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ABSTRACT

Over 10% of men will be diagnosed with prostate cancer during their life-
time. Arising from luminal cells of the prostatic acinus, prostate cancer is
influenced bymultiple cells in itsmicroenvironment. To expand our knowl-
edge and explore means to prevent and treat the disease, it is important
to understand what drives the onset and early stages of prostate cancer. In
this study, we developed an agent-based model of a prostatic acinus includ-
ing its microenvironment, to allow for in silico studying of prostate cancer
development.

The model was based on prior reports and in-house data of tumor cells
cocultured with cancer-associated fibroblasts (CAF) and protumor and/or
antitumor macrophages. Growth patterns depicted by the model were
pathologically validated on hematoxylin and eosin slide images of human
prostate cancer specimens. We identified that stochasticity of interactions
between macrophages and tumor cells at early stages strongly affect tumor

development. In addition, we discovered that more systematic deviations
in tumor development result from a combinatorial effect of the proba-
bility of acquiring mutations and the tumor-promoting abilities of CAFs
and macrophages. In silico modeled tumors were then compared with 494
patients with cancer with matching characteristics, showing strong as-
sociation between predicted tumor load and patients’ clinical outcome.
Our findings suggest that the likelihood of tumor formation depends on
a combination of stochastic events and systematic characteristics. While
stochasticity cannot be controlled, information on systematic effects may
aid the development of prevention strategies tailored to the molecular
characteristics of an individual patient.

Significance:We developed a computational model to study which factors
of the tumor microenvironment drive prostate cancer development, with
potential to aid the development of new prevention strategies.

Introduction
Prostate cancer is generally diagnosed at late age, with 75% of all cases found
in men over 65 years old (1, 2), while the formation of precursor neoplas-
tic lesions is initiated years earlier (3). While localized prostate cancer can be
cured, metastatic disease cannot, and its treatment is a clinical challenge (4,
5). Currently, prostate cancer is the second most diagnosed cancer and the
second leading cause of cancer deaths in men globally (1). Studying the onset
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and early development of prostate cancer improves our understanding of this
disease and could aid the development of new treatment strategies to pre-
vent disease progression and to improve clinical care for patients with prostate
cancer (6–10).

Prostate cancer generally initiates in the prostatic acini. In a normal acinus, the
epithelium is highly organized with a bilayer of basal and luminal cells sep-
arated from the underlying stroma by the basement membrane. During the
premalignant prostatic intraepithelial neoplasia (PIN) stage, luminal cells start
to hyperproliferate (11, 12). Eventually, this can lead to the disruption of the basal
cell layer and breakdown of the basementmembrane, which is a prerequisite for
the invasion of tumor cells into the tumormicroenvironment (TME; refs. 11, 4),
allowing cancer cells to metastasize (13, 14).

Prostate cancer is assumed to originate from mutations that confer a pro-
liferative advantage to the transformed cells (15, 16). The accumulation of
mutations is essential for the progression toward the malignant disease, and
prostate cancer is characterized by a high heterogeneity of tumor cells (11,
4), with clonal selection shaping tumor evolution (17). Fibroblasts normally
contribute to maintenance of the healthy homeostasis in the prostate (18–20).
However, when in contact with neoplastic cells, they can differentiate into
cancer-associated-fibroblasts (CAF; ref. 18). CAFdifferentiation can already oc-
cur in early premalignant stages, potentially contributing to the development
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and progression of prostate cancer by stimulating tumor cell proliferation
(21) and migration (22, 23) and by altering the surrounding extracellular
matrix (ECM; refs. 24–26), facilitating cancer cells to invade the stroma (4,
18). Macrophages are another important cell type in prostate cancer develop-
ment, constituting 70% of the immune cell population in the prostate TME
(27). Macrophages are attracted by cytokines released by prostate cancer cells
and initially contribute to the immune defense against tumors (27). However,
macrophages have a wide range of functions depending on environmental
cues and can differentiate from a proinflammatory and anticancer (M1-type)
to a procancer (M2-type) phenotype (28). The latter may support tumor cell
proliferation, migration, and invasion (29, 30).

Although several studies have characterized developmental stages of prostate
cancer and the underlying molecular mechanisms of tumorigenesis (12, 16, 28,
31–33), it is still unclear how such mechanisms jointly contribute to prostate
cancer development (4).

Given the limitations of in vivo temporal data acquisition in studying het-
erogeneity at early stages in patients, novel models are required to study
development of prostate cancer. Mathematical models offer valuable tools to
study tumor development in silico. In particular, agent-based models (ABM)
are spatial models that simulate the effect of interactions in complex multicel-
lular systems such as tumors. This enables the investigation of how the overall
system behavior originates from the interaction of individual components (34).
In ABMs, cells are seen as agents that can interact with the surrounding cells
(agents) based on a predefined set of rules. On the basis of stochastic simu-
lations, ABMs enable monitoring the evolution of the tumor over time, and
systematically test the impact of different aspects of the TME in a controlled
way that would be unfeasible in any in vitro or in vivo settings (35).

Here we propose the first comprehensive ABM of prostate cancer onset and
progression encompassing nine agent types and 60 parameters. Our model pa-
rameters are based on prior reports and in-house generated experimental data
on LNCaP cultures and cocultures with fibroblasts, protumor, and antitumor
macrophages. We show that our model reliably recapitulates different stages
and spatial morphologies observed in cancer development, based on strong
phenotypical parallels with histopathology images from patients with prostate
cancer. In addition, we use the model to study which factors in the microen-
vironment mostly affect prostate cancer development, and to simulate in silico
patients with different molecular characteristics, showing strong associations
between in silico tumors and matching clinical data from The Cancer Genome
Atlas (TCGA).We provide ourABMas a tool to systematically study the impact
of the microenvironment on prostate cancer development.

Materials and Methods
Agent-based Modeling Assumptions and Simulations
In this study, we developed two ABMs to: (i) Test the requirements for prostate
cancer tumor maintenance and (ii) Study the onset and progression of prostate
cancer. In both cases, we used a two-dimensional (2D), on grid, stochastic
ABM.The size of one grid spacewas set to the size of one tumor cell, 142.89μm2

(36) forming a 125×125 grid. The first model only includes tumor cells (normal
and stem-like) and in all scenarios a total of 1,500 cells were randomly seeded.
The second model includes nine different types of cellular agents (i.e., different
in silico cell types) and cells were no longer seeded randomly, but in an ellip-
soid geometry, mimicking the prostatic acinus. The average size of the lumen

of the acinus was determined at 73 μm (six grid spaces; ref. 37) and increased
to 156 μm (13 grid spaces), to adapt for the limitation that there are only two
directions for growth and migration in the 2D model. Simulations were always
repeated multiple times (as specified in the corresponding results sections) to
account for the stochastic nature of ABM simulations.

Like all models, ourmodels are an abstraction of reality and based on a set of as-
sumptions which are listed in Supplementary Table S1. All agents (cells) occupy
one space on the grid and compete for space in their Moore neighborhood (i.e.,
the eight surrounding grid spaces). The model iterates through a defined num-
ber of time steps. At each step, every agent can perform an action with a certain
predefined probability. Unless specified otherwise in the following descriptions,
all actions only affect agents (cells) in the Moore neighborhood. Probabilities
of each action are defined by model parameters which are either derived from
literature or estimated from our experimental data as detailed in the next sec-
tions. The complete list of model parameters is provided in Supplementary
Table S2.

Modeling of Tumor Cells as Cellular Agents
In both models, tumor cell agents are seen as mutated luminal cells (normal
or stem cells) and they have the possibility to acquire mutations (probability
defined by the model parameter TUpmut; Supplementary Table S2) which con-
fers them a proliferative advantage modeled as a (cumulative) increase in the
probability of proliferation andmaximum proliferation capacity (TUadded val-
ues; ref. 15). Mutated cells can migrate (TUpmig), die (TUpdeath), or proliferate
(TUpprol). Cancer stem cells have the same characteristics as normal tumor
cells, but they are additionally characterized by their self-renewal capacity (17).
Therefore, stem cells aremodeled as having infinite proliferation capacity, while
other luminal cells have a limited proliferation capacity (TUpmax).

Implementation of an Agent-based Model of Prostate
Cancer Onset and Progression
The more complex ABM that we developed to study prostate cancer devel-
opment includes the tumor cells described in the previous section, and eight
additional agents that can perform actions and interact with each other (Fig. 1).
As stated above, this model’s starting geometry mimics the one of a healthy
prostate acinus, where luminal cells (including a fraction of stem cells) are
placed on a layer of basal cells, which is attached to the basementmembrane (11,
38). Luminal cells can acquire mutations and convert into tumor cells. A layer
of tissue resident fibroblasts is placed outside of the acinus, surrounded by ECM
containingmore fibroblasts. Fibroblasts can convert to tumor-promoting CAFs
when they are in proximity of tumor cells (18, 32, 39, 40).Macrophages can enter
the simulation from the top left corner, simulating entry from a blood vessel.
Although they exist in a broad spectrum, we consider a simplification of two
phenotypes: M1 (immuno-promoting/antitumor) and M2 [tumor-promoting
or tumor-associated macrophage (TAM)] macrophages (41).

In each iteration, all agents have their own round during which they can per-
form their actions or can idle based on the defined probabilities. The basement
membrane and the ECM are instead passive agents that can only idle or be af-
fected by the actions of other agents. Actions are performed by agents in the
following order:

i. Luminal cells can proliferate (LCpprol) within their physiologic region
and die (LCpdeath). They can also gain mutations (TUpmut), thereby
converting into tumor cells (11). Mutations confer the cells a proliferative
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FIGURE 1 Overview of the agents and actions they can perform during each model iteration. The simulation starts with luminal cells (LC) and basal
cells (BC) that can proliferate, die, or idle, all within physiologic regions and with fixed probabilities. The starting geometry also contains quiescent
fibroblasts (F) and the passive agents (basement membrane and ECM), macrophages enter throughout the simulation. LCs can gain mutations,
resulting in an increased M1-macrophage influx, once these mutated cells are sensed by macrophages. These mutated cells (TU) can additionally break
down basement membrane and ECM and affect macrophage and fibroblast differentiation upon reaching mutation thresholds. Differentiated
fibroblasts (CAF) proliferate, die, and can perform tumor-promoting actions. Just as the differentiated M2 macrophages, they stimulate TU
proliferation and allow for TU migration. Macrophages (M1 and M2) can also kill tumor cells and die or migrate. Image created with BioRender.com.

advantage as well as an increased chance of gaining additional muta-
tions. Tumor cells can die (TUpdeath), proliferate (TUprol) also outside
their physiologic region, affect fibroblast differentiation (Fdiff ) and in-
crease macrophage influx (Minfluxadd;refs. 30, 42). In addition, they
can gain more mutations (TUpmut). Upon reaching mutation thresh-
olds (TUthrshBM, TUthrshM, TUthrshMMP), tumor cells can perform
additional actions: break down the basement membrane (TUpkill), af-
fect macrophage differentiation (TUpMdiff ), or break down the ECM
(TUpMMP; refs. 38, 41, 43). After going through epithelial–mesenchymal
transition (EMT), which is promoted by CAF or TAM proximity, tumor
cells become invasive and canmigrate randomly to an empty space in the
Moore neighborhood (TUpmig; refs. 30, 44, 45).

ii. Basal cells can proliferate within their physiologic regions (Cprol) and
die (Cpdeath). They must remain attached to the basement membrane
to survive and cannot invade the lumen (38).

iii. Fibroblasts are quiescent, that is, they only idle (46). However, when they
are in close proximity to tumor cells (i.e., maximum two grid spaces
away, so the tumor cells can affect fibroblast differentiation over the base-
mentmembrane during PIN), they can differentiate into CAFs (Fdiff ; ref.
47). CAFs can proliferate (CFpprol), die (CFpdeath), break down ECM
(CFmmp), promote differentiation of macrophages toward the tumor-
promoting phenotype (CFmdiff ), enable migration for mutated cells
(CFemt) and promote tumor cell proliferation (CFprom), by adding to
the proliferation probability of tumor cells (21, 43, 44, 47).
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iv. Macrophages can enter the simulation (MinfluxProb), with an increased
probability when macrophages detect tumor cells (Minfluxadd; refs.
30, 42). All macrophages enter the simulation as M1 macrophages that
can kill tumor cells (Mpkill), die (Mpdeath), or migrate (Mpmig).
Macrophages move randomly, unless they can sense (within 17 grid
spaces, to account for the effect of chemokines) tumor cells, as they
will then move toward them (48, 49). When differentiated into tumor-
promoting M2 macrophages, via stimulation by tumor cells or CAFs,
they can additionally promote tumor cell proliferation (MTUadd) and
enable tumor cell migration (Memt; ref. 30).

For typical simulations in this study, steps of 12 hourswere used to simulate a pe-
riod of 400 days. At each step, the model iterates through the rounds described
above and each agent can perform one or more actions. Apart from stem cells,
all other cells have a maximum number of times they can proliferate (luminal
cells, tumor cells, basal cells, fibroblasts, and CAFs) or kill (macrophages) after
which they get exhausted and die. Migration and proliferation can only occur
in the standardMoore neighborhood, except for macrophages that canmigrate
in the Moore neighborhood of range 2 (24 neighbors instead of 8), to allow for
acinus infiltration by traveling over the basement membrane (30, 42, 49).

Experimental Data for Parameter Estimation
We performed coculture in vitro experiments for fitting the model parameters.
We used the prostate cancer cell line LNCaP (ATCC), immortalized foreskin fi-
broblast cells (BJ fibroblasts, Agami LabNKI) and themonocytic cell lineTHP-1
(ATCC) which were differentiated into M1 or M2macrophages. Cell lines were
authenticated by short tandem repeat profiling (Eurofins; December 2022) and
Mycoplasma testingwas regularly performedbyPCRevery 3months. Cells were
kept at low passage (thawed at passage 2, used until maximum passage 8).

LNCaP cells and fibroblasts were cultured together with either M1- or M2-
macrophages in a 4:1:1 ratio, respectively. Cells were cultured in physiologic
hormonal conditions with R1881 used to induce androgen receptor (AR) signal-
ing. LNCaP cells were taggedwith eGFP to follow themovertime. LNCaP-eGFP
cell proliferationwasmeasuredwith IncuCyte Zoomfluorescent signal imaging
system for 7 days and performed in triplicate. Finally, BJ fibroblast prolif-
eration was measured separately by analysis of phase-contrast images from
IncuCyte Zoom to obtain fibroblast growth curves, for fibroblast parameter
determination.

Apoptosis wasmeasured in real time using IncuCyte Zoom (Essen BioScience).
To this end, cells were grown in FBS, including androgen, with an addition of
Caspase-3/7 Read Reagent for Apoptosis (Essen Bioscience) in duplicate.

The resulting growth curves (Supplementary Fig. S1) and apoptosis data of
prostate cancer cells were used to determine the parameters of tumor cells in
the model.

Parameter Identification
Tumor cell, fibroblast, and macrophage parameters were estimated using par-
ticle swarm optimization to fit the experimental data (Supplementary Fig. S1).
For each biological replicate, parameters were optimized 50 times to account
for biological variation and model stochasticity. Final parameter values were
fixed to the average estimated value after assessing the robustness of the es-
timated values between replicates. The optimizations were done sequentially,
fixing the estimated model parameters. First, TUpmax and TUpprol were fitted

to the experimental growth curves of the LNCaP cells. TUpdeath was deter-
mined by measuring apoptosis of LNCaP cells. Subsequently, Fpprol, Fpmax,
and Fpdeath were fitted using the fibroblast growth curves. Finally,Mpkill and
Mkmaxwere fitted using the experimentally obtained growth curve for tumor
cells in the presence of M1 macrophages and fibroblasts. Similarly,Mpkill was
determined.Mkmax was assumed equivalent toMkmax.

The remaining parameter values were either derived from previous studies,
adapted from a previously published model of colorectal cancer (49, 50) or
qualitatively tuned (all details and specific references are in Supplementary
Table S2).

Parameter Sensitivity Analysis
A qualitative sensitivity analysis was performed for all individual model pa-
rameters by increasing them individually by 10% and recording the percentage
change in output, in the number of tumor cells at 400 days. All simulations
were conducted 10 times to account for model stochasticity. Parameters with
low sensitivity (i.e., for which the increase did not affect the output above the
deviations due to the stochasticity of the model) were fixed and are specifically
mentioned in Supplementary Table S2. Follow-up analyses were conducted for
the fourmost sensitive parameters (i.e., those causing on average> 10% change
in output), simulating 10 intermediate values in the region of interest (i.e., in
which the effect of changing the parameter is visible but not so extreme as
to overpower all other parameters). Finally, pairwise combinations (with five
parameter values each) of the most sensitive parameters were conducted to
see whether there were synergistic or antagonistic relations. In all sensitivity
analyses, the relative tumor size was recorded at 400 days and averaged across
10 simulations.

Pathology Slides for Assessment of
Morphologic Features
Pathology slices of patients with prostate cancer were used, with permission,
to compare growth patterns in patients with the model simulations. The pa-
tient samples were randomly picked out of daily practice of prostatectomies
of patients with prostate cancer. Every slide consists of a 4-μm-thick section
of formalin-fixed paraffin-embedded material and was stained with hema-
toxylin and eosin (H&E). The uropathologist scanned the slides and chose
representative images of prostate carcinoma.

The use of patient archival prostatectomy materials for research purposes at
the Netherlands Cancer Institute has been executed pursuant to Dutch legisla-
tion and international standards. Prior to May 25, 2018, national legislation on
data protection applied, as well as the International Guideline onGood Clinical
Practice. FromMay 25, 2018 on, we also adhere to the General Data Protection
Regulation. Within this framework, patients are informed and have always had
the opportunity to object or actively consent to the (continued) use of their
personal data and biospecimens for research purposes. For the current study,
written informed consentwas obtained fromall patients.Hence, the procedures
comply both with (inter)national legislative and ethical standards.

Comparison Between Model Simulations and
Clinical Patient Data
Model predictions were compared with clinical data from TCGA, using in
silico generated tumor loads and clinical progression-free survival (PFS) time
for comparison. Tumor load was defined as the amount of mutated cells at
t = 400 days, for simulations that reached the cancer stage (breakdown of
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FIGURE 2 In silico testing of requirements for tumor maintenance. A, Amount of tumor cells (blue) and percentage of stem cells (orange, dotted)
simulated over time under the condition that included only stem cells to maintain tumors. Simulations for six different initial percentages of stem cells
(SCstart) are shown. B, Similar plot testing the condition in which the proliferative advantage of mutated tumor cells is the only source for tumor
maintenance. Simulations for three different probabilities of acquiring mutations (Pmut) are shown. C, Similar plot testing the condition in which tumor
maintenance depends on both stem cells and tumor cells that can gain mutations. Four combinations of initial stem cell percentage and probability of
mutation acquisition are shown.

basement membrane). We used a cohort ofN= 494 patients with prostate can-
cer for whichmolecular data (transcriptomics and genomics) and survival data
(51) were available. RNA sequencing data were downloaded via the Firehose
tool from the BROAD institute (released January 28, 2016) and processed as
described by Lapuente-Santana and colleagues (52). To allow for comparison
between expression levels of different genes, transcripts per million were used.
Tumor mutational burden (TMB) data were obtained from a previous report
(53). Quantifications of the relevant cell types for individual patients were ob-
tained using deconvolution methods accessible through the immunedeconv R
package (54):M1 andM2macrophages were obtained using quanTIseq (55) and
CAFs were derived using EPIC (56). Finally, for 333 patients with prostate can-
cer, we also retrieved information on Gleason score and binarized them as high
(>7) and low (<7) Gleason score, thus excluding patients with intermediate-
grade prostate cancer (Gleason score= 7; ref. 57). For the comparison of model
simulations and clinical PFS, we performed correlation analysis (Spearman and
Pearson), considering the PFS time as curated by Liu and colleagues (51) defined
as the time to progression in case of events and the time to last contact or time
to death in case of no event.

Computational Implementation
The ABM of prostate cancer onset and development is available as Matlab code
in a GitHub repository at https://github.com/SysBioOncology/ABM_prostate_
cancer_development.

Data Availability
Cell culture data are shown in the Supplementary Figures. Raw data are
available from the corresponding authors upon request.

Results
In Silico Prostate Tumors Require a Proliferative
Advantage of Mutated Cells Additionally to Cancer
Stem Cells to Maintain Themselves at Realistic Stem
Cell Percentages
Cancer stem cells are known to play an important role in prostate cancer de-
velopment (17, 33, 58, 59, 60). To identify the percentage of stem cells needed

for our in silico tumors to maintain themselves, we used a simple ABM includ-
ing only normal tumor cells and/or tumor stem cells (as defined in Materials
and Methods) that were randomly seeded on the grid to test different possi-
ble scenarios in silico (11). For the first scenario, tumor cells were not allowed
to gain a proliferative advantage via mutations. This allowed us to assess the
ability of stem cells alone to sustain the tumor. Irrespective of the starting
percentage of stem cells, we achieved an almost full grid at approximately
15,000 tumor cells and stabilizing stem cell percentage at approximately 17%
(Fig. 2A). While the tumor was able to survive with stem cells alone, this
final stem cell percentage is much higher than we could reasonably expect
based on literature, which is reported to be 0.1%–0.3% in the human prostate
(33). The second scenario included no stem cells, but only tumor cells with
a possibility of gaining (more) mutations that confers proliferative advan-
tage. For all simulations, all tumor cells died within 40 days, meaning that
a tumor cannot survive based on acquired mutations only, as the balance
between cell proliferation and cell death eventually becomes negative as tu-
mor cells get exhausted (Fig. 2B). The unlimited proliferative capacity of stem
cells is needed as a source for new malignant cells. The third scenario in-
cluded both a percentage of initial stem cells and tumor cells with the ability
of gaining mutations. In this case, the tumor could maintain itself while the
percentage of stem cells stabilized at a much lower value; approximately 0.5%
(Fig. 2C). On the basis of these observations, we conclude that the combina-
tion of stem cells and possibility for luminal cells to mutate (and with that,
gain a proliferative advantage), is required for tumor maintenance at realistic
stem cell levels, and that this does not depend on the initial percentage of stem
cells.

Model Simulations Recapitulate Known Steps of
Prostate Cancer Development
After defining the basic requirements for tumor maintenance, we developed a
comprehensive ABM to describe onset and development of prostate cancer in
a simulated in vivo setting starting from a healthy prostate acinus (Fig. 3). This
model is schematically depicted in Fig. 1 and is based on the set of assumptions
and parameters described in Supplementary Tables S1 and S2, respectively (see
Material and Methods).
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FIGURE 3 Overview of the starting geometry in 3-fold; a pathology slice, schematic representation, and model geometry visualization.
A, A histology slice of a healthy prostatic acinus (H&E staining, 400x magnification). B, Schematic representation of the acinus (created with
BioRender.com). C, Modeled starting geometry, including a color scheme of all cells included in the starting geometry.

Running the model simulations, we can observe how prostate cancer devel-
ops over time (Fig. 4A–I; Supplementary Video V1). The initial condition is a
healthy prostatic acinus with empty lumen (Fig. 4A). Luminal cells can start
to mutate and then grow in the lumen (Fig. 4B). Mutated luminal cells give
rise to PIN, characterized by luminal cell hyperplasia, while the basement
membrane remains intact (refs. 11, 61, 62; Fig. 4B–F). Mutated luminal cells
(hereafter called tumor cells) attract macrophages, resulting in an increased
macrophage influx toward the acinus (Fig. 4C; refs. 30, 41). Basal cell layer
breakdown starts to occur during early PIN (Fig. 4D) and increases exponen-
tially with disease progression (14). During prostate cancer development, CAFs
originate fromnormal fibroblasts due to tumor cell stimulation (Fig. 4E; ref. 63).
Tumor cells also affect polarization of macrophages toward the tumor-
promoting phenotype by cytokine secretion, resulting in an increased number
of M2-like macrophages (Fig. 4F). This increasing tumor-promoting environ-
ment results in basementmembrane breakdown (Fig. 4G). This is a critical step
as tumor cells are no longer confined in the acinus and they can invade the
surrounding tissue allowing the disease to progress toward cancer. The tumor-
promoting cells (TAMs and CAFs) elicit EMT in tumor cells, making them
invasive (Fig. 4H; refs. 44, 45). This results in tumor cells invading the sur-
rounding tissue, and thereby starting the cancerous phase (Fig. 4I). On the basis
of these findings, we conclude that our model can represent all main steps of
prostate cancer onset and development well.

Using the parameter set defined in Supplementary Table S2, we ran 500 sim-
ulations and observed that only 36% of them results in breaking down of the
basementmembrane,whichwe consider as amarker of invasive prostate cancer.
We decided to investigate the main stochastic factors contributing to tumor de-
velopment in silico. If themalignant cells are recognized by theM1macrophages
at an early stage, this results in a fast increase in the ratio of M1 macrophages to
tumor cells. This allows the immune system to control and overcome the dis-
ease (Supplementary Fig. S2A). However, if this does not happen at early stages,
the tumor develops to evade the immune response and subverts the immune
response by converting macrophages to the protumor phenotype, increasing
the M2:M1 macrophage ratio (Supplementary Fig. S2B). M2 macrophages can
promote the tumor by increasing proliferation and eliciting EMT of mutated
cells.We also observed that there are several factors that contribute to determin-
ing the time of invasion. Earlier invasions are characterized by higher numbers
of CAFs, a higher average mutation load and higher M2:M1 macrophage ratio

(Supplementary Fig. S2C–S2E). These results highlight how, based on stochas-
tic simulations, ourABMenabled us to identify the aleatory factors that support
prostate cancer development.

Model Simulations Recapitulate Geometries Present
in Histology Images
Does our in silico prostate cancer model reliably represent clinically observed
tumor growth patterns? To address this question, we compared our model
simulations with pathology slides of patients with prostate cancer that were
randomly picked out of daily practice. The uropathologist scanned the slides
and selected representative images of prostate carcinoma. A common growth
pattern during the PIN phase is tufting, which is characterized by protru-
sions consisting of multiple cell layers growing on the basal cell layer (ref. 64;
Fig. 5A), which was observed as emergent behavior in our model simulations
(Fig. 5B). In the simulations, this tufted geometry originates frommutated cells
that grow in clusters attached to the basal cell layer. Interestingly, permanent
“tufts” in our model contain stem cells suggesting that the presence of stem
cell clusters could be an indication of the directionality of tumor growth. An-
other common growth pattern in developing prostate cancer is bridging, when
cells grow from one side of the acinus toward the other side (Fig. 5C), which
was also portrayed in the in silico developing tumors (Fig. 5D). Overall, we can
conclude that our ABM recapitulates important growth patterns observed in
histology slices of actual patients with prostate cancer.

Tumor Development is Most Strongly Impacted by
Mutation Probability, Tumor-promoting Ability of
CAFs, and Macrophage Phenotype
Having established that the simulated onset and development of prostate cancer
recapitulates tumor developmental processes and growth patterns as observed
in patients, we next investigated which model parameters most strongly af-
fect tumor growth. Performing sensitivity analyses (Materials and Methods),
we identified four model parameters causing a strong variation in the final
simulated tumor load (Fig. 6A). These sensitive model parameters are: tu-
mor promotion by CAFs (CFprom), migration probability of antitumorM1-like
macrophages (Mpmig), tumor mutation load required for macrophage differ-
entiation (TUthrshM), and mutation probability for luminal cells (TUpmut).
Looking at the dynamics of tumor formation when tuning these parameters, we
observed that themutation probability increases growth speed from the start of
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FIGURE 4 Initial healthy stage and following eight steps of prostate cancer development as by prostate cancer ABM simulation. A, Healthy prostatic
acinus. B, Mutations start to occur in the luminal cells converting them into tumor cells. C, The presence of mutated cells increases the influx of M1
macrophages. D, Mutated cells start to occupy spaces in the basal cell layer. E, Fibroblasts are differentiating toward their tumor-promoting phenotype
(CAFs). F, Macrophages are differentiating toward their tumor-promoting phenotype. G, All these factors lead to break down of the basement
membrane. H, Mutated cells become more invasive and start undergoing EMT. I, Invasive cancer with cells spreading through the surrounding tissue.
The white grid spaces indicate “empty space,” corresponding to the lumen or to the cleaved ECM (e.g. by CAFs).

the simulation, while the protumorigenic effects ofmacrophage influx andCAF
involvement occur at a later stage (Supplementary Fig. S3). Because these pa-
rameters can be related tomolecularmarkerswhich are largely variable between
patients, we decided to vary the corresponding parameters to generate relevant
in silico patient populations. Analyzing the combined effect of parameter pairs
on tumor growth, we empirically selected one high and one low value for each
parameter (Supplementary Table S3). We chose values for which the effects
of the parameter variation were clearly observable, but not too overpowering
(other parameters having little/no effect based on Supplementary Fig. S4). To
reduce the number of variables to have big enough clinical patient groups for the
analysis described in the next section, we merged the two macrophage param-
eters: high migration probability and low threshold for phenotype switching
(protumor macrophages) versus low migration probability and high threshold
for macrophage phenotype switching (antitumor macrophages). This resulted
in three parameter sets that allow for simulation of patients with: (i) High

versus low level of tumor-promoting effect of CAFs; (ii) High versus low pro-
tumor macrophage characterization; (iii) High versus low level of mutation
frequency of tumor cells. By systematically combining the effect of these three
parameter sets, we obtained eight patient groups (Fig. 6).

For all four groups with high tumor mutation probability, over 88% of the sim-
ulations showed disease progression toward cancer (Supplementary Table S4).
This is lower for other groups, with the two groupswith protumormacrophages
and low mutation probability resulting in modeled cancer progression in less
than 8% of the simulations.

To compare model simulations with clinical data, which are only available
for developed tumors from patients who underwent prostate surgery, we per-
formed follow-up analysis considering only the simulations resulting in cancer
development. The group with the most aggressive tumors consists of simu-
lated patients with high tumor-promoting CAFs, high protumor macrophages
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FIGURE 5 Comparison between model simulations and histology images (tufting and bridging). A, Pathology slice of a prostate cancer patient
(H&E staining, 400x magnification) showing a “tufted” pattern of growths on the luminal cell layer. B, Model simulation depicting the tufting growth
pattern. C, Pathology slice of a prostate cancer patient (H&E staining, 400x magnification) showing bridging; growth of cells from one side of the
acinus toward the other side. D, Simulated prostate cancer development showing the bridging growth pattern.

characterization and a highly aggressive tumor cell phenotype (red line showing
the simulated tumor growth over time in Fig. 6B and corresponding example
simulation in the red box in Fig. 6C). On the contrary, the group with the least
aggressive tumors is simulated when all parameter sets are set to “low” (i.e., the
least tumor-promoting phenotype; pink line in Fig. 6B and pink box in Fig. 6C).

As expected, the time of invasiveness (i.e., breakdown of the basement mem-
brane, marked with an x in Fig. 6B) is significantly earlier for the tumors with
high mutation probability as compared with those with low mutation proba-
bility (one-sided Wilcoxon rank-sum test, P = 2.26e-10). However, the time of
invasiveness does not always correlate with growth speed. The tumor group

with the steepest growth curve (red line, Fig. 6B) becomes invasive later com-
pared with more slowly growing tumors (e.g., the blue line, with antitumor
macrophage characterization, P = 0.030). This analysis suggests that different
mechanisms can affect how quickly tumors develop and how long it takes for
tumors to become invasive.

Model Simulations of Tumor Load Associate
with Patient Prognosis
Considering the same eight patient groups (all possible combinations of the
three parameter sets) defined in the previous section, we wanted to assess
whether the in silico behaviors correlate with patient prognosis. To do so,
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FIGURE 6 Effect on tumor growth of varying sensitive model parameters. A, Grouped histogram of the repeated sensitivity analysis (five times for
each parameter), overlapped by four (differently colored) histograms of the most sensitive parameters: mutation probability of luminal cells (Pmut,
red), probability of CAFs promoting tumor cell proliferation (CFprom, green), yellow represents the amount of mutations needed before tumor cells
affect macrophage differentiation (TUthrshM) and M1 macrophage migration probability (M1pmig, blue). B, The averaged evolution of the amount of
tumor cells for 40 simulations that developed cancer for each of the eight subclasses. These classes were based on the “high” or “low” status of
sensitive parameters for CAFs, TAMs, and tumor cells. Included is a violin plot depicting the spread of simulated tumor cell amounts. C, An example of
tumor development for each group at an early point in the simulation (50 days), the point at which it becomes invasive and the state at the end of the
simulation (400 days).

we compared model predictions of tumor load (only for cases that devel-
oped cancer) with clinical data from a cohort of patients with prostate cancer
(N = 494) from TCGA database. For each of the three parameter sets, we de-
finedwhether a patient belonged to the “low” or “high” group considering three
molecular markers (see Supplementary Table S5 for detailed motivation of the
choice of the markers). Tumor aggressiveness was defined on the basis of TMB
and the expression of two frequently mutated genes in prostate cancer (TP
and CDKNB; refs. 15, 65, 66). Protumor macrophage characterization was de-
fined on the basis of the ratio of M2:M1macrophages and the expression of two
genes involved in protumor macrophage differentiation (CXCL and STAT;
refs. 67–69). Finally, the tumor-promoting CAFs effect was defined on the ba-
sis of the quantification of CAFs and the expression of two soluble molecules
secreted by CAFs that affect tumor progression (TGFBR and IGF; the latter
one with an inverse relationship based on supporting literature and the nega-
tive correlation observed in our data; refs. 40, 70–72). For each parameter set,
a patient was assigned to the “high” category if at least two out of three makers
were above the cohort median, and “low” otherwise. We decided to use three

markers to capture different aspects of the process described by the corre-
sponding model parameters. For example, to assess tumor-promoting effects
of CAFs, we considered not only the amount of CAFs (quantified using com-
putational deconvolution) but also their ongoing differentiation and their
tumor-promoting activity (using TGFBR and IGF as proxies respectively;
more detailed justification is provided in Supplementary Table S5). In this way,
we could divide TCGA patients in eight clinical patient groups with similar
characteristics to the in silico groups.

We observed a negative correlation between the tumor load from the in silico
patient groups and the PFS time of the matching clinical patients with prostate
cancer. (Pearson correlation = −0.73, P = 0.04; Fig. 7A). Patients classified in
the three groups with highest tumor load showed a significantly higher Gleason
score (χ2 test, P = 0.002; Fig. 7B) as compared with the patients in the three
groupswith lowest tumor load.Overall, these results indicate that tumorswhich
are characterized to be more aggressive in silico correspond to patients with
higher grade and worst prognosis.
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FIGURE 7 Clinical validation of model predictions for different patient groups. A, Correlation between the simulated tumor growth (simulation time
400 days, 40 simulations per modeled patient group) and the average PFS time for clinical patients assigned to the matching patients groups based
on molecular markers. Colors correspond to those used in Fig. 6B, portraying simulated tumor growth over time of the same classes. B, Binary Gleason
scores per patient group; Gleason scores of 8 or higher were considered “high” and Gleason scores of 6 or lower were considered “low”.

Discussion
The process of prostate cancer development can take years and is heavily in-
fluenced by many different types of cells, stochastic events, and the TME. Its
unpredictable nature and extensive adaptation strategies bear resemblance to
the process of evolution, which makes it particularly hard to combat at a later
stage. Recreating the complete disease settings to better understand and treat
the disease is therefore rather difficult in in vitro or in vivo settings.

As recently emphasized in an opinion article byWest and colleagues (73), agent-
based models are key tools to reproduce the complexity of the tumor in silico,
offering a complementary approach to in vitro and in vivo experiments. They
allow the integration of different types of knowledge, framing it in the form of
an intuitive set of rules. Despite their simplicity in the formulation, they allow
simulation of complex behaviors deriving from cell–cell interactions.

Here, we designed a comprehensive agent-basedmodel that provides an in silico
experimental set up to study prostate cancer onset and progression. The rules
defining our ABM were based on a set of assumptions integrating knowledge
from several studies. Model parameters were additionally fine-tuned by fitting
our in-house generated in vitro coculture data. After showing that our model
was able to reproduce known tumor patterns and relevant steps of tumor pro-
gression, we used the model to in silico study the impact that deterministic and
stochastic events have on prostate cancer progression.

In our study, we identified protumor activity of CAFs and macrophages and
mutation probability of the tumors as main deterministic causes of in silico
tumor heterogeneity. While high tumor mutation probability generally results
in fast invasion and bigger tumors, the effects and quantities of macrophages
and fibroblasts at different timepoints were found to be a very important fac-
tor in prostate cancer development and progression too. We suggest a different
approach to classify patients based on functional TME characterization, thus
providing a complementary view with respect to standard genomics-driven ap-
proaches (57). On the basis of our classification, we have shown that in silico

progression correlates significantly with PFS, which is commonly used as a
proxy of clinical progression although its validity has been challenged (74).
Unfortunately, metastasis-free survival, which is the most reliable clinical indi-
cator, is not available for most publicly available datasets. Our results represent
a proof of principle that our model could help to improve our understanding of
different patient molecular characteristics and how these contribute to the like-
lihood of progression, thus suggesting new prevention strategies and options
for patient-tailored treatment plans. However, more clinical data on patients
not (yet) in a malignant disease stage and more informative clinical endpoints
would be needed to assess whether these markers could be used as indicators
of disease stages and be functionally associated with disease progression. This
assessment could be tested by monitoring prostatitis patients, which is a risk
factor for prostate cancer (75).

We additionally observed that, running the model multiple times starting with
the same initial conditions, only a fraction of the simulations developed into
cancer. This is determined only by the stochasticity of the events included in
the simulation that mimics the in vivo stochasticity of cellular interactions. We
observed that aleatory events related to the interactions between macrophages
and tumor cells can determine the success of early immunosurveillance thus
determining the fate of the tumor. The stochasticity of interactions also af-
fects how long it takes before the tumor becomes invasive, driven by the
balance between the number of CAFs, amount of driver mutations and the ra-
tio of antitumor/protumor macrophages. While there is increasing awareness
that clinicians should consider the impact of genetics to account for patients
heterogeneity in prostate cancer management (76, 77), our results underlie
the importance of monitoring the microenvironment phenotype (e.g., using
multiplexed tissue imaging) during prostate cancer progression.

Although we have shown that our ABM is a valuable tool to conduct in silico
experiments on the onset of prostate cancer, it is important to keep inmind that
models are always an approximation of reality and the choice of the level of de-
tails included is driven by the aim of the study. A limitation of the current study
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is that the initial model parameters are based on experiments performed on a
single prostate cancer cell line (LNCaP). While the systematic effect of cell line
and patient heterogeneity, for example, due to differences in mutations, is cap-
tured by our sensitivity analysis on themodel parameters, more experiments on
different cell lines would be needed to further study differences in the trajecto-
ries and the stochastic events of prostate cancer development. On the basis of
experiments with castration-resistant cell lines, ourmodel could be extended in
the future to study treatment response and more advanced disease stages, such
as the effect of androgen deprivation therapy or AR inhibition and the devel-
opment of castration resistance. Considering that AR is known to play a role,
not only on prostate cancer cells, but also on fibroblasts (22) and macrophages
(45), an extension of our ABM could be a valuable tool to take an integrative
approach to study how the prostate cancermicroenvironmentmediates therapy
response.

In addition, for this study, we chose to focus on macrophages and fibroblasts
because of their prominent role in prostate cancer, but the model could be fur-
ther extended to include other cell types, such as T cells. Although prostate
cancer is known to be an immune excluded and suppressed tumor type, recent
studies showed the potential of combining T cell–based immunotherapies (i.e.,
immune checkpoint blockers or chimeric antigen receptor T cells) with other
therapies targeting the prostate cancer microenvironment to restore antitumor
immunity in advanced prostate cancer (78, 79). ABMs could help to under-
stand the effect of combining different therapies in specific microenvironment
subtypes, therefore suggesting how to tailor combinatorial treatment.

Furthermore, we have now chosen to model the effect of cytokines and
chemokines implicitly (e.g., by basing an interaction between two cells on the
distance between them), but it would be an interesting addition to model hu-
moral factors explicitly [e.g., using hybrid models (80)], for example when
wanting to zoom in more on androgen dependence and the path to castration-
resistant disease. Adding to this, we have chosen to model mutations generally;
all mutations confer a proliferative advantage and increased mutation chance
to its host. An interesting addition to the model might be the explicit inclusion
of the most common genomic alterations, such as TMPRSS-ERG gene fusion
(81). These additions would make the model more realistic but also more com-
plex, thus increasing the number of model parameters and the computational
costs.

Previous in silicomodels of prostate cancer have been focused on specificmech-
anisms such as the formation of bone metastases (62) or the role of disrupted
stem cell movement in causing excessive growth in healthy prostatic ducts (82).

To our knowledge, this is the first ABM to simulate the onset and develop-
ment of prostate cancer in healthy prostatic acini considering the effects of the
microenvironment including fibroblasts and macrophages. Our analysis shows
that, not only tumor cells, but also macrophages and fibroblasts play an impor-
tant role in prostate cancer development and could provide potential markers
of disease progression.
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