Table 10. Studies Related to Ammonia Decomposition in Membrane Reactors Reporting the Purity of Hydrogen Produced and Residual Ammonia Concentration in the Hydrogen Stream.
| Membrane |
Reactor
operating conditions |
Hydrogen
purity |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Author(s) [ref] | Selective layer composition | Selective layer thickness [μm] | Length [mm] | Temperature [°C] | Reaction pressure [bar] | Permeate pressure [bar] | NH3 feed flow rate [mLN/min] | GHSV [mL/(g–1cat h)] | Catalyst type | Maximum H2 purity [%] | NH3 concentration in the permeate [ppm] | Method used for NH3 concentration measurement |
| Zhang et al.17 | Pd | 6.2 | N/A | 450 | 5 | 1 | 100 | N/Aa | Cs (0.41 wt %) Ru/YSZ, Ru impregnated in the membrane support | >99.7 | <1000 | NDIR spectroscopy |
| Zhang et al.27 | Pd | ∼3 | N/A | 500 | 3 | 1 | 400 | 4000b | Ni/La-Al2O3 (Ni/Al = 1.20, La/Ni = 0.22), 6 g | >99.9a | N/A | N/A |
| Cechetto et al.40 | Pd-Ag | ∼6–8 | 195 | 500 | 2 | 1 | 500 | 120b | (2 wt %) Ru/Al2O3, 250 g | 99.998 | <0.75 | FTIR spectroscopy |
| Cechetto et al.65 | Pd-Ag | 4.61 | 202 | 450 | 1 | Vacuum | 500 | 120b | (2 wt %) Ru/Al2O3, 250 g | 99.995 | 2.91 | FTIR spectroscopy |
| Cerrillo et al.66 | Pd-Au | 8 | N/A | 350–500 | 4–15 | 1 | 100–310 | 600–1870b | (0.5 wt %) Ba-CoCe, 10 g | 99.97 ± 0.03 | N/A | Gas chromatography |
| Liu et al.67 | Pd/Pd-Ag | 6.5 | N/A | 400 | 3 | 1 | 47 | 1880b | (5 wt %) Ru/MgO, 1.5 g | 99.85a | N/A | N/A |
| Li et al.76 | SiO2 | <0.3 | N/A | 400 | 1 | Vacuum | 10 | N/A | (0.45 wt %) Ru/γ-Al2O3/α-Al2O3, Ru impregnated in the membrane support | 84.0 | 45,000 | Gas chromatography |
| Jiang et al.77 | MFI zeolite | 8 | N/A | 450 | 4.5 | 1 | 10 | 600 | (3 wt %) Ru/(1 wt %) Y/(12 wt %) K/Al2O3, 3 g | 91.16 | 3500 | Gas chromatography |
| CMSM | 0.9 | 220 | 450 | 7 | 1 | 250 | 5000 | 96.84 | <10,000 | Gas chromatography and NH3 sensor | ||
| Pd-Ag | 1.8 | 80 | 450 | 7 | 1 | 50–250b | 1000–5000 | >99.999 | <0.01 | |||
| Omata et al.83 | Pd-Ag/V-Fe | 0.2/100 | N/A | 350 | 3 | Vacuum | 10 | 3000b | (5 wt %) Ru/Cs2O/Pr6O11, 0.2 g | <99.9975 | <0.06 | Ion chromatography |
| Jo et al.84 | Pd/Ta | ∼0.4 μm Pd | N/A | 450 | 6.5 | 1 | 3000b | 30000 | (1.6 wt %) Ru/La-Al2O3, 6 g | >99.9999 | 0.8 | Tunable diode laser spectrometry |
| ∼250 μm Ta | ||||||||||||
| Park et al.85 | Pd/Ta/Pa | ∼1–2 | 76 | 425 | 3 | 1 | 20b | 1200 | (0.65 wt %) Ru/(10 mol %)La-Al2O3, 1 g | N/A | 4.2 | IR spectroscopy |
| Sitar et al.87 | Pd | 4.23 | 73 | 450 | 5 | 1 | 100–300 | 1200–3600b | (0.5 wt %) Ru/Al2O3, 5 g in the catalyst bed | N/A | 650a | Draeger tube |
| (1.9 wt %) Ru/YSZ (Ru impregnated in the membrane support) | ||||||||||||
Data not directly reported in the publication and retrieved from graphic representation of experimental results.
Data not directly reported in the publication. Calculated based on provided information about catalyst and flow rates used.