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ABSTRACT
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy.
Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective
therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sec-
tor prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the
anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main
protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphona-
mide 6b showed promising inhibitory activity with an IC50¼ 0.249mM. Additionally, 6b inhibited viral cell
proliferation with an IC50 of 4.33 mg/ml, and was non-toxic to VERO-E6 cells (CC50¼ 564.74mg/ml) display-
ing a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in
the enzyme active site, supporting the obtained in vitro findings.
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Introduction

Since the World Health Organisation (WHO) declared COVID-19 a
pandemic in 2019, the rapid spread of SARS-CoV-2 has resulted in
more than 620 million confirmed cases and the deaths of millions
of people1, making it one of the most catastrophic global health
disasters in human history2. There are now only a few SARS-CoV-2
medicines available, despite the widespread approval of vaccin-
ation3,4. In addition to this, the emergence of SARS-CoV-2 omicron
subvariants that are effective poses a threat to the efficacy of vac-
cines developed for the purpose of controlling COVID-19 infec-
tion5,6. Hence, the search for effective therapeutic drugs to
combat SARS-CoV-2 is urgently needed.

In the search for inhibitors of SARS-CoV-2, several viral targets
that are essential to the replication of the virus are being investi-
gated. One of these viral targets is the SARS-CoV-2 main protease
(Mpro)7. The 1a/1ab polyprotein (pp), which is the target of
Mpro’s proteolytic activity8, is hydrolysed into 16 mature non-
structural proteins (NSPS)9. These proteins play crucial roles in the
initial stages of the SARS-CoV-2 replication cycle, including the
synthesis of RNA of the virus, the rearrangement for the host cell
cytoplasmic organelles to create environments favourable for viral

replication, the production of structural, and construction of new
viral particles which eventually would be released to other host
cells. The Protomers A and B constitute the homodimer protease
which are responsible for the catalytic function of enzyme
through thiol group of Cys145 and deprotonated His41 which is
considered as the catalytic dyad of Mpro10. Hence, the disruption
of the catalytic activity of Mpro may therefore be a useful and
promising strategy, as demonstrated by the clinical success of nir-
matrelvir, the first Mpro inhibitor to enter into clinical use11.

There are two categories of SARS-CoV-2 Mpro inhibitors, non-
covalent inhibitors like X77 and ML188 or covalent inhibitors
(such as N3 and GC376)12. The covalent inhibitor forms a covalent
bond with catalytic dyad, which blocks the binding site. On the
other hand, non-covalent inhibitor does not require covalent bind-
ing to block the Mpro enzyme7. Despite the advantages of cova-
lent inhibitors and their current resurrection, concerns about their
safety, such as the possibility of off-target effects and delayed
effects, have always hampered the development of such new
medications, although, as mentioned above, nirmatrelvir consti-
tutes an exception13–14.
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Presently, the isatin motif (Figure 1) is highly valuable in the
area of pharmaceutical chemistry and drug design15. Since it can
be found and isolated from several natural resources and its syn-
thetic accessibility, the isatin scaffold has been used to prepare
novel derivatives with plethora of pharmacological properties
such as anticancer16–19, antibacterial20–21, anti-tubercular22–24, anti-
malarial25–26, antileishmanial27–28, and antiviral activities29. In par-
ticular, there has been a surge of interest in the recent decades to
explore the biological effect of diverse isatin-based small mole-
cules towards a wide range of pathogenic viruses. For example,
the antiviral activities for diverse isatin derivatives were reported
against HIV30–32, arbovirus33, chikungunya virus34, herpes simplex
virus (HSV)35, coxsackievirus36, poxvirus37, and influenza virus38.

Furthermore, many investigations have been conducted in
order to afford isatin analogues as effective inhibitors of SARS-CoV
main protease39–43. Chen et al., in 2005, described the synthesis of
N-substituted isatin derivatives endowed with a good inhibitory
impact towards SARS-COV main protease in the low micromolar
range (IC50: 0.95–17.50 lM). Among this series, compound I
(Figure 1) emerged as the most promising inhibitor with IC50
equals 0.95lM41. Recently, Liu et al assessed the antiviral activity
of other new N-substituted isatin-based molecules, by targeting
SARS-CoV-2 main protease43. The reported isatins demonstrated
effective inhibitory activity against the tested protease, with com-
pound II (Figure 1) standing out as the most promising candidate
in that study (IC50 ¼ 0.045 lM).

Since previous studies spot the light on the potential activity
of N-substituted isatins, we were inspired to design a novel set of
derivatives (6a-d and 10a-b) as potential inhibitors for SARS-CoV-
2 main protease (Figure 1). The proposed derivatives were
synthesised, characterised and evaluated using Fluorescence res-
onance energy transfer-based analysis to evaluate their inhibitory
activity against SARS-CoV-2 main protease.

Results and discussion

Chemistry

The synthetic strategy was designed in order to retain the dione
system which is characteristic to the isatin motif so that it could
form an essential hydrogen bonding with important residues such
as Cys145. Also, the N-substitution was decorated with the privi-
leged triazole nucleus, which could enhance pharmacokinetic and
pharmacodynamic profile, as well as incorporated an amide linker

that could achieve some important interactions. Lastly, the
appended phenyl ring was grafted with a sulfamoyl functionality
to afford the first series (6a-d), whereas in the second series the
ketone group was exploited (10a-b), Figure 1.

The preparation of triazolo-isatins (6a-d and 10a-b), utilised in
this work, is demonstrated in Schemes 1 and 2. Acylation of the
basic amino functionality in sulphanilamide 1 to afford 2-bromo-
N-phenylacetamide 2, was achieved through stirring in dry
dioxane at room temperature and in the presence of K2CO3, then,
intermediate 2 was dissolved in dry dimethyl formamide and
stirred with sodium azide at room temperature to furnish 2-azido-
N-(4-sulfamoylphenyl)acetamide 3. On the other hand, isatins 4a-d
were alkylated with propargyl bromide in dry acetonitrile and in
presence of K2CO3 to produce the corresponding N-propargyl isa-
tins 5a-d, which further reacted with 2-azido-N-(4-sulfamoylpheny-
l)acetamide 3 through Azide-alkyne Huisgen cycloaddition in
order to produce the target sulphonamide-tethered triazolo isatins
6a-d (Scheme 1).

In Scheme 2, we aimed at replacing the sulphonamide
functionality in the first series with a ketone group. N-(4-acetyl-
phenyl)-2-azidoacetamide 9 was synthesised in the same way that
2-azido-N-(4-sulfamoylphenyl)acetamide 3 was. Thereafter, azide 9
was reacted with N-propargyl isatins 5a and 5c via the azide-
alkyne cycloaddition click reaction to furnish the target triazolo
isatins 10a-b (Scheme 2). The structure of the prepared derivatives
of triazolo isatin was well characterised and confirmed through
interpretation of the spectral and the elemental analyses data.

Biological evaluation

SARS-CoV-2 Mpro inhibitory assay
The newly synthesised triazolo isatins (6a-d and 10a-b) were
assessed for their inhibitory impact on the main protease of SARS-
CoV-2, using GC376 as a standard inhibitor. The inhibition data
for the examined molecules were reported as median inhibition
concentrations (IC50) and displayed in Table 1, Figure S1.

The data listed in Table 1 disclosed that the examined 3CL-Pro
was inhibited by the herein described triazolo isatins in a variable
degree. The target sulphonamide-tethered triazolo isatins 6a-d
effectively inhibited 3CL-Pro with IC50 values spanning from 0.249
to 1.054 lM. Compounds 6a-c showed the ability to exert sub-
micromolar inhibition; IC50 equal 0.562 ± 0.005, 0.249 ± 0.006 and
0.939 ± 0.007 lM, respectively, whereas compound 6d displayed

Figure 1. Structures of isatin and some reported main SARS-CoV protease inhibitors (I and II), as well as the target triazolo isatins (6a-d and 10a-b).
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low-micromolar inhibitory activity (IC50 ¼ 1.054 ± 0.053 lM).
Incorporation of unsubstituted isatin motif resulted in compound
6a with good inhibitory activity (IC50 ¼ 0.562 lM). Fluorine is
exploited as an isostere for the hydrogen atom since its similar to
hydrogen in terms of size and electronic characteristics. Triazole
derivative 6b bearing fluorine substituent at the isatin C-5 showed
an increase in the 3CL-Pro inhibitory activity suggesting that the
C-5 substitution is tolerated and also highlighting that the halo-
gens incorporation may be advantageous. Moreover, grafting
methoxy or trifluoromethoxy group led to compounds 6c and 6d
with about 2-fold decreased activity (IC50 ¼ 0.939, and 1.054 lM,
respectively) than their unsubstituted counterpart 6a.

On the other hand, the introduction of acetyl instead of the
sulphonamide functionality (compounds 10a and 10b) resulted in
a dramatic decrease in the 3CL-Pro inhibitory action (IC50 ¼ 12.28,
and 17.075 lM, respectively) hinting out that incorporation of the
sulphonamide group is a crucial element for the activity.

The SARS-CoV-2 inhibitory assay (Cell-Based)
Since compound 6b showed the best inhibitory effect against
3CL-Pro of SARS-CoV-2 established, its cellular antiviral activity
was further assessed. Firstly, MTT assay was exploited to

determine the cytotoxicity of 6b against VERO-E6 cell line.
According to the data, 6b has a favourable safety profile with a
cytotoxicity concentration 50 (CC50) value of 564.74mg/ml, which
indicates that it has no significant impact on the survival of
healthy, uninfected cells (Figure 2). Thereafter, the ability of 6b to
reduce the viability of SARS-CoV-2 cells was further investigated.

Remarkably, compound 6b exerted promising cell growth
inhibitory activity with IC50 ¼ 4.33 mg/ml that results in a safety
index equals 130.4, suggesting that 6b has good activity against
SARS-CoV-2 in-vitro without causing toxicity to the host cells
(Figure 2). This outcome is most likely associated with 6b’s cap-
acity to efficiently inhibit the 3CL-Pro enzyme, as previously
described.

Molecular modeling studies

Docking studies
Molecular docking was proved to be a valuable tool to recognise
the interactions of enzyme inhibitors44–48. Hence, we utilised
molecular docking to gain an insight on the binding profile of isa-
tin derivative 6b with SARS-CoV-2 Mpro enzyme active site. As a
start, redocking the co-crystalised ligand GC-14 into its binding
site was preformed to ensure the capability of the software to

Scheme 1. Reagent and conditions: (i) Dry dioxane, K2CO3, stirring r.t., 12 h; (ii) NaN3, DMF, stirring r.t., 8 h; (iii) Dry acetonitrile, K2CO3, Stirring r.t., 10 h; (iv) DMF/H2O,
CuSO4.5H2O, sodium ascorbate, heating at 60 �C, 7 h.

Scheme 2. Reagent and conditions: (i) Dry dioxane, K2CO3, stirring r.t., 12 h; (ii) NaN3, DMF, stirring r.t., 8 h; (iii) 5a or 5c, DMF/H2O, CuSO4.5H2O, sodium ascorbate,
heating at 60 �C, 7 h.
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reproduce experimental pose in RMSD less than 1.5 Å. Since the
calculated RMSD of the redocked pose was found to be 0.83, the
docking protocol was considered valid. As depicted in Figure 3,
the interaction of the co-crystalised ligand with the binding site
could be summarised in its ability to form several interactions
with the critical amino acids such as His 41, Met 49, Leu 141, Gly
143, Cys 145, Met 165 and Glu 166.

It’s interesting to note that compound 6b shared a similar
binding mechanism with the co-crystallized ligand, as presented
in Figure 4.

The isatin ring of 6b interacted with Ser 144, Cys 145 through
hydrogen bonding and one hydrophobic interaction with Glu166.

Moreover, one hydrogen bond with His41 was formed through
carbonyl of the amide linker formed. Furthermore, three hydrogen
bonds with Met 165, Val 186 and Arg 188, were established
through sulphonamide group in addition, the phenyl ring
appended to the sulphonamide functionality formed two

Table 1. In vitro inhibitory effect of target triazolo isatins (6a-d and 10a-b)
against 3CL-Pro, using (GC376) as a standard drug.

Comp. R aIC50 (lM)

6a 0.562 ± 0.005

6b 0.249 ± 0.006

6c 0.939 ± 0.007

6d 1.054 ± 0.053

10a 12.28 ± 0.73

10b 17.075 ± 0.815

GC376 0.063 ± 0.001

aMean from two different assays.

Figure 2. CC50 and IC50 values for isatin derivative 6b.

Figure 3. Redocking of the co-crystalised ligand GC-14 into SARS-CoV-2 Mpro
binding site.

Figure 4. Compound 6b (in green) in 3D style overlaid with GC-14 (in blue).
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hydrophobic interactions with His 41 and Met 49 (Figure 5).
Finally, compound 6b achieved binding energy of �10.7 Kcal/mol
better than that for the co-crystalised (-9.8 Kcal/mol). To this end,
the good binding mode and excellent docking score of com-
pound 6b highlights its ability to inhibit SARS CoV-2 Mpro
through several types of interactions.

Molecular Dynamics
Further virtual investigations were achieved by molecular dynamic
(MD) simulations studies. MD simulation provides various useful
parameters for studying the dynamics of biological systems.
Moreover, MD investigations might provide information about the
binding affinity and intensity of docked complexes of a ligand
and target proteins. To this end, the binding coordinate revealed
by Mpro docking with isatin derivative 6b was advanced to MD
simulations. To provide a comparative mean for the effect of the
newly synthesised triazolo isatin 6b on the Mpro enzyme, the lat-
ter was subjected to MD using its apo form. Therefore, two MD
simulations were conducted for 100 ns using GROMACS 5.1.1 soft-
ware. As shown in Figure 6, triazolo isatin 6b had the privilege of
forming a stable complex with the Mpro enzyme, as indicated by
its low RMSD values that averagely reached 1.5 Å. On the other
hand, the RMSD of the apo Mpro enzyme reached an average
value of 4.8 Å, indicating a high degree of flexibility suiting the
Mpro intended function to process the viral polypeptide Figure 6.
To this extent, the value decrease in the RMSD between the
Mpro-6b complex and the apo Mpro highlights the great ability
of triazolo isatin 6b to strongly bind and inhibit the SARS CoV-2
Mpro enzyme.

Similar results were obtained from the RMSF analysis in which
the residues of the apo protein demonstrated high fluctuations
that reached an average of 4.3 Å. In comparison, the binding of
compound 6b to the Mpro residues, their stability increased sig-
nificantly as indicated by average RMSF less than 1.6 Å, Figure 7.
To summarise, the MDs results highlight the ability of triazolo isa-
tin 6b to inhibit the SARS CoV-2 Mpro enzyme through forming a
stable complex within the Mpro active site, as consistent with the
enzyme assay.

Conclusion

The preparation of isatin-triazole hybrids was successfully facile
through click chemistry allowing the development of novel com-
pounds as Main protease (Mpro) inhibitors. Sulphonamide teth-
ered derivatives showed better activity than the acetophenone
derivatives, especially compound 6b which exhibited sub-

micromolar enzyme inhibitory activity in FRET assay. Thereafter,
triazolo isatin 6b’s antiviral activity was demonstrated by its cap-
acity to inhibit the proliferation of viral cells with an IC50 value of
4.33 mg/ml. Notably, 6b exerted non-significant toxicity towards
VERO-E6 cells (CC50 ¼ 564.74 mg/ml) revealing a favourable safety
profile with selectivity index equals 130.4. This remarkable obser-
vation was supported by molecular docking and molecular
dynamic simulation which showed the interaction of 6b with sev-
eral important amino acid residues in the binding site of Mpro
and the stability of the formed interactions between the com-
pound and the active site. In particular, the formation of several
hydrogen bonds with amino acids involved in the catalytic activity
of the enzyme through the alpha-ketoamide moiety and sulphonyl
amide function group explains the superior activity of benzenesul-
fonamide tethered derivatives 6 over acetophenone derivatives
10. Hence, 6b could be further developed as anti-SARS-CoV-2
agent after performing more extensive studies.

Experimental

Chemistry

General
The solvents and reagents used in the reactions were commer-
cially sourced and not purified further. A Stuart melting point
device was used to measure melting points that was uncorrected.
NMR spectra were attained using a JEOL ECA 500 NMR
Spectrometer (500MHz 1H and 126MHz 13 C NMR), while elemen-
tal analysis (% C, H, and N) was accomplished using a PerkinElmer
2400 CHNS analyser. Reaction progress and product mixtures were
regularly monitored through thin layer chromatography (TLC)
using Aluminium sheets pre-coated with silica gel 60 F254 pur-
chased from Merk.

Synthesis of intermediates 2-bromo-N-phenylacetamides 2 and 8
To a suspension of 4-aminobenzenesulfonamide 1 or 40-aminoace-
tophenone 2 (20mmol) in dry dioxane (15ml) and K2CO3 (5.5 g,
40mmol) at 0 �C, bromoacetyl bromide (4.42 g, 22mmol) was
added dropwise and the mixture was incubated at r.t. with stirring
for 12 h. Then, ice-water was added to the reaction mixture, and
the precipitate that developed was filtered out. dried and recrys-
tallized from ethanol to produce 2-bromo-N-phenylacetamides 2
and 8 with 75% and 80% yield, respectively49.

Figure 5. 2D and 3D interaction diagram of compound 6b with SARS CoV-2 Mpro binding site.
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Synthesis of intermediates 2-azido-N-phenylacetamides 3 and 9
To a solution of 2-bromo-N-phenylacetamides 2 and 8 (15mmol)
in dry DMF (15ml), sodium azide (2.9 g, 45mmol) was added. The
reaction mixture was incubated at r.t. while stirring for 8 h, and
then water (75ml) was added, and the reaction mixture was
extracted with CH2Cl2 (3� 20ml). The organic layer was washed
with brine, and dried over anhydrous Na2SO4, then evaporated
under reduced pressure to furnish intermediates 2-azido-N-phenyl-
acetamides 3 and 9 which used in the next step forthwith without
further purification50–51. Yield: 73% (3); 70% (9).

Synthesis of N-propargyl isatins 5a-d
A solution of isatin derivatives 4a-d (20mmol), propargyl bromide
(22mmol), and K2CO3 (5.5 g, 40mmol) in dry acetonitrile (15ml)
was incubated at r.t. while stirring for 10 h. Afterward, ethyl acet-
ate (3� 15ml) was used to extract the reaction mixture after it
had been poured into water. The organic layer was dried over
anhydrous MgSO4 and concentrated at reduced pressure after

being washed with brine to yield N-propargyl isatins 5a-d. The
yields were 72%, 78%, 70%, and 75% for 5a-d, respectively.

1-(Prop-2-yn-1-yl)isatin (5a). Yield ¼ 78%, Orange crystals, melting
point ¼ 160–162 �C (reported melting point ¼ 158–160 �C)52.

5-Fluoro-1-(prop-2-yn-1-yl)isatin (5b). Yield ¼ 72%, Red crystals,
melting point ¼ 128–130 �C (reported melting point ¼ 124–
125 �C)53.

5-Methoxy-1-(prop-2-yn-1-yl)isatin (5c). Yield ¼ 75%, Red crystals,
melting point ¼ 131–133 �C (reported melting point ¼ 130–
132 �C)54.

1-(Prop-2-yn-1-yl)-5-(trifluoromethoxy)isatin (5d). Orange crystals,
yield ¼ 70%, melting point ¼ 91–92 �C; 1H NMR (500MHz, DMSO-
d6) d (ppm): 3.37 (s, 1H, -C�CH), 4.59 (d, 2H, N-CH2, J¼ 2.0 Hz),
7.34 (d, 1H, Aromatic-H, J¼ 8.8 Hz), 7.64 (s, 1H, Aromatic-H), 7.76

Figure 6. RMSD analysis for the MD simulations.

Figure 7. RMSF analysis for the MD simulations.
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(d, 1H, Aromatic-H, J¼ 8.8 Hz); Anal. Calcd. for C12H6F3NO3: C,
53.54; H, 2.25; N, 5.20; found C, 53.68; H, 2.24; N, 5.17.

General procedure for synthesis of target inhibitors 6a-d and
10a-b
A solution containing 2-azido-N-phenylacetamides 3 and 9
(2mmol) in 5ml of a mixture of DMF and H2O (4:1) was prepared.
To this solution, N-propargyl isatins 5a-d (2mmol), CuSO4.5H2O
(1mmol), and sodium ascorbate (2mmol) were added. The result-
ing reaction mixture was stirred at 60 �C for 7 h. After the reaction
was complete, the mixture was poured onto crushed ice, filtered,
and dried under reduced pressure. The resulting product was crys-
talised from ethanol to yield the target compounds 6a-d and
10a-b.

2–(4-((2,3-Dioxoindolin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-sul-
famoylphenyl)acetamide (6a). Yield (75%); Orange crystals; melting
point ¼ 280–282 �C; 1H NMR (DMSO-d6, 500MHz) d (ppm): 4.99 (s,
2H, -CH2), 5.33 (s, 2H, -CH2), 7.11 (t, 1H, Aromatic-H, J¼ 8.0 Hz),
7.18 (d, 1H, Aromatic-H, J¼ 8.0 Hz), 7.27 (s, 2H, SO2NH2), 7.52 (d,
1H, Aromatic-H, J¼ 7.0 Hz), 7.62 (t, 1H, Aromatic-H, J¼ 7.0 Hz), 7.69
(d, 2H, Aromatic-H, J¼ 8.5 Hz), 7.75 (d, 2H, Aromatic-H, J¼ 8.5 Hz),
8.19 (s, 1H, Aromatic-H), 10.79 (s, 1H, NH); 13C NMR (DMSO-d6,
126MHz) d ppm: 35.04, 52.29, 111.25, 117.62, 118.90, 123.45,
124.54, 125.36, 126.90, 138.17, 138.91, 141.26, 141.36, 150.22,
157.88, 164.80, 183.11; Anal. Calcd. for C19H16N6O5S: C, 51.81; H,
3.66; N, 19.08; found C, 52.01; H, 3.64; N, 19.02.

2–(4-((5-Fluoro-2,3-dioxoindolin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-
N-(4-sulfamoylphenyl) acetamide (6b). Yield (75%); Red crystals;
melting point ¼ 271–273 �C; 1H NMR (DMSO-d6, 500MHz) d (ppm):
4.99 (s, 2H, -CH2), 5.33 (s, 2H, -CH2), 7.20 (dd, 1H, Aromatic-H,
J¼ 8.0, 4.0 Hz), 7.26 (s, 2H, SO2NH2), 7.47–7.53 (m, 2H, Aromatic-H),
7.68 (d, 2H, Aromatic-H, J¼ 9.0 Hz), 7.75 (d, 2H, Aromatic-H,
J¼ 9.0 Hz), 8.18 (s, 1H, Aromatic-H), 10.78 (s, 1H, NH); 13C NMR
(DMSO-d6, 126MHz) d ppm: 35.11, 52.29, 111.43, 111.62, 112.63,
112.68, 118.54, 118.60, 118.89, 123.92, 124.14, 125.38, 126.89,
138.92, 141.26, 146.43, 157.64, 157.92, 159.55, 164.78, 182.49; Anal.
Calcd. for C19H15FN6O5S: C, 49.78; H, 3.30; N, 18.33; found C, 49.93;
H, 3.29; N, 18.26.

2–(4-((5-Methoxy-2,3-dioxoindolin-1-yl)methyl)-1H-1,2,3-triazol-1-
yl)-N-(4-sulfamoylphenyl) acetamide (6c). Yield (75%); Reddish
brown crystals; melting point ¼ 295–297 �C; 1H NMR (DMSO-d6,
500MHz) d (ppm): 3.74 (s, 3H, OCH3), 4.96 (s, 2H, -CH2), 5.33 (s, 2H,
-CH2), 7.11–7.24 (m, 2H, Aromatic-H), 7.26 (s, 2H, SO2NH2), 7.69 (d,
2H, Aromatic-H, J¼ 9.0 Hz), 7.75–7.77 (m, 3H, Aromatic-H), 8.17 (s,
1H, Aromatic-H), 10.79 (s, 1H, NH); Anal. Calcd. for C20H18N6O6S: C,
51.06; H, 3.86; N, 17.86; found C, 50.86; H, 3.88; N, 17.95.

2–(4-((2,3-Dioxo-5-(trifluoromethoxy)indolin-1-yl)methyl)-1H-1,2,3-
triazol-1-yl)-N-(4-sulfamoylphenyl)acetamide (6d). Yield (75%);
Light brown crystals; melting point ¼ 283–285 �C; 1H NMR (DMSO-
d6, 500MHz) d (ppm): 5.01 (s, 2H, -CH2), 5.34 (s, 2H, -CH2), 7.26 (s,
2H, SO2NH2), 7.29 (d, 1H, Aromatic-H, J¼ 8.0 Hz), 7.61 (s, 1H,
Aromatic-H), 7.69–7.71 (m, 3H, Aromatic-H), 7.75 (d, 2H, Aromatic-
H, J¼ 9.0 Hz), 8.19 (s, 1H, Aromatic-H), 10.79 (s, 1H, NH); Anal.
Calcd. for C20H15F3N6O6S: C, 45.81; H, 2.88; N, 16.03; found C,
45.93; H, 2.87; N, 15.96.

N-(4-Acetylphenyl)-2–(4-((2,3-dioxoindolin-1-yl)methyl)-1H-1,2,3-tri-
azol-1-yl)acetamide (10a). Yield (71%); Yellow crystals; melting
point ¼ 231–233 �C; 1H NMR (DMSO-d6, 500MHz) d (ppm): 2.51 (s,
3H, COCH3), 4.99 (s, 2H, -CH2), 5.34 (s, 2H, -CH2), 7.11 (t, 1H,
Aromatic-H, J¼ 7.5 Hz), 7.18 (d, 1H, Aromatic-H, J¼ 8.0 Hz), 7.55 (d,
1H, Aromatic-H, J¼ 7.5 Hz), 7.62 (t, 1H, Aromatic-H, J¼ 8.0 Hz), 7.67
(d, 2H, Aromatic-H, J¼ 9.0 Hz), 7.92 (d, 2H, Aromatic-H, J¼ 8.5 Hz),
8.19 (s, 1H, Aromatic-H), 10.78 (s, 1H, NH); 13C NMR (DMSO-d6,
126MHz) d ppm: 26.48, 35.02, 52.32, 111.23, 117.60, 118.54,
123.42, 124.51, 125.33, 129.62, 132.17, 138.13, 141.35, 142.64,
150.20, 157.86, 164.79, 183.09, 196.58; Anal. Calcd. for C21H17N5O4:
C, 62.53; H, 4.25; N, 17.36; found C, 62.38; H, 4.28; N, 17.43.

N-(4-Acetylphenyl)-2–(4-((5-methoxy-2,3-dioxoindolin-1-yl)methyl)-
1H-1,2,3-triazol-1-yl)acetamide (10b). Yield (75%); Yellow crystals;
melting point ¼ 245–247 �C; 1H NMR (DMSO-d6, 500MHz) d (ppm):
2.51 (s, 3H, COCH3), 3.74 (s, 3H, OCH3), 4.96 (s, 2H, -CH2), 5.33 (s,
2H, -CH2), 7.11–7.14 (m, 2H, Aromatic-H), 7.22 (d, 1H, Aromatic-H,
J¼ 9.0 Hz), 7.67 (d, 2H, Aromatic-H, J¼ 9.0 Hz), 7.92 (d, 2H,
Aromatic-H, J¼ 9.0 Hz), 8.18 (s, 1H, Aromatic-H), 10.79 (s, 1H, NH);
13C NMR (DMSO-d6, 126MHz) d ppm: 26.49, 35.01, 52.32, 55.93,
109.23, 112.34, 118.06, 118.55, 119.04, 123.93, 125.31, 129.63,
132.18, 142.65, 144.02, 155.87, 157.90, 162.37, 164.81, 183.37,
196.60; Anal. Calcd. for C22H19N5O5: C, 60.97; H, 4.42; N, 16.16;
found C, 61.14; H, 4.42; N, 16.16.

Biological evaluations

Protein expression and purification for SARS-CoV-2 Mpro
The DNA sequence of the SARS-CoV-2 Main protease (Mpro) was
acquired from the complete genome of SARS-CoV-2 (GenBank
MN908947.3). The gene that encodes the protein was optimised
for expression in Escherichia coli (E. coil) and synthesised by Bio
Basic Inc (Konrad Crescent, Canada). The synthesised gene was
inserted into a pET-28a(þ) plasmid with a C-terminal His tag.
Competent E. coli BL21 (DE3) cells were transformed using this
plasmid (New England Biolabs). The transformed cells were grown
at a temperature of 37 �C in a medium made of terrific broth (TB)
with the addition of 50mg/mL of the antibiotic Kanamycin and 1%
glucose. Protein production was induced after reaching OD600 of
0.6 by the addition of 0.5mM isopropyl b-D-1-thiogalactopyrano-
side (IPTG), then the cells were incubated at 16 �C and 180 rpm
overnight. The cells were then collected by centrifuging them at
7000 rpm for 30min at 4 �C, resuspended in a lysis buffer, and
then sonicated to lyse them. Finally, they were centrifuged at
12000 rpm for 40min at 4 �C to remove the remaining cell debris.
The His-tagged protein was purified from the supernatant using
affinity TALON Superflow resin (Cytiva, Marlborough, USA) and
eluted with an elution buffer containing 50mM TRIS, 300mM
imidazole, and 150mM NaCl. SDS-PAGE was used to determine
the protein’s degree of purity (see Figure S1), and the pure pro-
tein was dialysed and concentrated using a 10K PierceTM Protein
Concentrator (Thermo Scientific).

Enzyme inhibition assay
The enzyme inhibition experiment was conducted in 96-well, black
microtiter plates with a total volume of 200ml. A final concentra-
tion of 20 nM of the SARS-CoV-2 Mpro enzyme was used. The
compounds being assessed, along with GC376 as a standard
inhibitor, were pre-incubated with the enzyme at different con-
centrations in an assay buffer consisting of 20mM TRIS, 1mM
EDTA, 150mM NaCl, 1mM DTT and the pH was adjusted to 7.3. A
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FRET substrate, Dabcyl-KTSAVLQSGFRKME-EDANS, was added to
the mixture at final concentration of 10mM and incubated in the
dark for 3 h at room temperature. Fluorescence signals of released
EDANS were estimated using a Spectrofluorometer with micro-
plate reader accessory (Cary Eclipse, Agilent Technologies) at (exci-
tation/emission, 355 nm/460 nm), and the blank was determined
by measuring the entire reaction mixture without the enzyme.
The obtained data was plotted and analysed to determine the
IC50 values of the tested compounds using nonlinear regression
with a variable slope.

MTT cytotoxicity assay towards VERO-E6 cells
The cytotoxic impact of triazolo isatin derivative 6b was tested in
VERO-E6 cells by using the 3–(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) method with minor modifica-
tions55,56. The procedures were provided in the Supplementary
Materials.

Cell-Based SARS-CoV-2 inhibitory assay
The cellular antiviral activity of compound 6b against SARS-CoV-2
was assessed and the IC50 value was determined as descriped pre-
viously57–59. The procedures were provided in the Supplementary
Materials.

Molecular modelling studies

Molecular docking
Vina Autodock software was used to perform docking studies on
compound 6b60. The protein data bank (PDB) was utilised to
download the 3D co-ordinates of SARS CoV-2 Mpro bound to an
experimental inhibitor (PDB ID: 8ACL)61. The 3D structure of our
proposed molecule was created by the Biovia discovery visualiser
after it was sketched by ChemDraw. M.G.L 1.5.7 tools were used
in the generation of the needed pdbqt format files, since it is
mandatory for both receptor and ligands to be in pdbqt format as
essential required by Vina Autodock. Moreover, the binding
pocket was built using a grid box encompassing the binding of
the co-crystalised ligand with dimensions of 22, 22, and 22,
respectively, in the three axes. To ensure a valid docking
approach, initial docking of the co-crystalised coordinates to the
pre-determined binding domain was conducted. Finally, com-
pound 6b was docked into the validated binding domain of SARS
CoV-2 Mpro enzyme. The Biovia discovery studio 2021 free visual-
iser was used to create 2D and 3D interactions for the docked
pose to visualise the interaction of 6b with the active site of
Mpro.

Molecular Dynamics
Two molecular dynamic simulations (MDS) were conducted for
100 ns exploiting software of GROMACS 5.1.162. The retrieved
docking coordinates of the Mpro enzyme in-complex with triazolo
isatin 6b and the apo mpro enzyme. The receptor and ligand top-
ologies were generated by PDB2gmx (embedded in GROMACS)
and GlycoBioChem PRODRG2 Server respectively, both under
GROMOS96 force field63. After rejoining ligands and receptor top-
ologies to generate two systems, the typical molecular dynamics
scheme of GROMACS was applied for all the systems. This
includes, solvation, neutralisation, energy minimisation under
GROMOS96 43a1 force field and two stages of equilibration (NVT
and NPT)64–67. Finally, unrestricted production stage of 100 ns was

applied for the two systems with the Particle Mesh Ewald (PME)
method implemented to compute the long-range electrostatic val-
ues using 12Å cut-off and 12Å Fourier spacing. The stability of
the complexes was judged using RMSD and RMSF values calcu-
lated from the MDS trajectories from the production step.
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