exposure with the ability to estimate heat stress and 
strain over time. We also highlight pitfalls that can be 
incurred when considering homogeneous heat 
experiences for people with different biophysical char
acteristics. For instance, related work by Ioannou et al 

[44]. underlines the need for future research that 
describes heat stress and strain in non-occupational 
populations performing various activities in a wide 
range of environmental settings considering inter- 
and intra-individual factors. Grundstein and Vanos 
[3] caution the misuse of thermal indices and provide 
applicability notes and scenarios for numerous ther
mal indices, including UTCI, PET, mPET, and the 
WBGT index. By utilizing CHS and UHS zones 
(Figure 2) through modeling, we illustrate the extent 
and type of thermal stress estimated given personal 
characteristics/population diversity, activity, climate 
type, solar exposure, and scale of data. Sensitivity 
tests exhibit how these factors impact heat stress or 
strain and the consequences of misrepresenting an 
environment or the person’s physiology in PHE 
research. The ability to model these factors to assess 
CHS and UHS is largely based upon the dynamic 
relationship between convective heat and vapor trans
fers linked to personal and environmental inputs [69].

For example, the distinction between males and 
females is expressed by a higher mass and surface 
corporal area in the male’s profile. The dimension of 
the body surface area (Ad) is the interface that med
iates heat exchanges with the external environment: 
both Ereq and Emax are proportional to Ad. 
Simultaneously, body mass has two roles from 
a thermodynamic perspective: working as an internal 
heat sink, thus contributing to thermal inertia, and 
regulating the energy expenditure cost of weight- 
bearing exercise [69]. Therefore, a higher mass 

Figure 11. Case 5 – Two-dimensional histogram for the rate of required whole-body heat loss, Ereq (x-axis), and the maximum 
potential evaporative rate, Emax (y-axis), for the three personal profiles performing different activities (histogram colors) during a heat 
wave (June 9–11th of 2022) in Phoenix, Arizona. The model was run using the 1-minute average of data collected with MaRTy in the 
backyard of a single-family home. Black diagonal lines: ωreq = 0.5 (thick) and 1 (thin). Purple line: values of Emax sweat for the young/ 
acclimatized when the liquid sweat loss is not replenished. Vertical gray line at Ereq = 0 indicates thermal equilibrium.
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assumes higher internal metabolic heat and more 
intense external heat exchanges, thus demanding 
more heat loss (Ereq). As a result, the middle-aged 
male profile remains within the CHS area more fre
quently, even with limited sweat (i.e. Zone 5) than the 
middle-aged female profile (Figure 5 a,b and Figure 11 
a,b). However, a higher Emax implies that, due to the 
higher surface area, the male group would have to 
sweat more to compensate for the heat and would 
dehydrate faster than other groups.

This work also exemplifies the compounding 
effects of sweat impairments through modeling pro
files with low efficiency in evaporative sweat loss (see 
CHS + Low Seff + LS zone in Figure 5c). Low sweat 
efficiency affects the elderly and people who take 
medications such as anticholinergics, antidepres
sants, and opioids (for further information see Ebi 
et al [1].). Additionally, the inter-individual variabil
ity (by age and body surface area) in heat stress 
obtained with this modeling approach is in accor
dance with the most susceptible groups to heat stress 
described in direct calorimetry studies [23].

We also demonstrate the importance of including 
people’s activity in PHE assessments. Changes in meta
bolic heat production (HprodÞ lead to different Ereq to 
achieve heat balance, even among people with similar 
physiological features in the same environment (see Ereq 

variations in Figures 6 and 11). Hprod rises with exercise 
intensity and depends on mechanical efficiency or 
movement economy [20,70]. Hence, Hprod is a critical 
factor for understanding potential exertional heatstroke 
[13] and heat-related illnesses among highly vulnerable 
groups such as outdoor workers and athletes [1,71,72]. 
Ereq increases with activity level, increasing the required 
skin wettedness (HSI orEreq : Emax) and is thus linked 
to UHS and maintaining a stable internal temperature, 
which is a livability factor (ability to work, exercise, etc.) 
that PHE assessments can also undertake [6].

An additional bias unveiled in this research is the 
incomplete representation of various types of envir
onmental heat in PHE assessments. The contrasting 
thermal exposures between the summertime PHE of 
Phoenix (dry-heat prevalence), Miami (humid-heat 
prevalence), and New York (mix-type) demonstrate 
stark differences in CHS and UHS zones by profile. If 
a PHE assessment relies solely on Tair (i.e. IET 

studies), then convective, radiative, or evaporative 
heat fluxes (and thus heat stress) cannot be deter
mined. Notably, Tair, although most easily measured, 
cannot be taken as a complete indicator of heat stress, 
as indicated by McGregor and Vanos [73] and Kuras 
et al [2]. Results here show the significance of includ
ing solar radiation in PHE work to assess outdoor heat 
stress and strain, which, if ignored, can cause gross 
misrepresentation of actual thermal loads, even under 
equivalent Tair, humidity, and wind speed (Figure 8). 
Numerous studies show that MRT is a more appro
priate indicator than Tair for thermal comfort in sum
mertime conditions [63,74,75]. The high thermal 
loads under clear-sky conditions also show the impor
tance of strategic urban design and green infrastruc
ture to mitigate heat, where radiation (e.g. MRT) is 
easily modified through design [76–78].

The reduction within Miami in evaporative effi
ciency , which is the body’s most efficient way to 
dissipate heat [79], was represented by the high 
proportion of results within UHS or CHS + Low 
Seff . Physiological research also points to the impor
tance of humidity and skin wettedness as critical 
factors for comfort, heat stress, and heat strain [80]. 
Understanding the impact of humidity at high tem
peratures is paramount when choosing methods to 
address PHE in the tropics, where the gap in PHE 
research and heat mortality studies is large[81].

Lastly, the modeling scenarios highlight the 
twofold role of wind speed in improving or wor
sening PHE (Case 3). Wind speed increases the 
convective and evaporative heat exchanges 
through the skin clothing surface [20], yet the 
convective impact of wind (gain or loss) also 
depends on the body-to-air temperature gradient 
[82]. For instance, Phoenix was the only city with 
a large increase in Ereq via incoming convective 
heat, while higher wind speeds in Miami and 
New York alleviate PHE (Figure 7).

Finally, many studies have shown that sparse 
weather station data can misrepresent people’s IET 
[5,39,48,52]. The microclimate data allow for the ana
lysis of thermal compensability during a heatwave at 
a finer scale. As in Hass et al [48], we found that PHE 
is more variable using microclimatic data and that 
UHS prevalence is higher with increasing activity 
level. In general, PHE could be misrepresented by 
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weather station data when people modify their beha
vior during peak heat, thus underestimating their heat 
stress or strain. For instance, Sugg et al [52] indicated 
that under high air temperatures there is a decrease in 
the agreement between the heat index estimated with 
data from wearables and weather stations, concluding 
that in situ weather stations provide an approximate 
yet imprecise measurement of heat exposure for out
door workers.

Advancing future PHE research

PHE analyses based on “source-oriented” assess
ments and population-level thermal indices are 
“one-size-fits-all approaches” [83]. In this work, 
we promote a “fit-for-purpose” approach by apply
ing fine-scale observations and individualized 
human-environment heat exchange modeling to 
estimate CHS and UHS. Analyzing people’s varying 
space-time heat transfer informed by their physiol
ogy and particular environmental context provides 
a more dynamic understanding of thermal load.

Individualized assessments of PHE provide a 
more thorough understanding of how people experi
ence thermal limitations on a daily basis. Holistic 
PHE assessments will increase personal adaptative 
capacity and improve monitoring methods at the 
population level. The main challenges for obtaining 
reliable assessments are the availability of accurate 
input data––including adequate physiological inputs 
and microclimate physics––and applying an asser
tive and empathetic communication method. 
According to Krayenhoff et al [84], an assessment 
based on modeled results is trustworthy when repre
sentative input is validated. Here, geographical fem
inist theories can be adopted [85,86] to incorporate 
multiple viewpoints to improve objectivity and 
recognize knowledge as context-specific. Finally, an 
empathetic communication model is relevant 
because PHE research involves working with the 
community, which is an opportunity to empower 
people with knowledge of their own thermoregula
tory system and provide them with tools to prevent 
or cope with dangerous heat exposures.

Study limitations

The main limitations of this study are linked to the use 
of stationary measurements in a Lagrangian problem 

(because PHE requires individual travel patterns [2]) 
and the lack of measured or estimated thermal strain. 
We indirectly address the misclassification through 
instantaneous thermal load and the compensability of 
heat stress instead of estimating heat storage over time 
(i.e. heat load for different time intervals and frequen
cies). As we focused on the instantaneous thermal load, 
we considered fixed values of time for clothing insula
tion, skin temperature, and metabolic rate, which 
implies we are also neglecting the behavioral mechan
isms of thermoregulation to alleviate physiological heat 
strain. Future work should include observational stu
dies to validate the heat load variability of free-living 
people moving through environments. Estimations of 
net heat load and heat storage instead of IET will also 
advance this area of research (e.g. applying thermal 
exposure metrics introduced in Hondula et al [5], 
with heat load, along with heat strain measurements, 
as in Sugg et al [52]).

Future research can go beyond exposure intensity 
or only using past data or short time periods to 
consider variable exposure doses and expected beha
vioral adaptations. For example, the proposed 
method allows one to estimate minimum thresholds 
of thermal load to develop specific thermal illnesses 
(see Cramer and Jay [18]). Since the temporal reso
lution of the input data is important for the whole- 
body heat accumulation over time, sub-hourly 
observations are required to analyze exertional heat 
stroke, yet epidemiological models of heat deaths 
apply 24-h data [6]. In general, future PHE research 
should strengthen the representation of groups of 
concern for adaptation and resilience plans, also 
helping with input information to understand cog
nitive impacts [87], productivity [30], and sleep [88], 
and to further implement evidence-based cooling 
strategies at personal (e.g. clothing), population 
(e.g. occupational health policies), and the built 
environment level (e.g. shade infrastructure) [7].

Conclusions

This study extends heat exposure research by linking 
PHE to thermal stress and strain over time, incorpor
ating personal attributes rather than focusing solely 
on environmental heat loads. The scope and defini
tion of PHE were applied to assess compensability 
under heat stress using a human-environment heat 
exchange model. We demonstrate how to consider 
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the time-space variability of whole-body net heat 
loads, including inter-individual physiologic features 
and metabolic heat production, to advance PHE mod
els. The novel methodology and visualizations illus
trate the extent and type of heat stress utilizing CHS 
and UHS zones.

Our results reveal misclassifications of heat stress 
and strain due to an inaccurate differentiation of dry 
or humid heat in PHE research. We also demon
strate the importance of including people’s activity in 
PHE assessments and microclimate data that are 
representative of people’s daily routines. Criteria 
are outlined to provide reliable, accurate, and inclu
sive PHE evaluations connecting exposure, heat 
stress, and strain, while using physiological-based 
methods to avoid misclassifications of health 
impacts within groups of concern.

Our work initializes a paradigm shift in PHE 
research from traditional, instantaneous heat load 
assessments toward dynamic exposure modeling by 
employing human-environment heat exchange 
observations and simulations. The dynamic 
approach does not separate exposure from health 
outcomes when studying heat contact and recog
nizes the potential for future work to increase indi
vidual adaptative capacity with a focus on vulnerable 
and underrepresented groups in heat risk research.
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Abbreviations

Abbreviation Definition

Ad Dubois-Dubois corporal surface area

C Dry heat transfer by convection

Cresp Convective exchange by respiratory system

Cskin Convective exchange at skin surface

CHS Compensable heat stress

E Heat exchange by evaporative heat dissipation

Emax sweat Maximum evaporative heat loss based on 
maximum sweat rate

Emax Rate of evaporation given by the atmosphere and 
wettedness limitation of the body

Ereq Required heat loss to achieve heat balance

Eres Evaporative heat loss from respiration

H Humidity

Hevapskin Evaporative heat loss from the skin surface

Hprod Metabolic heat production

Iclo Clothing insulation

IET Individual experienced temperature

K Dry heat transfer by conduction

Low Seff Low sweat efficiency (ωreq>0.5)

LS Limited sweat to achieve the required evaporative 
loss

M Metabolic rate

METs Metabolic equivalents

mPET Modified Physiological Equivalent Temperature

MRT Mean radiant temperature

MRTclearsky Mean radiant temperature in clear sky conditions

MRTpartlycloudy Mean radiant temperature in partly cloudy 
conditions

P Atmospheric pressure

PET Physiological Equivalent Temperature

PHE Personal heat exposure

R Dry heat transfer by radiation

S Rate of internal heat accumulation, heat storage, or 
cumulative whole-body thermal load change

Smax Maximum sweat rate

Scon Solar constant

Sin Solar incoming radiation

SR Sweat rate

Tair Air temperature

TMY Typical meteorological year

TMY3 Typical meteorological year data version 3

UHS Uncompensable heat stress

UTCI Universal Thermal Climate Index

UTCI-Fiala 
model

UTCI-Fiala mathematical model of human 
temperature regulation

WBGT Wet bulb globe temperature

Wk External work rate

ωmax Maximum skin wettedness

ωreq Skin wettedness
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