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Abstract

The heart, the first organ to develop in the embryo, undergoes complex morphogenesis that 

when defective results in congenital heart disease (CHD). With current therapies, more than 

90% of patients with CHD survive into adulthood, but many suffer premature death from 

heart failure and non-cardiac causes1. Here, to gain insight into this disease progression, we 

performed single-nucleus RNA sequencing on 157,273 nuclei from control hearts and hearts 

from patients with CHD, including those with hypoplastic left heart syndrome (HLHS) and 

tetralogy of Fallot, two common forms of cyanotic CHD lesions, as well as dilated and 

hypertrophic cardiomyopathies. We observed CHD-specific cell states in cardiomyocytes, which 

showed evidence of insulin resistance and increased expression of genes associated with FOXO 

signalling and CRIM1. Cardiac fibroblasts in HLHS were enriched in a low-Hippo and high-YAP 

cell state characteristic of activated cardiac fibroblasts. Imaging mass cytometry uncovered a 

spatially resolved perivascular microenvironment consistent with an immunodeficient state in 

CHD. Peripheral immune cell profiling suggested deficient monocytic immunity in CHD, in 

agreement with the predilection in CHD to infection and cancer2. Our comprehensive phenotyping 

of CHD provides a roadmap towards future personalized treatments for CHD.

CHD includes a spectrum of lesions, often involving oligogenic inheritance, that commonly 

leads to paediatric heart failur—the leading cause of death in infants, children and 

adolescents. CHD affects an estimated 12,000 to 35,000 children under 19 years of age 

in the United States each year3. Improved supportive medical therapies has increased the 

number of paediatric patients with CHD who survive into adulthood; however, those patients 

have an increased risk of severe sequelae, including heart failure and non-cardiac mortality 

such as cancer and infection through poorly understood mechanisms2,4–6. Tetralogy of 

Fallot (TOF), the most common cyanotic CHD and a right-sided defect characterized 

by pulmonary stenosis, ventricular septal defect, overriding aorta and right ventricular 

hypertrophy, is repaired surgically during infancy. Despite definitive surgical correction 

and good survival, long-term morbidity is common in patients with TOF1. HLHS, the most 

severe cyanotic CHD, is a left-sided defect with poorly developed left ventricles, mitral 

valve, aortic valve and ascending aorta, and requires staged surgical palliations culminating 

in unique single-ventricle physiology, often described as Fontan circulation7. Ten-year 

survival for HLHS after surgical palliation1 is 53%. Long-term complications of HLHS are 

severe and include systemic right ventricule failure, Fontan-associated liver disease, plastic 

bronchitis and arrhythmias. HLHS is multigenic and genetically heterogenous, making it 

difficult to model2,8. Thus, there is a need to better understand the molecular nature of CHD 

to better formulate individualized therapies.
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Transcriptomic analysis of CHD

Although paediatric tissue samples are rare and exceedingly difficult to obtain9, we procured 

enough samples to perform single-nucleus RNA sequencing (snRNA-seq) on nine paediatric 

CHD heart samples and four donated control paediatric hearts (Fig. 1a and Supplementary 

Table 1 and 2). We combined our control data with available RNA-sequencing (RNA-

seq) data from control hearts of different ages to account for the different ages of our 

samples10 (3 weeks, 10 weeks, 2 years and 4 years). Collection of TOF and neonatal 

HLHS (Neo-HLHS) cardiac samples occurred at the time of surgical repair, whereas 

dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and failing HLHS 

(HF-HLHS) samples were collected at the time of ventricular assist device placement or 

heart transplant in patients with acute heart failure (Supplementary Table 2). HLHS and TOF 

samples were derived from the right ventricule, whereas the other samples were from the left 

ventricle. Adult human cardiac single-cell data indicate that right and left ventricules have 

similar transcriptional profiles11,12.

We generated 157,293 single-nuclei transcriptomes from ventricular tissue and identified 14 

cell clusters after batch correction and doublet removal (Fig. 1b,c and Extended Data Fig. 

1a,b). All the major cardiac cell types were recovered, including cardiomyocytes, cardiac 

fibroblasts, endothelial cells, vascular smooth muscle cells (SMCs) and macrophages. Rare 

cell types, including epicardial and mast cells, were also identified (Extended Data Fig. 

1c). Pseudo-bulk RNA-seq analysis of the individual libraries revealed global transcriptional 

distinctions between control heart tissue and those from patients with CHD (Extended Data 

Fig. 1d). Although principal component analysis (PCA) of pseudo-bulk RNA-seq revealed 

the influence of age on gene expression, primarily in PC2, this age influence was less 

prominent in the snRNA-seq data. Cell annotation was based on the differential expression 

of known marker genes (Fig. 1c, Extended Data Fig. 1e and Supplementary Table 3).

Variation in cardiomyocyte gene expression

Unbiased graph-based iterative clustering on cardiomyocytes from the complete cardiac 

tissue snRNA-seq dataset uncovered three cardiomyocyte clusters (Fig. 2a). Each 

cardiomyocyte cluster contained nuclei from multiple samples (Extended Data Fig. 2a,b). 

We performed differential abundance analysis using a k-nearest neighbour statistical 

approach13 (Fig. 2b and Methods). The CM1 cluster was primarily derived from 

control heart (Fig. 2c). Notably, one donor contributed cardiomyocytes from the left 

and right venricles, which clustered together, consistent with previous data showing few 

transcriptional differences between the left and right ventricles in adults10–12. CM2 also 

contained cardiomyocytes from control hearts, as well as cardiomyocytes from all the CHD 

categories. By contrast, CM3, the most stressed cardiomyocyte category, did not include any 

cardiomyocytes from the control hearts, and was enriched in TOF, DCM, HCM, Neo-HLHS 

and HF-HLHS cardiomyocytes (Fig. 2b,c and Extended Data Fig. 2c). Notably, TOF and 

DCM cardiomyocytes were primarily sorted to CM3 (Fig. 2c and Extended Data Fig. 2a,b). 

Thus, despite differences in age and biopsy site, DCM and TOF cardiomyocytes clustered 

together, supporting the conclusion that the main determinant of CM3 cell state was CHD 

diagnosis.
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We investigated the sources of variation responsible for cardiomyocyte heterogeneity in 

greater depth. Although biopsy location is a potential source of confounding variation, our 

analysis revealed that right and left ventricular control cardiomyocytes clustered together in 

CM1. In addition, CM3 contained cardiomyocytes from divergent biopsy sites, such as right 

ventricules from TOF and left ventricules from DCM, indicating that biopsy location was a 

minor source of cardiomyocyte heterogeneity. Accordingly, we focused our analysis on the 

influence of age and diagnosis on cardiomyocyte transcriptional heterogeneity.

To determine categorical transcriptional distinctions between different CHD diagnoses, we 

performed pseudo-bulk RNA-seq on cardiomyocytes and evaluated sample source variation 

using PCA (Fig. 2d,e). PC1 was associated most significantly with CHD diagnosis and 

explained the greatest proportion of cardiomyocyte variation (Fig. 2d,e and Extended Data 

Fig. 2d,e). CHD diagnosis also contributed to the correlation with PC2, although to a 

lesser degree than age (Fig. 2d,e and Extended Data Fig. 2d,e). We determined genes that 

were correlated with age and CHD diagnosis (adjusted P-value < 0.01). Individual CHD 

categories displayed overlapping gene signatures with other CHD categories but also had 

unique gene signatures (Extended Data Fig. 2f and Supplementary Table 4). Of note, there 

were fewer genes uniquely associated with age (n = 70) than with CHD diagnosis (n = 

862) (Extended Data Fig. 2g). Thus although age-related gene-expression signatures were 

detectable, the largest driver of variation in gene-expression signatures was CHD diagnosis.

Paediatric cardiomyocyte maturation

To identify genes that regulate human cardiomyocyte maturation independently of CHD 

diagnosis, we used available bulk RNA-seq data from human cardiomyocyte nuclei isolated 

from young donors (3 weeks old, 10 weeks old, 2 years old and 4 years old) and adults10. 

We extracted genes enriched in young cardiomyocytes (n = 131) and genes enriched in 

adult cardiomyocytes (n = 132) and constructed a gene-expression score for the modules, 

which we refer to as ‘Adult’ or ‘Young’ modules, to score individual cardiomyocytes 

(Extended Data Fig. 2h). We also generated a CM2 module score, using highly expressed 

CM2 markers, as a gene-expression module control (Methods). Positive gene-expression 

module scores indicate increased expression of a gene set over randomly selected genes, and 

negative values indicate decreased expression below randomly selected genes.

We observed an enrichment of the Young gene-expression module in our cardiomyocyte 

dataset compared the Adult module. We compared Young and Adult scores for each 

donor (Extended Data Fig. 2i). The Young score decreased with donor age, whereas the 

Adult score increased with age, supporting our gene-expression module scoring approach 

to interrogate cardiomyocyte maturation. Overall, no one age signature dominated our 

cardiomyocyte dataset, supporting the conclusion that cardiomyocyte age was not the main 

driver of cardiomyocyte heterogeneity.

To further demonstrate the validity of the aging gene-expression module score, we scored 

independent snRNA-seq data from fetal, juvenile and adult donors10 that were not used to 

construct our gene-expression modules. We found that cardiomyocytes scored as predicted, 

with the fetal cardiomyocytes being most enriched, the young cardiomyocytes being 
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intermediate, and adult cardiomyocytes being least enriched for the Young gene-expression 

module. The Adult gene-expression module also gradually increased with age of the donor 

(Extended Data Fig. 2j).

To uncover genes regulating human cardiomyocyte maturation that are also associated with 

the Young versus Adult distinction in our large cardiomyocyte dataset, we interrogated age-

associated genes in greater detail (Extended Data Fig. 3a,b). By extracting and comparing 

differentially expressed genes (DEGs) in cardiomyocytes scored as Young versus Adult, 

we identified cardiomyocyte maturation genes that were associated with cell growth, as 

expected, but also genes associated with oxytocin signalling. Pathways involved with 

myogenesis, negative regulation of the immune system and the cellular response to growth 

factor were enriched in the Young gene signature. Our data are consistent with the 

conclusion that age is a minor contributor to cardiomyocyte gene-expression differences 

in CHD, however improved age matching of control and disease samples will be important 

as more data become available.

Cardiomyocyte characteristics in CHD

We explored transcriptional characteristics of cardiomyocytes by performing pathway 

enrichment analysis on DEGs (Fig. 2f, Extended Data Fig. 4a and Supplementary Table 

5). We generated enrichment maps using DEGs to determine the proportion of genes 

derived from each cluster (P-value < 0.05) (Fig. 2f; Methods). CM1, derived from control 

donor tissue, was enriched in gene categories associated with muscle contraction, calcium 

signalling and adrenergic signalling. CM2 contained transcriptional signatures including 

actin cytoskeleton, tight junctions, leukocyte migration and Hippo signalling consistent 

with remodelling and inflammation in CHD. Notably, increased Hippo signalling has 

been implicated in cytokinesis failure in cardiomyocytes from TOF14. DEGs in CM2 

included cardiac stress markers such as NPPA, THBS1, ANKRD1 and NPPB15 (Fig. 2c 

and Supplementary Table 4). CM3, derived uniquely from CHD, had prominent metabolic 

signatures of increased EGFR signalling, FOXO signalling and insulin resistance (Fig. 2f).

Other DEGs included CORIN and CRIM1, which have been implicated in adult heart failure 

but not in CHD. CORIN is a transmembrane serine protease that cleaves and activates 

atrial and brain natriuretic propeptides16,17. CORIN deficiency results in maladaptive atrial 

natriuretic factor and brain natriuretic factor propeptide accumulation and is associated with 

worse clinical outcomes in adult heart disease18. CORIN expression was reduced in the 

CHD-enriched clusters CM2 and CM3 compared with CM1 (Fig. 2g and Extended Data 

Fig. 4a). CRIM1 is enriched in CM2 and CM3, is likely to modulate TGFβ signalling, and 

has been suggested as a biomarker for heart failure in adults19 (Fig. 2g and Extended Data 

Fig. 4a). RYR2, a canonical cardiomyocyte marker, was similarly expressed in CM1, CM2 

and CM3 (Fig. 2g). Quantification of CRIM1 and CORIN expression ratios in individual 

cardiomyocytes by dual RNA fluorescent in situ hybridization (RNAscope) showed a 

greater CRIM:CORIN ratio in single cardiomyocytes from TOF, Neo-HLHS, HF-HLHS 

and DCM compared with controls, indicating that CORIN expression is reduced and CRIM1 
expression is increased in CHD (Fig. 2h–j and Extended Data Fig. 4b–d).
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For further validation, we performed assay transposase-accessible chromatin using 

sequencing (ATAC-seq) to assess open versus closed chromatin and cardiomyocyte cell 

state. Loci of CHD-enriched open chromatin were compared to DEGs from CM2 and CM3 

(Extended Data Fig. 4e,f and Supplementary Table 6). The ATAC-seq data overlapped with 

the snRNA-seq, with 90% (n = 289) of DEGs in CM2 and 84% (n = 396) of DEGs in CM3 

having more accessible chromatin compared with controls. More accessible genes from 

CM2 included THBS1 and GADD45B, and those from CM3 included WNT9A and FRMD5 
(Extended Data Fig. 4e and Supplementary Table 6).

Cardiac fibroblast heterogeneity in CHD

Iterative clustering of cardiac fibroblasts identified four cardiac fibroblast clusters (CF1–

CF4) (Fig. 3a,b and Extended Data Fig. 5a–c). Control cardiac fibroblasts contributed to 

CF1, CF3 and CF4—but not to CF2—and revealed gene expression associated with cardiac 

fibroblast activation and inflammation in CF3 and CF4, most probably owing to myocardial 

stress during the organ procurement process, including surgery and mechanical ventilation20. 

CF1 comprised cardiac fibroblasts from controls as well as from all CHD diagnoses (Fig. 3c 

and Extended Data Fig. 5b,c). The CF2 cluster was derived only from CHD samples, and the 

largest contributions to CF2 were from DCM and TOF. CF3 included cells from control, 

DCM and Neo-HLHS hearts, and exhibited gene-expression signatures consistent with 

cardiac fibroblast activation, as indicated by expression of the cardiac fibroblast activation 

markers FAP and POSTN21 (Fig. 3c, Extended Data Fig. 5b,c and Supplementary Table 7). 

CF4 was composed of cardiac fibroblasts from all heart samples but was enriched in cardiac 

fibroblasts from HLHS (Neo-HLHS and HF-HLHS) (Fig. 3c).

Gene Ontology (GO) analysis revealed that CF1, largely composed of cells from controls, 

had signatures of metalloendopeptidase inhibitor activity (thought to be an anti-fibrotic 

signal22), acyltransferase activity and hormone binding involved in lipid metabolism and 

cellular homoeostasis (Extended Data Fig. 5d). CF2 contained signatures of increased 

insulin signalling, including genes such as IGFBP5, which promotes fibrosis, and genes 

involved in promoting GEF activity, which also result in enhanced fibrotic signalling23,24 

(Extended Data Fig. 5d). CF3 was enriched in genes controlling cytoskeletal remodelling 

as well as actin and integrin binding. CF3 and CF4 both showed increased expression 

of growth factor genes and genes associated with TGFβ signalling, which is profibrotic 

(Extended Data Fig. 5d). CF4 included increased expression of canonical YAP target genes 

such as CYR61 (also known as CCN1), FAT1, THBS1, CCL2, AMOTL1 and PTX325 

(Fig. 3d and Supplementary Table 7). In addition, CF4 was marked by the expression 

of KDM6B, which encodes a histone demethylase important for the profibrotic cardiac 

fibroblast phenotype26 (Supplementary Table 7). We used immunofluorescence to study 

co-localization of nuclear YAP and PTX3, a target of YAP and a CF4 marker, in control 

and multiple CHD samples (Fig. 3e,f). Control cardiac fibroblasts expressed very low 

levels of nuclear YAP or PTX3, whereas HF-HLHS cardiac fibroblasts had high levels 

of nuclear YAP with co-localized PTX3. Quantification of co-localized nuclear YAP and 

PTX3 expression in vimentin-positive cardiac fibroblasts revealed that HF-HLHS samples 

were enriched for nuclear YAP- and PTX3-expressing cardiac fibroblasts, consistent with 

the snRNA-seq data indicating that CF4 has high YAP activity (Fig. 3e). Quantification of 
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co-localized nuclear YAP and PTX3 expression in cardiac fibroblasts across multiple CHD 

diagnoses indicated that nuclear YAP and PTX3 were more commonly co-localized in CHD 

compared with controls (Fig. 3f).

Endothelial cell heterogeneity in CHD

Iterative clustering of endothelial cells revealed seven endothelial cell clusters (EC1–EC5, 

EndoC and LEC), including all subclasses of vascular endothelial cells (Extended Data 

Fig. 5e,f). EC1 represented capillary endothelial cells and expressed the markers CA4 
and RGCC27, whereas EC2 represented venous endothelial cells and expressed canonical 

venous markers NR2F2 and SELP28,29 (Extended Data Fig. 5e,f and Supplementary Table 

8). EC3 exhibited a pro-inflammatory signature, expressing cytokines such as IL6 and the 

gene encoding the NFκB family transcription factor RELB (Extended Data Fig. 5e,f). EC4 

had an arterial endothelial cell signature, with GJA5 and SEMA3G expression28,30. EC5 

was derived from a patient with DCM and comprised a small cluster of endothelial cells 

expressing KIT.

We compared control endothelial cells to endothelial cells from all CHDs using k-nearest 

neighbour differential abundance analysis and found that endothelial cells were more 

homogenous across CHD compared with cardiomyocytes and cardiac fibroblasts (Extended 

Data Fig. 5g,h). Consistent with the similarity in endothelial cell states between CHD 

samples, differential expression analysis and cluster composition across CHD diagnoses 

were similar (Extended Data Fig. 5i and Supplementary Table 8). Most endothelial cell 

clusters appeared in all CHD samples, with the exception of EC5, which was from a single 

patient with DCM and probably represents a patient-specific cell cluster. The enrichment 

of EC5 was not significant given its small size (Extended Data Fig. 5h). When compared 

by CHD diagnosis, endothelial cells from Neo-HLHS were enriched in inflammatory EC3, 

whereas TOF rarely contributed to EC3 (Extended Data Fig. 5i). One patient with HCM 

(P86) had increased LECs, which has not been reported in paediatric patients, but is 

consistent with adult HCM31 (Extended Data Fig. 5i).

Differential pathway enrichment analysis revealed that the venous EC2 cluster was 

associated with metallothionein and platelet activation, suggesting venous thrombosis and 

disrupted redox homoeostasis, a known complication in CHD32 (Extended Data Fig. 

5j). The inflammatory EC3 cluster showed enrichment for interleukin signalling and 

extracellular matrix interactions, whereas cells in the arterial EC4 cluster had higher 

levels of the mechano-responsive NOTCH signalling pathway, elastin fibre expression, Rho 

GTPase activity, and proapoptotic NRAGE signalling, suggesting arterial endothelial cell 

dysfunction33 (Extended Data Fig. 5j).

YAP- and MYC-driven gene programs in CHD

Histology and immunofluorescence analysis showed that control donor tissue had interstitial 

oedema, consistent with the activated stress response genes observed in snRNA-seq data 

(Fig. 4a,b and Extended Data Fig. 6). Myocardium from Neo-HLHS and TOF had grossly 

normal tissue architecture, whereas those from late-stage heart failure, including HF-HLHS 
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and DCM, exhibited replacement and interstitial fibrosis and inflammatory infiltrates, 

consistent with inflammatory transcriptional signatures identified in snRNA-seq data (Fig. 

4a,b and Extended Data Fig. 6a–e).

snRNA-seq and immunofluorescence indicated that CF4 (Fig. 3c–f), which was enriched 

in patients with Neo-HLHS or HF-HLHS, had a low-Hippo–high-YAP transcriptional 

signature25. Using immunofluorescence for further validation, we found that control tissue 

lacked nuclear-localized YAP or MYC (a YAP target) in non-myocytes, whereas TOF tissue 

exhibited rare non-myocyte nuclear YAP and MYC (Fig. 4c–d,f,g). By contrast, nuclear 

YAP and MYC were commonly found in non-myocytes of Neo-HLHS, HF-HLHS and 

DCM samples (Fig. 4c,d,f,g). The enrichment of CF4 in Neo-HLHS and HF-HLHS hearts 

was further validated by RNAscope detection of the YAP target PTX3. Co-staining for 

the fibroblast markers CDH19 and PTX3 revealed that Neo-HLHS and HF-HLHS hearts 

showed increased PTX3 expression in cardiac fibroblasts, with Neo-HLHS hearts showing 

the highest PTX3 expression (Fig 4e,h,i), consistent with snRNA-seq results showing that 

Neo-HLHS and HF-HLHS samples were enriched for CF4 (Extended Data Fig. 5a–c). 

Better age matching between control and CHD samples as more become available is 

expected to further support our findings.

The perivascular microenvironment in CHD

We investigated spatially resolved inflammatory cell heterogeneity in CHD and control 

samples using imaging mass cytometry (IMC) and image segmentation, phenotyping and 

marker quantification (Fig. 5a and Extended Data Fig. 7a,b). We quantified 23 biomarkers in 

21 samples using an antibody panel for inflammation, which also included markers of cell 

proliferation, DNA damage and fibrosis (Fig. 5b). We identified 11 clusters of perivascular 

cells, including vascular SMCs, macrophages, cardiac fibroblasts and endothelial cells 

located in proximity to SMCs (EC-SMC) (Fig. 5c,d). Macrophages separated into 3 

clusters (MΦ1–MΦ3), distinguished by expression of CD68, CD14 and CD163, and were 

localized to perivascular fibrotic areas (Fig. 5b–d and Extended Data Fig. 7b). MΦ1 

and MΦ2 were localized near T cells, which expressed immunosuppressive molecules, 

including PD-L1 (also known as CD274), CD73 and CD33 (Fig. 5d,e). PD-L1 is part of 

an immunosuppressive checkpoint with functions to prevent autoimmune disease in the 

heart34. The CD73 ecto-enzyme, elevates local adenosine levels in the microenvironment 

to suppress the immune response35. In tumours, CD33 is expressed by myeloid-derived 

immunosuppressor cells, which have, to our knowledge, not previously described in 

connection with CHD36. The perivascular T cells, which expressed proteins consistent with 

an anti-inflammatory signature, were localized near vessel-specific ACTA2+ cells and were 

expanded in CHD compared with controls, suggesting an immunosuppressed perivascular 

microenvironment in CHD (Fig. 5b,e).

We next used our snRNA-seq data to identify clusters of macrophages, mast cells and 

T cells (Fig. 5f,g). Whereas IMC identified three macro phage clusters, snRNA-seq data 

revealed four macrophage clusters in control and CHD groups (Fig. 5f,g and Extended 

Data Fig. 7c,d). Differential expression analysis identified genes that distinguished each 

cluster (n = 2,333 genes) (Fig. 5g, Extended Data Fig. 7e and Supplementary Table 9). 
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Pathway enrichment revealed MΦ2, a cluster in which interferon-γ (IFNγ) signalling genes 

were expressed (Extended Data Fig. 7f). Although pro-inflammatory in many tissues, IFNγ 
signalling is immunosuppressive in the heart37. Moreover, PD-L1 (also known as CD274) is 

known to be induced by IFNγ signalling, suggesting that MΦ2, by expressing IFNγ, inhibits 

T cell activation in the perivascular microenvironment in CHD, a hypothesis that is also 

supported by spatially resolved IMC38 (Fig. 5c,d). Of note, the proliferative MΦ4 cluster 

was rare in CHD, consistent with an immunosuppressed state, an observation that has been 

made recently in adult DCM but– not in CHD39 (Extended Data Fig. 7d–f).

Characterization of PBMCs in CHD

To investigate systemic inflammation in CHD, we profiled peripheral blood mononuclear 

cells (PBMCs), a clinically accessible cell population with diagnostic value. We generated 

a dataset combining 63,086 single-cell PBMC transcriptomes from CHD and publicly 

available control PBMC transcriptomes40,41 (Extended Data Fig. 8a). Cell annotation 

based on known marker-gene expression revealed 12 clusters of circulating immune 

cells, including MS4A1+ B cells, CD14+ monocytes and KLRF1+ natural killer (NK) 

cells (Extended Data Fig. 8a–c and Supplementary Table 10). CHD and control samples 

contributed equally to PBMC clusters (Extended Data Fig. 8d,e).

Cycling immune cells, progenitor-like immune cells and immature B cells were more 

highly represented in controls than in CHD40 (Extended Data Fig. 8f). We also observed 

compositional shifts in PBMCs between different CHD diagnoses (Extended Data Fig. 

8g). Compared with controls, HF-HLHS PBMCs had elevated B cells, monocytes and NK 

cells; Neo-HLHS had increased levels of monocytes; and TOF had decreased monocytes 

and dendritic cells (Extended Data Fig. 8g). To look more closely at monocytes, we 

used iterative clustering and identified four cell clusters, including two clusters of CD14+ 

monocytes, one cluster of nonclassical CD16+ monocytes, and monocyte-derived dendritic 

cells (Extended Data Fig. 8h,i and Supplementary Table 11). THBS1-expressing cells in 

the CD14–1 cluster were enriched in CHD PBMCs. Monocytes in the CD14–2 cluster 

were enriched in control PBMCs and expressed pro-inflammatory factors, including CCL3, 

CXCl8 and IL1B, which expressed at much lower levels in CHD-enriched CD14–1 

monocytes (Extended Data Fig. 8i,j). The same subclustering analysis on circulating NK 

cells and cytotoxic T cells did not uncover any significant compositional differences 

between CHD and controls (Extended Data Fig. 8k–m and Supplementary Table 12). Cells 

in the NK2 cluster expressed the chemokines XCL1 and XCL2, which are known inducers 

of monocyte-derived dendritic cells and markers of activated NK cells42 (Extended Data Fig. 

8k–m).

To further validate the single-cell RNA-sequencing (scRNA-seq) data, we performed ATAC-

seq on CD14+ monocytes and NK cells from CHD. PCA revealed the highly cell-type-

specific nature of the ATAC-seq data (Extended Data Fig. 9a). The epigenetic status 

of known markers, such as the myeloid-enriched transcription factor SPI1 (also known 

as PU.1) was also indicative of cell-type-specific enrichment (Extended Data Fig. 9a). 

Differential chromatin accessibility analysis uncovered 16,011 CD14+-enriched peaks and 

8,867 NK cell-specific regions (adjusted P-value < 10−9) (Extended Data Fig. 9b and 
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Supplementary Table 13). In CD14+ monocytes, genes such as CLEC4E and THBS1, which 

were highly expressed in the CHD-enriched CD14–1 cluster, were also highly accessible 

at the epigenetic level (Extended Data Fig. 9c). The ATAC-seq data also showed that the 

activated NK2 marker genes XCL1 and SPTSSB were both accessible and were cell-type-

specific (Extended Data Fig. 9c). These data are consistent with an activated NK cell state in 

patients with CHD.

Plasma proteome profiling in CHD

To gain insight into the cardiac cell response to circulating cytokines in CHD, we performed 

proteome profiling of plasma from patients with CHD. Out of the 105 soluble proteins 

measured in CHD-derived plasma, 69 of the corresponding mRNAs were co-expressed in 

PBMCs (Extended Data Fig. 9d and Supplementary Table 14). To assess whether plasma 

factors signalled to cardiac cells, we analysed our cardiac cell snRNA-seq dataset for 

mRNAs encoding cognate receptors for the CHD plasma factors (Extended Data Fig. 

9e). We identified 133 differentially expressed cardiac cell mRNAs encoding receptors for 

circulating factors (Supplemental Table 15). Filtering of the top tissue-expressed receptor–

ligand combinations indicated that both developmental and pro-inflammatory signalling 

pathways were activated in CHD and signal to specific cardiac cells in CHD (Extended 

Data Fig. 9e,f and Supplementary Table 16). For example, cells in the CF4 cluster were 

competent to receive IL-6 cytokine signalling, whereas those in CF2 were receptive to EGF 

signals. In addition, CHD-enriched CM3 cells were predicted to receive THBS1 signals, 

which are known to cause cardiomyocyte atrophy in preclinical models43 (Extended Data 

Fig. 9e,f).

Intercellular signalling in CHD

To gain further insight into local intercellular signalling in CHD, we performed ligand–

receptor analysis using CellChat, which predicts signalling inputs and outputs of cells, 

and focused on macrophages, cardiomyocytes and cardiac fibroblasts44. The number and 

strength of cell–cell signalling interactions was greater in CHD compared to controls, 

consistent with a disrupted tissue microenvironment in CHD (Fig. 6a,b). To uncover cell-

type-specific changes in intercellular signalling interactions, we compared incoming and 

outgoing interaction strengths for each cluster between CHD and controls. In CHD, the 

largest shifts occurred in CM3 and CF2, cell types that were absent in controls. By contrast, 

there were decreased incoming signalling interactions to macrophages in CHD (Fig. 6b).

To simplify our analysis, we quantified the similarities among the significant signalling 

pathways by grouping them on the basis of cellular communication network topology. In 

this analysis, the topological differences between signalling pathways, which separate them 

into individual clusters, are defined by how sender and receiver cells utilize intercellular 

signalling pathways (for example, large numbers of sender cells and small numbers of 

receivers). Using joint manifold learning and pathway classification, we uncovered four 

signalling clusters44 (Fig. 6c). We found several pathways that differed between control and 

CHD groups, including WNT and collagen.
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In controls, WNT signalling was restricted to cluster 3, whereas in patients with CHD, WNT 

signalling was found in cluster 4. This indicates a shift in the topology of the signalling 

pathway between the two conditions. Similarly, collagen showed structural similarities to 

other signalling pathways in cluster 4 in controls, but took on characteristics of cluster 

2 in CHD. Of all the clusters that we identified, only cluster 2 was unique to CHD 

hearts. Focusing on cluster 2, we identified pathways that were enriched in CHD, including 

THBS, PDGF, collagen and FN1 signalling pathways (Fig. 6d). Consistent with our plasma 

proteome profiling showing upregulation of THBS1 in CHD plasma, we found increased 

THBS1 signalling connectivity in patients with CHD (Extended Data Fig. 9e,f). Moreover, 

RNAscope analysis of additional samples (Supplementary Table 1) revealed that THBS1 
expression was increased in Neo-HLHS and HF-HLHS cardiac fibroblasts (Fig. 6f–k,r) and 

that Neo-HLHS cardiomyocytes exhibited increased THBS1 expression, further implicating 

THBS1 in the cardiomyocyte pathology of CHD (Fig. 6l–q,s).

Discussion

Here we have investigated CHD using snRNA-seq, IMC and peripheral blood profiling of 

systemic inflammation. Our analysis of single nuclei of cardiac cells, protein expression 

by IMC, scRNA-seq of PBMCs and plasma profiling expands our understanding of cardiac 

cell states in CHD, as well as the local and systemic inflammatory responses in CHD. We 

uncovered distinct cardiac cell signatures in different categories of CHD, providing insight 

into the pathophysiology of CHD, which will help to better define outcomes and develop 

new therapies for CHD. However, the limitations associated with performing snRNA-seq on 

human cardiac samples are well known12. The paediatric control samples show evidence of 

stress related to organ procurement, which is inherent to all human cardiac profiling studies. 

Biases from surgical sampling, age, race and ethnicity, medication and environment are 

also a concern in studies of this type; these will be reduced by improved age matching of 

control donor tissue and increasing the number of CHD samples to uncover CHD-specific 

characteristics. The samples analysed in this study are rare and difficult to obtain, and are 

derived from disparate diagnoses including HCM, DCM and the structural heart diseases 

(for example, TOF), including some samples with haemodynamic stress (for example, HF-

HLHS). More focused analyses, directly comparing tissues within the different classes of 

diagnoses will help unravel the influence of age and diagnosis on the cellular state of cardiac 

cells. In particular, direct comparison of failing hearts with different diagnoses, such as 

HF-HLHS and DCM, will help distinguish between the influence of underlying CHD and 

cell-state changes due to disrupted haemodynamics. We expect this study to stimulate the 

discovery of new mechanistic insights into CHD.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41586-022-04989-3.

Hill et al. Page 11

Nature. Author manuscript; available in PMC 2023 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Research ethics for donated tissues

Cardiac tissues and blood samples used in this study were collected during cardiothoracic 

surgeries performed at Texas Children’s Hospital (Houston, Texas). The protocols for the 

procurement and use of these patient samples were approved by the Institutional Review 

Board for Baylor College of Medicine and Affiliated Hospitals (Protocol Number H-26502). 

With the help of the Heart Center Biorepository at Texas Children’s Hospital, consent was 

obtained from patients with various forms of paediatric heart disease, including HLHS, TOF, 

DCM and HCM. The anatomic location of tissue collected was based on the specific surgical 

repair being performed. This information, along with more specific patient information, can 

be found in Supplementary Table 1.

Control cardiac tissue samples from donors were collected from the University of Kentucky 

(Samples UK1/FC3CB and UK2/3B62D) and Washington University in St Louis (LV198/

RV198/13-198 and RV325/13-235). Samples from the University of Kentucky were 

processed by the Gill Cardiovascular Biorepository after being obtained from terminal organ 

donors whose hearts could not be used for transplantation because of technical reasons 

(blood type mismatch, and so on). The local Organ Procurement Organization, in this 

case the Kentucky Organ Donor Affiliates (KODA), obtained informed consent from the 

legally authorized representatives. This consent allowed the hearts to be used for research 

if they could not be used as part of clinical care. These tissue samples were collected by 

technical staff in the operating room, immediately placed into cold saline, and then taken 

back to the lab for dissection into anatomic regions. The samples were then flash-frozen 

in liquid nitrogen and stored in the vapour phase of liquid nitrogen. Further information 

can be found in Blair et al.45. Samples from Washington University in St Louis donor 

families were consented, hearts procured at Med-American Transplant, and entered into 

the Translational Cardiovascular Biobank and Repository (TCBR) at Washington University 

School of Medicine (no. 201104172). For paediatric tissues, consent was obtained from the 

legal authorized representative and tissues entered into the TCBR (no. 201104172).

Sample collection and preservation

Cardiac tissue and blood samples were collected in the operating room during various 

paediatric cardiovascular surgeries. Cardiac tissue samples were kept in cold saline on ice 

during transfer to the laboratory for preservation. Blood samples were collected before 

cardiac bypass was initiated into EDTA-coated vacutainers and were then transferred to the 

laboratory on ice. Cardiac tissue samples were carefully dissected into multiple aliquots, 

some of which were flash-frozen and stored at −80 °C and others of which were fixed 

in 10% neutral buffered formalin for 16 to 24 h at 4 °C. Formalin-fixed samples then 

underwent serial dehydration and were embedded in paraffin blocks for histology. Formalin-

fixed paraffin-embedded (FFPE) samples were then used to make a tissue microarray (2 

mm cores) for high-throughput image analysis. After the isolation of PBMCs, cells to 

be cryopreserved were resuspended in CryoStor CS10 solution (StemCell Technologies, 

catalogue (cat.) no. 07930) and frozen at a controlled rate by using a Corning CoolCell 

Freezing Container. Isolated plasma was stored at −80 °C.
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Isolation of PBMCs

Fresh blood samples were kept on ice until isolation was started. In a sterile laminar flow 

hood, equal parts blood and Dulbecco’s phosphate-buffered saline (PBS) were mixed with 

2% fetal bovine serum (FBS; StemCell Technologies, cat. no. 07905). Lymphoprep solution 

(StemCell Technologies, cat. no. 07801) was added to a SepMate-15 (IVD) tube (StemCell 

Technologies, cat. no. 85415). The blood was carefully layered on top of the Lymoprep 

solution and spun at 1,200g for 20 min. The plasma layer was pipetted off, aliquotted, and 

stored at −80 °C. The PBMC layer was poured off and washed in 10 ml of Dulbecco’s PBS 

with 2% FBS and spun at 1,000g for 4 min to pellet PBMCs for downstream analysis and 

cryopreservation.

Isolation and ATAC-seq of NK cells and monocytes

CD14+ cells were isolated by using the CD14 MicroBeads (Miltenyi Biotec, 130-050-201) 

as per the manufacturer’s instructions. In brief, PBMCs were washed twice with Dulbecco’s 

PBS containing 2% FBS (StemCell Technologies, 07905) before being bound to CD14 

MicroBeads and isolated with MS columns (Miltenyi Biotec, 130-042-201). Cells were 

subjected to two rounds of purification before ATAC-seq. NK cells were isolated from 

CD14+ cell-depleted PBMC pools by taking the flow through from the CD14+ MACS 

enrichment. After flowing through the MACS MS columns, NK cells were isolated by 

using the human NK cell isolation kit (Miltenyi Biotec, 130-092-657) according to the 

manufacturer’s instructions, allowing for the isolation of both cell types simultaneously 

from the same patient sample. After the purification of NK cells and CD14+ monocytes 

from density gradient–purified PBMCs, we performed ATAC-seq by using the Omni-ATAC 

protocol with roughly 50,000 cells as input46. All samples were sequenced on an Illumina 

Nextseq 500.

Isolation of nuclei from cardiac tissue

Nuclear isolation was performed as previously described47. Some modifications were 

made for snRNA-seq. In brief, cardiac nuclei were isolated by using density gradient 

centrifugation with Optiprep Density Gradient Medium (Sigma). All nuclei were isolated 

from the 30% to 40% interface and then diluted into nuclei wash buffer (PBS containing 

1.0 % bovine serum albumin (BSA)) (Sigma) with 0.2 U μl−1 RNase inhibitor (Enzymatics/

Qiagen, Y9240L) before being spun down at 1,000g for 5 min. Next, the supernatant was 

removed, and the nuclei were washed twice with 25 ml of nuclei wash buffer. Nuclei were 

then resuspended in an appropriate volume of nuclei wash buffer to achieve a concentration 

appropriate for use with 10X Genomics Single Cell 3′ Reagents.

scRNA-seq and snRNA-seq

All scRNA-seq and snRNA-seq were performed by using the 10X Genomics platform. 

Cells or nuclei were isolated as described earlier and were loaded into the 10X Genomics 

Chromium Controller to obtain the gel beads in emulsion. The sequencing libraries were 

then prepared according to the 10X genomics protocol for Single Cell 3′ Reagents Kit v3. 

Sequencing was performed by using the NextSeq 500 and NovaSeq 6000 systems by using 

recommended sequencing parameters.
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Cardiomyocyte-specific ATAC-seq

Nuclear isolation, library preparation and quality control were performed as described47 for 

pericentriolar material 1 (PCM1) isolation and ATAC-seq.

Histology

Tissue sections were deparaffinized at 60 °C for 1 h, then dewaxed and rehydrated 

in a graded series of alcohol. For H&E staining, tissue sections were incubated with 

haematoxylin for 15 min, followed by incubation with acidified EosinY for 3 min at 

room temperature. The samples were re-paraffinized, dried, and mounted before imaging. 

Masson’s Trichrome staining was performed according to manufacturer’s instruction 

(Sigma, HT15). Images were acquired using the Cytation 5 Cell Imaging Multi-Mode 

Reader (Biotek). Contrast of both H&E and Masson’s Trichrome images were enhanced 

using the auto-contrast function in Adobe Photoshop, with the same contrast settings applied 

to each image for consistency.

Tissue immunohistochemistry

Immunohistochemistry was performed on paraffin-embedded sections as previously 

described48. In brief, samples were deparaffinized, treated with 3% H2O2 in 95% ethanol, 

boiled in antigen unmasking solution that was citric acid based (Vector Labs), then 

permeabilized with 0.5% Tween 20 in PBS, and blocked with 10% donkey serum in PBST 

(PBS + 0.1% Tween 20). For staining vimentin, YAP and PTX3, sections were incubated 

with rabbit anti-YAP and rat anti-PTX3 antibodies overnight at 4° C. After washing with 

PBST, sections were then incubated with biotinylated anti-rabbit IgG and Alexa Fluor 546 

conjugated anti-rat IgG antibodies for 2 h at room temperature. After washing with PBST, 

tissues were incubated with Streptavidine Alexa Fluor 647 in PBS for 10 min. Sections 

were incubated with rabbit anti-vimentin, Alexa Fluor 488 conjugated at 4° C overnight. 

After washing, sections were stained with DAPI. For staining YAP or MYC, sections were 

incubated with primary antibodies overnight at 4° C. After washing with PBST, tissues 

were incubated with biotinylated anti-rabbit IgG for 2 h, washed, then stained with DAPI, 

WGA–rhodamine, and streptavidin–Alexa Fluor 488 in PBS for 10 min. Immunostained 

slides were mounted with Dako Fluorescence mounting media (Agilent) after washing with 

PBS. Mounted sections were documented by using a Leica TCS SP5 confocal microscope 

with Leica LAS AF software. Intensity of PTX3 was measured using ImageJ software. All 

antibodies used in this study can be found in Supplementary Table 18.

Single-molecule fluorescence in situ hybridization using RNAscope probes

FFPE cardiac tissue samples were cut to a 3 μm thickness. The slides were stained 

by using the RNAscope Multiplex Fluorescent V2 assay for Human FFPE samples 

(ACDBio) according to the manufacturer’s protocol. Nuclei were stained with DAPI, and 

cell membranes were stained with WGA–AF488 (ThermoFisher, cat. no. W11261). The 

following probes were used for analysis: Probe-Hs-THBS1 (cat. no. 426581), Probe-Hs-

PTX3 (cat. no. 517611) and Probe-Hs-CDH19-C2 (cat. no. 571271-C2). Transcripts were 

visualized by using the Opal 7-Color Dyes from Akoya Biosciences, specifically Opal 

520 (cat. no. FP1487001KT), Opal 570 (cat. no. FP1488001KT), and Opal 690 (cat. no. 
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FP1497001KT) dyes. Slides were imaged by using a Zeiss LSM780 confocal microscope. 

Visualization and image processing (scale bar, pseudocolour) was performed with FIJI/

ImageJ software. All RNAscope probes used in this study can be found in Supplementary 

Table 18.

Imaging mass cytometry

The tissue microarray of FFPE cardiac samples was used for IMC analysis. Tissue sections 

were warmed at 60 °C for 1 h and dewaxed in three separate xylene washes for 10 min each. 

The tissue sections were then rehydrated in a graded series of alcohol (ethanol:deionized 

water 100:0, 100:0, 96:4, 90:10, 80:20, 70:30) for 5 min each and then in TBS for 10 

min. Epitope retrieval was performed in Tris EDTA retrieval buffer (pH 9; GeneMed) at 

95 °C for 20 min, after which the slides were immediately cooled in TBS for 20 min. 

Samples were blocked in 3% BSA and 10% donkey serum in TBST for 2 h at room 

temperature. Incubation with the antibody panel was performed in blocking buffer overnight 

at 4 °C. Tissue samples were washed twice with TBST and twice with TBS. Slides were 

incubated with intercalator-Ir solution for 5 min at room temperature and washed twice 

with TBS. The samples were dipped in water and dried before IMC measurements. The 

antibody panel targets functional markers for DNA damage, immune regulation, cell cycle, 

and phenotypic markers to identify epithelial, endothelial, mesenchymal, and immune cell 

types. The panel of antibodies can be found in the methods. The Hyperion Imaging System 

(Fluidigm) was used for IMC image acquisition. The largest square area was selected from 

the centre of each tissue microarray (TMA) core for laser ablation. Commercial acquisition 

software (Fluidigm) was used to pre-process raw data and monitor acquisition quality. In 

certain instances, acquisition was interrupted and continued, resulting in multiple images 

from the same sample core. All conjugated antibodies used in this study can be found in 

Supplementary Table 18.

Plasma cytokine array

Cytokine protein expression from patient-derived plasma was analysed with the Proteome 

Profiler Human XL Cytokine Array Kit (R&D Biosystems, ARY022B) according to the 

manufacturer’s instructions for plasma. Human cord blood plasma (StemCell Technologies, 

70020.1) was used as a control.

Data analysis methods

IMC data analysis.—MCD Viewer and Visiopharm software (Fluidigm) were used to 

convert data to TIFF format and for segmentation of single cells. Individual cells and vessel 

landmarks were segmented with the use of the Visiopharm software. For normalization, 

clustering, visualization and dimensionality reduction we used the R package CATALYST 

(version 1.12.2)49.

snRNA-seq analysis.—Raw sequencing data were handled by using the 10X Genomics 

Cell Ranger software (version 3.0.1; www.10xgenomics.com). Fastq files were mapped to 

the hg19 genome, and gene counts were quantified by using Cellranger count function. For 

counting, we provided a pre-mRNA version of hg19 transcripts (exons and introns included). 

To remove unwanted background, the Cellranger output was input into CellBender (version 
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0.1.0)50. Subsequently, bent h5 expression matrices from each experiment were then 

imported into Seurat (version 3.1.4) and merged into a single object. The data were 

then normalized, variable features were selected (n = 2,000), data were scaled, and 

principal components were calculated (n = 20). Nuclei were selected with a minimum 

of 700 genes per nuclei, with a maximum of 10,000 genes. For mitochondrial reads, we 

imposed a 0.2% cut-off. For batch correction, we then input these data into Harmony 

(version 1.0)51. For Harmony batch correction, the batch indices were used as variables, 

and we included all 20 principal components. Dimensionality reduction (UMAP) and 

clustering were then carried out in Seurat (dimensions = 20, cluster resolution = 1.5). 

We next performed differential expression analysis (FindAllMarkers function, Seurat) to 

aid in the identification of doublets. Clusters consisting of obvious doublets were removed 

as described previously52. In brief, clusters displaying expression profiles of more than 

one major cell type are removed from the dataset. To accomplish this doublet filtering, 

we first look at the markers associated with each individual cell cluster determined via 

FindAllMarkers. Next, we evaluate individual clusters for the expression of markers derived 

from the major cardiac cell types, including cardiomyocytes, fibroblasts, endothelial cells, 

and macrophages whose markers are well known in the literature and have been previously 

identified through similar snRNA-seq methods (for example, TTN is a cardiomyocyte 

marker). Following this evaluation clusters that express markers from more than one major 

cell type are flagged. If a cluster appreciably expresses markers for two or more cell types 

it is manually removed (subset from Seurat object). For example, if a cluster expresses 

high levels of RYR2 (cardiomyocyte markers) and CD163 (a macrophage marker) it is 

considered a doublet and removed. Interestingly, many clusters of doublets will connect 

the two main cell types at this initial stage of filtering. Removing all doublets from large 

snRNA-seq datasets requires multiple rounds of filtering as the resolution of clustering for 

massive numbers of nuclei is not fine enough. To further remove doublets not appropriately 

clustered in the large global dataset, we next subset the data by major cell type and then 

performed subclustering and differential expression analysis. Again, clusters consisting 

of cells expressing more than one major cell-type marker are removed from the dataset, 

as described above. To generate the final global data object (Fig. 1b), we merged all 

the cell-type-specific objects back together. Metrics for each dataset can be found in 

Supplementary Table 17. Differential expression of the individual clusters was achieved 

by using the Seurat implementation of the Wilcoxon rank-sum test (FindMarkers, min.pct 

= 0.05, thresh.use = 0.15). We subset the top 500 genes, if that many reached the above 

criteria, per cluster ranked by their average log fold change for incorporation into the 

final list of DEGs. For analysing a cell subtype of interest, we performed subclustering 

with Louvain resolution = 0.1 (Seurat FindClusters(resolution = 0.1)). GO analysis was 

performed by using the clusterProfiler package (version 3.16.1)53. Enriched KEGG and GO 

terms were calculated with the compareCluster function, with a P-value cut-off of 0.05. 

And enrichment networks were determined with the enrichment map function (emapplot). 

Pseduobulk RNA-seq analysis was performed by subsetting the raw counts for each 

sample and then performing differential expression analysis with DEseq2 (version 1.28.1)54. 

Principal components for pseudo-bulk RNA-seq analysis were explored and plotted by using 

pcaExplorer (version 2.14.2)55. Ligand–receptor connectome information for the analysis 

of PBMCs was extracted from the FANTOM5 network database56. All complex Venn 
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diagrams generated with an online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). 

Differential abundance testing was performed with MiloR (version 0.99.19). For k-nearest 

neighbour graph construction, we used our reduced dimensions output from Harmony. For 

differential abundance testing we corrected for gender and tested for Disease versus control 

(testNhoods). To perform ligand–receptor analysis on tissue snRNA-seq data we used the 

CellChat package (version 1.1.2)44. In brief, all non-CHD-derived cells for the relevant 

cell types were merged into a single dataset and those from patients with CHD were 

similarly merged. Given that we saw the biggest changes in cell state from macrophages, 

cardiomyocytes and cardiac fibroblasts, we only included these cell types in our comparative 

analysis. We filtered out clusters that had less than 300 nuclei within either condition, and 

performed the analysis using default parameters.

For our transcriptional age scoring procedure we used gene-expression modules. A gene-

expression module score is determined by calculating the average expression of each gene 

within a list subtracted by the average expression of randomly selected control genes57. For 

the ‘Young’ and ‘Adult’ scores/modules we used the samples reported by Sim et. al.10 to 

identify genes that were differentially expressed from PCM1+ cardiomyocytes (FDR < 0.05, 

N = 263). We then used each list of genes to construct an expression module score, which 

we referred to as ‘Adult’ or ‘Young’ gene-expression module, using the Seurat function 

AddModuleScore with Adult-specific or Young-specific gene lists as features (version 

3.1.4). The CM2 score was generated with the following list of genes: ACTA1, ANKRD1, 

NPPB, THBS1, FLNC, BTG2, ACTN1 and C1QTNF1.

ATAC-seq analysis.—ATAC-seq analysis was performed as described58. In brief, reads 

were mapped to the human genome (hg19) by using Bowtie2 with default paired-end 

settings (version 7.3.0)59. Next, all non-nuclear reads and improperly paired reads were 

discarded. Duplicated reads were next removed with picard MarkDuplicates. Peak calling 

was carried out with MACS2 (version 2.1.1.20160309) (callpeak --nomodel –broad)60. 

Blacklisted regions were removed along with peaks of low sequencing quality (require 

> q30). Reads were counted for each condition from the comprehensive peak file by 

using bed-tools (version v2.26.0) (multicov module)61. Quantile normalization of ATAC-

seq datasets was performed with CQN (version 1.34.0)62, and these offsets were fed into 

DESeq2 to quantify differential accessibility. Motif enrichment analysis was conducted 

with Homer (v4.10.3) (findMotifsGenome.pl)63. Genome tracks were generated with Homer 

(makeUCSCfile) and converted to bigwig format.

Statistical analysis.—For the generalized linear mixed-effects model and statistical 

analysis performed in this study we used the Linear Mixed-Effects Models using Eigen 

and S4 (lme4) package in R (version 1.1–27.9000). Statistics were calculated with the glmer 

function. For all RNAscope data (THBS1, CORIN, CRIM1 and PTX3) this function was 

run with the family set to ‘poisson’. Anf for quantification of nuclear YAP and MYC 

quantification family was set to ‘binomial’.
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Extended Data

Extended Data Fig. 1 |. Cardiac tissue snRNA-seq profiling.
a, The number of nuclei detected per sample. Calculations for cell (nuclei) per library 

performed be dividing total number of nuclei by the number of technical replicates 

(libraries). b, UMAP showing sample identity. Colored according to Extended Data Fig. 

1a. c, Cluster composition across cell types. (Top) Number of samples detected per cluster. 

(Bottom) Stacked bar graph indicating the percentage of each samples contribution to the 

indicated cluster. Colored according to Extended Data Fig. 1a. d, Pseduobulk RNA-seq from 

all cell types collapsed. All technical and biological and technical replicates (libraries) are 

shown. e, Feature plot showing expression of marker genes across global UMAP from Fig. 

1b.
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Extended Data Fig. 2 |. Characterization of pediatric cardiomyocytes.
a, Bar plot indicating the number of cardiomyocyte nuclei detected from each pediatric 

human sample. b, Stacked bar plot showing the composition of each patient sample 

across the indicated CM clusters. c, Beeswarm plot showing the log-fold distribution of 

changes across disease and donors in neighborhoods from different cardiomyocyte clusters. 

Differentially abundant neighborhoods are shown in color. d, A scree plot displaying the 

proportion of explained variance for all principal components derived from the pseudo-bulk 

RNA-seq analysis of CMs. e, Bar plot showing the significance of relation with PC1 (red) 

and PC2 (blue). f, Venn diagram for the intersection of all individual Diagnoses from 

pseudobulk RNA-seq analysis. g, Venn diagram for the intersection of all age-related and 

diagnosis-related genes from pseudo-bulk analysis of CM nuclei. h, Gene signature scores 
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projected across UMAP embedding of CM nuclei. i, Violin plot of CM maturation gene 

module scores for all CMs separated by patient. The patients are ordered by age, from 

youngest (left) to oldest (right). j, Violin plot of CM maturation gene module scores for all 

CMs derived from Sim et. al.

Extended Data Fig. 3 |. Cardiomyocyte transcriptomic Maturation.
a, Heatmap of log2 foldchange values from pseudo-bulk RNA-seq analysis of CMs. 

Adjusted p-value < 0.01. b, Gene ontology (GO) analysis of mature and young gene 

signatures identified in Extended Data Fig.2j.
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Extended Data Fig. 4 |. Epigenomic characterization of cardiomyocytes in CHD.
a, Feature plots showing gene expression in cardiomyocytes. b–d, RNAscope for CRIM1 
and CORIN. e, Genome browser tracks displaying cardiomyocyte-specific ATAC-seq data. 

f, Venn diagram showing the overlap of genes annotated from ATAC-seq peaks and snRNA-

seq clusters.
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Extended Data Fig. 5 |. Transcriptional profiling of pediatric cardiac fibroblasts and endothelial 
cells.
a, Bar plot indicating the number of fibroblast nuclei detected from each sample. b, Stacked 

bar plot showing the composition of each sample across the indicated CF clusters. c, 

Stacked bar graph displaying the total number of detected CF nuclei from each patient 

group. The composition of each CF cluster is highlighted. d, Enrichment map for gene 

pathway overrepresentation analysis colored by CF cluster. e, UMAP manifold of cardiac 

ECs colored by cluster. (f) Dot plot of snRNA-seq expression for EC marker genes. g, 
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Embedding of the Milo K-NN differential abundance testing results for ECs. All nodes 

represent neighborhoods, colored by their log fold changes for disease versus donor. 

Neighborhoods with insignificant log fold changes (FDR 10%) are white. Layout of nodes 

determined by UMAP embedding, shown in Extended Data Fig. 5e. h, Beeswarm plot 

showing the log-fold distribution of changes across disease and donors in neighborhoods 

from different EC clusters. Differentially abundant neighborhoods are shown in color. i, 
Top, cluster composition bar plot colored by patient diagnosis. Bottom, heatmap displaying 

average expression for all differentially expressed genes for EC clusters. j, Enrichment map 

for gene pathway over-representation analysis colored by EC cluster.
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Extended Data Fig. 6 |. Additional tissue histology.
a–e, H&E and trichrome staining of additional myocardial samples from donor (a), TOF (b), 

Neo-HLHS (c), HF-HLHS (d), and DCM (e) patients. Left image is a 2-mm core, and the 

dashed box outlines the highlighted perivascular region at high magnification in the right 

image.
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Extended Data Fig. 7 |. Transcriptional profiling of pediatric cardiac immune cell populations.
a, Representative images of cell-segmentation and phenotyping analysis performed on 

imaging mass cytometry (IMC) images. b, Representative images of IMC (top) and 

immunofluorescence (bottom)of LYZ marker expression. Solid boxes indicate same regions 

with LYZ expression. c, Embedding of the Milo K-NN differential abundance testing 

results for cardiac immune cell populations. All nodes represent neighborhoods, colored by 

their log fold changes for disease versus Donor. Neighborhoods with insignificant log fold 

changes (FDR 10%) are white. Layout of nodes determined by UMAP embedding, shown 
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in Fig. 6f. d, Beeswarm plot showing the log-fold distribution of changes across disease 

and donors in neighborhoods from different immune cell clusters. Differentially abundant 

neighborhoods are shown in color. Compiled from Extended Data Fig. 7a. (e) Top, cluster 

composition bar plot colored by patient diagnosis. Bottom, heatmap displaying average 

expression for all differentially expressed genes for myeloid and lymphoid cell clusters. (f) 
Enrichment map for gene pathway overrepresentation analysis colored by cardiac immune 

cell cluster. (g) Left, protein expression from IMC data across UMAP embedding. Right, 

feature plot displaying gene expression from snRNA-seq. (h) Feature plot displaying gene 

expression from snRNA-seq. Related to Fig. 1b.
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Extended Data Fig. 8 |. Single-cell transcriptomic analysis of PBMCs from pediatric patients 
with CHD.
a, Diagram depicting the overall study design for hematological profiling in CHD patients. 

b, UMAP embedding of PBMCs colored by cell type. c, Feature plots showing the 

expression of marker genes. d, UMAP embedding of PBMC scRNA-seq data colored by 

patient sample Identification number. e, Cluster composition analysis of PBMC scRNA-seq 

data. f, Cluster composition stacked-bar plot highlighting the percent of cells from each 

diagnosis group within each single cell cluster. g, Density plot for each indicated diagnosis 
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over the UMAP embedding from Extended Data Fig. 8b. h, UMAP embedding of peripheral 

monocyte cells. i, Dot plot displaying marker gene expression from monocyte cell clusters. 

j, Cluster composition analysis of monocyte clusters colored by patient diagnosis. k, UMAP 

embedding of peripheral NK cells. l, Dot plot displaying marker gene expression from 

NK cell clusters. m, Cluster composition analysis of NK cell clusters colored by patient 

diagnosis.

Extended Data Fig. 9 |. Transcriptomic and epigenomic characterization of peripheral immune 
cell populations in CHD.
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a, Top, PCA plot of NK and CD14+ cell ATAC-seq data. Bottom, Genome Browser 

tracks for NK cell and CD14+ cell ATAC-seq data. Each track is patient matched by 

diagnosis. b, Heatmap displaying differential chromatin accessibility analysis of NK cells 

versus CD14+ monocytes. c, Genome browser tracks displaying genes identified from 

differential expression analysis in scRNA-seq. d, Left, heatmap displaying the average 

mRNA expression per cluster of each cytokine (rows) detected in the plasma of CHD 

patients. Right, heatmap showing the protein expression of each cytokine (row) detected 

in CHD patient-derived plasma (columns). e, Heatmap depicting the expression of each 

cognate receptor from the putative ligands identified in Extended Data Fig. 9d from the 

cardiac snRNA-seq data. f, receptor-ligand map showing the highly expressed receptors 

identified in Extended Data Fig. 9e with their respective ligands identified in patient plasma. 

Connections colored by snRNA-seq cluster.
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Fig. 1 |. Profiling of tissues from paediatric controls and patients with CHD or heart failure.
a, Overview of the tissue profiling strategy and the use of available datasets for age 

scoring. Cardiac tissues collected from paediatric patients were flash-frozen or fixed in 

formalin. Control data were from Sim et al. (2021)10. Formalin-fixed tissue sections were 

used for histology and imaging. **n = 2, ****n = 4; mo, month. b, Uniform manifold 

approximation and projection (UMAP) embedding of 157,293 paediatric cardiac nuclei. 

CM, cardiomyocyte; CF, cardiac fibroblast; EC, endothelial cell; EpiL, epithelial-like; EpiC, 

epicardial cell; EndoC, endocardial cell; LEC, lymphatic endothelial cell; PeriC, pericyte; 

Adipo, adipocyte; Neuro, neuron; MΦ, macrophage. c, Heat map displaying DEGs for 

each cluster. Clusters are coloured according to Fig. 1b. The signal indicates the average 

expression for each cluster. Representative genes are displayed on the right. WBSCR17 is 

also known as GALNT17; MUM1L1 is also known as PWWP3B.
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Fig. 2 |. snRNA-seq showing the unique transcriptional signature of cardiomyocytes in paediatric 
patients with CHD.
a, UMAP embedding of reiterative clustering of cardiomyocytes. b, Embedding the Milo 

k-nearest neighbour differential abundance testing results for cardiomyocytes. All nodes 

represent neighbourhoods, coloured by log fold changes for CHD versus control samples. 

Neighbourhoods with insignificant log fold changes (false discovery rate (FDR) < 10%) are 

shown in white. The layout of nodes is determined by UMAP embedding, as shown in a. 

c, Top, cluster composition plot indicating the percentage of cells from each diagnosis that 

contribute to each cluster. Bottom, average expression heat map with representative genes 

shown on the right. d, PCA plot for pseudo-bulk RNA-seq analysis of all cardiomyocytes 

by diagnosis. Plots are coloured by diagnosis as in c. Ellipses indicate the 95% confidence 

interval. Replicates (libraries) from each sample indicated by a different shape. e, PCA plot 

for pseudo-bulk RNA-seq analysis of all cardiomyocytes from d, coloured by donor age. 

The colours highlight the gross pattern of age progression from youngest to oldest. Ellipses 

indicate the 95% confidence interval. f, Cluster enrichment map displaying the proportional 

KEGG pathways analysis for all cardiomyocyte clusters. The size of each node indicates 
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the number of genes within each KEGG category. g, Violin plots showing expression 

levels for each cardiomyocyte cluster, coloured according to the cluster designations in 

a. h,i, RNA fluorescence in situ hybridization for CRIM1 and CORIN, co-stained with 

DAPI and wheat germ agglutinin (WGA). Arrowheads show cardiomyocytes with high 

CORIN expression and arrows show cardiomyocytes with high CRIM1 expression. j, 
CRIM1:CORIN expression ratio (n = 672) across 27 individuals (2 control, 5 TOF, 4 

Neo-HLHS, 8 HF-HLHS and 8 DCM), each data point is the average relative expression in 

a sample from one individual. *P < 0.05, ***P < 0.001, ****P < 0.0001 with mixed-effect 

model. Data are mean values ± s.e.m.
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Fig. 3 |. Profiling of cardiac fibroblasts in paediatric patients.
a, UMAP embedding of cardiac fibroblast reiterative clustering. b, Embedding of Milo 

k-nearest neighbour differential abundance testing results for cardiac fibroblasts. All 

nodes represent neighbourhoods, coloured by log fold change for CHD versus controls. 

Neighbourhoods with insignificant log fold changes (FDR <10%) are shown in white. The 

layout of nodes is determined by UMAP embedding shown in a. c, Top, cluster composition 

plot indicating the percentage of cells from each diagnosis that contribute to each cluster. 

Bottom, average expression heat map with representative genes shown on the right. d, Violin 

plots showing expression levels for each cardiac fibroblast cluster, coloured according to the 

cluster designations in a.e, Representative YAP and PTX3 expression in vimentin-positive 

cardiac fibroblasts in an HF-HLHS sample. Arrows show cardiac fibroblasts without nuclear 

YAP and arrowheads denote nuclear YAP. f, Quantification of PTX3 intensity in cardiac 

fibroblasts that are negative (n = 73) and positive (n = 101) for nuclear YAP across fifteen 

samples (2 controls, 3 TOF, 2 neo-HLHS, 4 HF-HLHS and 4 DCM). Two-tailed Mann–

Whitney test. ****P < 0.0001.
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Fig. 4 |. Tissue histology and validation of tissue snRNA-seq results across paediatric cardiac 
diseases.
a, Haematoxylin and eosin (H&E) staining of myocardial samples. b, Masson’s trichrome 

staining of myocardial samples. c,d, Tissue immunohistochemistry for YAP (c) and MYC 

(d), co-stained with DAPI and WGA to visualize tissue composition. Arrowheads indicate 

cells with a nuclear expression pattern of the protein of interest. e, RNAscope for PTX3 and 

CDH19, co-stained with DAPI and WGA to visualize tissue composition. Arrowheads show 

co-expression of PTX3 and CDH19. f,g, Quantification of nuclear localization of YAP (f) 
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and MYC (g) in non-myocytes (n = 5,897 for YAP, n = 5,149 for MYC). Each data point 

shows the percentage of cells with nuclear expression in one sample (2 control, 5 TOF, 4 

Neo-HLHS, 8 HF-HLHS and 8 DCM). h, Quantification of relative PTX3 expression in 

CDH19+ fibroblasts (n = 668). Each data point is the average expression from an individual 

sample (2 control, 5 TOF, 4 Neo-HLHS, 8 HF-HLHS and 8 DCM). i, Violin plot of 

PTX3 expression in cardiac fibroblasts (n = 668). *P < 0.05, **P < 0.01, ***P < 0.001; 

mixed-effects model. Data are mean ± s.e.m.
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Fig. 5 |. High-dimensional histopathology of paediatric cardiac diseases.
a, Schematic of the IMC experimental and analytical workflow. b, Representative IMC 

images from the indicated patient samples. Dashed boxes indicate immune infiltrates 

in perivascular regions. Arrows indicate cells expressing immune marker CD45 and 

macrophage-specific markers (CD163, CD68 and CD11B). Solid boxes indicate cells 

expressing the proliferation marker MKI67 in perivascular regions. c, UMAP embedding 

of all IMC data, coloured by cluster. Prolif., proliferating cells. Total samples: 20 (1 Neo-

HLHS, 8 HF-HLHS, 3 TOF, 8 DCM). d, Heat map displaying biomarker expression across 
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each cell cluster. e, Plots showing biomarker expression from IMC. f, UMAP embedding of 

immune cell populations derived from cardiac tissue. g, Dot plot showing highly expressed 

markers for each immune cell population.
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Fig. 6 |. Intercellular communication in paediatric cardiovascular disease.
a, Circle plot highlighting the differential number of ligand–receptor (L–R) interactions 

between control and CHD nuclei. b, Comparison of major targets and source shifts between 

control and CHD samples. Positive values indicate an increase in signal in CHD. c, Joint 

projection and clustering of signalling pathways from control and CHD datasets according 

to topological pathway similarities. Each data point represents an individual signalling 

pathway. The size of each point is proportional to the communication probability of that 

network. Representative pathways are highlighted. d, Magnified view of cluster 2 from 

c. The size of each point is proportional to the communication probability. e, Circle plot 

showing THBS signalling network activity in control and CHD cardiac tissue. Each link 

indicates an intercellular connection. The root of each arrow is the ligand-expressing cell 

type, and the tip of each arrow is the receiving cell. f–j, RNAscope for THBS1 and CDH19 
in control (f), TOF (g), Neo-HLHS (h), HF-HLHS (i) and DCM (j) tissue, co-stained 
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with DAPI and WGA to visualize tissue composition. Arrowheads show co-expression of 

THBS1 and CDH19 in cardiac fibroblasts. k, TBHS1 expression in CDH19+ fibroblasts (n 
= 640). Each data point represents average expression from one sample (2 control, 5 TOF, 4 

Neo-HLHS, 8 HF-HLHS and 8 DCM). l–p, RNAscope for THBS1 in control (l), TOF (m), 

Neo-HLHS (n), HF-HLHS (o) and DCM (p) tissue. Arrowheads show THBS1 expression 

in cardiomyocytes. q, Relative TBHS1 expression in cardiomyocytes (n = 611). Each data 

point represents average expression from one sample (2 control, 5 TOF, 4 Neo-HLHS, 8 

HF-HLHS and 8 DCM). r, Violin plot of THBS1 expression in cardiac fibroblasts (n = 640). 

s, Violin plot of THBS1 expression in cardiomyocytes (n = 611). *P < 0.05, **P < 0.01, 

***P < 0.001; mixed-effects model. Data are mean ± s.e.m.
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