Table 9. NH3 Conversion and Corresponding Hydrogen Recovery Achieved in Membrane Reactors for Ammonia Decomposition Studies Available in Literature.
| Membrane |
Reactor
operating conditions |
NH3 conversion [%] |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Author(s) [ref] | Membrane composition | Selective layer thickness [μm] | Length [mm] | Temperature [°C] | Reaction pressure [bar] | Permeate pressure [bar] | NH3 feed flow rate [mLN/min] | GHSV [mL/(gcat h)] | Catalyst | Conventional reactor | Membrane reactor | Hydrogen recovery [%] |
| Zhang et al.17 | Pd + Ru/YSZ | 6.2 | N/A | 400 | 5 | 1 | 30a | N/A | Ru (impregnated in the membrane support) | 31a | 93 | N/A |
| Ru-Cs/YSZ + Pd | 400 | 5 | 1 | 61.3 | N/A | N/A | 98 | 87.5 | ||||
| Zhang et al.27 | Pd + Al2O3 | 3 | N/A | 500 | 5 | 1 | 200b | 2000 | Ni/La-Al2O3 (Ni/Al = 1.20, La/Ni = 0.22), 6 g | 95a | >99a | 92a |
| Cechetto et al.40 | Al2O3-–YSZ + Pd-Ag + Al2O3 | ∼6–8 | 195 | 500 | 6 | 1 | 500 | 120b | (2 wt %) Ru/Al2O3, 250 g | N/A | 99.8 | 91.6 |
| Cechetto et al.65 | Al2O3-YSZ + Pd-Ag + Al2O3 | 4.61 | 202 | 400 | 4 | Vacuum | 500 | 120b | (2 wt %) Ru/Al2O3, 250 g | 65.4 | 99.3 | 93.5 |
| 190 | 450 | 5 | 1 | 500 | 120b | (2 wt %) Ru/Al2O3, 250 g | N/A | 99.7 | 90.5 | |||
| Cerrillo et al.66 | Pd-Au + ceramic support | 8 | 186a | 485 | 5 | 1 | 200 | 1200b | (0.5 wt %) Ba-CoCe, 10 g | N/A | >99a | 92a |
| Liu et al.67 | Pd + stainless steel support + MnCO3 | 6.5 | N/A | 400 | 3 | 1 | 47b | 1880 | (5 wt %) Ru/MgO, 1.5 g | N/A | 99.8 | N/A |
| Li et al.76 | Ru/γ-Al2O3/α-Al2O3+ SiO2 | <0.3 | N/A | 400 | 1 | Vacuum | 10 | N/A | (0.45 wt %) Ru/γ-Al2O3/α-Al2O3, Ru impregnated in the membrane support | 55 | 84 | 77 |
| Jiang et al.77 | Pd-Ag + Al2O3 | 1.8 | 100a | 450 | 7 | 1 | 250b | 5000 | (3 wt %) Ru/(1 wt %)Y/(12 wt %) K/Al2O3, 3 g | N/A | 99.11 | 90.6 |
| Itoh et al.79 | Pd | 200 | 65 | 450 | 1 | Vacuum | 9.7 | 1164b | (5 wt %) Ru/SiO2, 0.5 g | 73a | 87a | 59a |
| Itoh et al.80 | Pd + Al2O3 + Ru | 2 | 90 | 375 | 1 | Vacuum | 20 | N/A | (2 wt %) Ru/Al2O3, 0.88 g | 35a | >99a | N/A |
| Kim et al.82 | Pd + Inconel 600 | ∼5 | 450 | 430 | 5 | Vacuum | 950 | N/A | (2 wt %) Ru/Al2O3, N/A | N/A | 99.4 | 97.5 |
| Omata et al.83 | Pd-Ag + V-Fe | ∼0.2 μm Pd-Ag | N/A | 350 | 3 | 1 | 10 | 3000b | (5 wt %) Ru/Cs2O/Pr6O11, 0.2 g | 52.6%a | 89a | 89a |
| ∼100 μm V-Fe | ||||||||||||
| Jo et al.84 | Pd/Ta | ∼0.4 μm Pd | N/A | 450 | 6.5 | 1 | 3000b | 30000 | (1.6 wt %) Ru/La-Al2O3, 6 g | N/A | >99.5 | N/A |
| ∼250 μm Ta | ||||||||||||
| Park et al.85 | Pd/Ta/Pd | ∼1–2 μm Pd | N/A | 500 | 5 | 1 | 100b | 6000 | (0.65 wt %)Ru/(10 mol %)La-Al2O3, 1 g | N/A | 95a | 86a |
| ∼250 μm Ta | ||||||||||||
| Israni et al.86 | Pd/γ-Al2O3/α-Al2O3 | ∼13 | 156 | 500 | 3 | 1 | 65a | 135b | (70 wt %) Ni/γ-Al2O3, 29 g | N/A | 99a | 80a |
| Sitar et al.87 | Pd + Ru/YSZ | 4.23 | 73 | 450 | 5 | 1 | 100 | 1200b | (0.5 wt %) Ru/Al2O3, 5 g in the catalyst bed | N/A | >99a | >90a |
| (1.9 wt %) Ru/YSZ, Ru impregnated in the membrane support | ||||||||||||
| Rizzuto et al.89 | Pd + metallic support | N/A | N/A | 450 | 5 | 1 | 245 | N/A | (N/A) Ru/Al2O3, N/A | N/A | >99a | 91a |
Data not directly reported in the publication and retrieved from graphic representation of experimental results.
Data not directly reported in the publication. Calculated based on provided information about catalyst and flow rates used.