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Abstract

Animal studies of neurodevelopment have shown that recordings of intrinsic cortical activity 

evolve from synchronized and high amplitude to sparse and low amplitude as plasticity declines 

and the cortex matures. Leveraging resting-state functional MRI (fMRI) data from 1,033 youth 

(8–23 years), we find that this stereotyped refinement of intrinsic activity occurs during human 

development and provides evidence for a cortical gradient of neurodevelopmental change. 

Declines in the amplitude of intrinsic fMRI activity were initiated heterochronously and coupled 

to the maturation of intracortical myelin, a developmental plasticity regulator. Spatiotemporal 

variability in developmental trajectories was organized along a hierarchical, sensorimotor-

association cortical axis from ages 8–18. The sensorimotor-association axis furthermore captured 

variation in associations between youths’ neighborhood environments and intrinsic fMRI activity: 

findings suggest that the effects of environmental disadvantage on the maturing brain diverge most 

across this axis during mid-adolescence. These results uncover a hierarchical neurodevelopmental 

axis and offer insight into the progression of cortical plasticity in humans.
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INTRODUCTION

Elucidating how developmental plasticity spatially and temporally progresses across the 

human cortex has implications for understanding healthy brain development as well as 

windows of developmental vulnerability and opportunity1–3. In particular, demarcating 

regionally-specific periods of enhanced and diminished malleability can provide insight into 

which cortical regions will be maximally impacted by insults and interventions at distinct 

developments stages. Prior studies have therefore aimed to uncover the spatiotemporal 
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evolution of neurodevelopmental change across the cortical mantle. Such studies have 

consistently shown that postnatal neurodevelopment is heterochronous, with sensory and 

motor cortices maturating earlier than association cortices4; this temporal trend has been 

shown for cortical volume5,6, connectivity7, myelination8,9, and cellular properties10,11. 

However, beyond this coarse division there is marked spatiotemporal developmental 

variability that remains under-characterized. We recently proposed a unifying framework 

that contextualizes asynchronous maturation between sensorimotor and association cortices 

as two ends of a continuous axis of neurodevelopmental plasticity4. This framework 

posits that during childhood and adolescence, developmental plasticity progresses along the 

sensorimotor-association (S-A) cortical axis: a dominant, hierarchical axis of human brain 

organization along which diverse neurobiological properties are patterned4,12–15.

In the present study, we aimed to empirically evaluate our hypothesis that plasticity 

unfolds along the S-A axis by studying the developmental refinement of intrinsic (i.e., 

spontaneous or non-evoked) activity: a putative functional marker of local plasticity 

described in animal models. Studies of the developing murine sensory cortex have provided 

evidence that a potentiation of high amplitude, synchronized intrinsic activity characterizes 

earlier stages of development with heightened plasticity16–18. As plasticity declines and 

the cortex matures, intrinsic activity evolves from prevalent and globally synchronized 

to suppressed and sparse, becoming more heterogeneously distributed in space and time 

in adult cortex18–21. This stereotyped refinement of intrinsic activity has been linked to 

maturational increases in inhibitory neurotransmission and intracortical myelination—two 

plasticity-regulating processes that refine cortical circuit dynamics17,22–25. Accordingly, 

this stereotyped refinement of intrinsic activity provides an ongoing readout of local 

circuit plasticity, with more correlated, high amplitude spontaneous neural recordings 

serving as a functional hallmark of still-malleable cortices16,17,26,27. Importantly, intrinsic 

cortical activity can be studied non-invasively with resting-state functional MRI (fMRI), 

which provides an opportunity to characterize the spatiotemporal maturation of a potential 

plasticity signature in the human brain.

Simultaneous fMRI and electrophysiology or calcium recordings have demonstrated how 

low frequency fluctuations in the resting fMRI blood oxygen level dependent (BOLD) 

signal are coupled with changes in intrinsic neural activity patterns28–31. A greater level of 

intrinsic activity and more synchronized activity—activity characteristic of immature, plastic 

cortices—increases the amplitude of low frequency BOLD fluctuations. It has therefore 

been hypothesized that the amplitude of low frequency fluctuations32, or BOLD “fluctuation 

amplitude”, will be higher when cortical plasticity is enhanced26,33. Indeed, experimentally 

manipulating biological regulators of developmental plasticity has been shown to elicit 

changes in local BOLD fluctuations34. Moreover, in a recent landmark study of human 

brain plasticity, deprivation-induced somatomotor cortex plasticity produced local increases 

in BOLD fluctuation amplitude35.

Here we harness BOLD fluctuation amplitude to index spatially-localized, age-dependent 

changes in intrinsic activity and test the overarching framework that developmental 

programs cascade hierarchically along the cortex’s S-A axis in youth. We expected 

that the development of fluctuation amplitude would be primarily characterized by 
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heterochronous declines along the S-A axis. Moreover, we predicted that declines in 

fluctuation amplitude would be influenced by the maturation of intracortical myelin, which 

constrains plasticity in developing neural circuits and refines spontaneous firing25. Last, we 

hypothesized that youths’ developmental environments would impact the maturation of this 

measure. Instrumental work in animal models has shown that enriched (versus deprived) 

developmental environments affect the maturation of plasticity-regulating mechanisms, 

including intracortical myelin36, inhibitory interneurons37, and perineural nets38, typically in 

a manner that facilitates continued plasticity39. Data from human studies have additionally 

shown that youth raised in more socioeconomically disadvantaged environments exhibit 

characteristics that could reflect a faster pace of biological and brain development (e.g., 

faster cortical thinning)39–41. Cross-species findings thus indicate that environmental 

deprivation may accelerate cortical development by prematurely limiting plasticity. We 

explore this possibility by studying whether greater environmental disadvantage is 

associated with functional markers suggestive of lower cortical plasticity during youth. 

As described below, our in vivo analysis of a signature of neurodevelopmental plasticity 

illuminated by animal models reveals that the S-A axis captures not only the hierarchical 

layout of diverse cortical properties, but also the temporal patterning of developmental 

change and effects of the developmental environment.

RESULTS

We studied how intrinsic activity is refined across the developing cortex in a cross-sectional 

sample of 1,033 youth ages 8–23 years old. Fluctuation amplitude, computed as the average 

power of low frequency (0.01–0.08 Hz) fluctuations in the time-varying fMRI signal, was 

used to index the overall level and coherence of intrinsic cortical activity. Greater and 

more synchronized neural activity increases the power of neural recordings and has been 

shown to increase the amplitude of BOLD fluctuations29–31. To characterize maturational 

changes in BOLD fluctuation amplitude in individual cortical regions, we fit region-specific 

generalized additive models (GAMs) with a smooth term for age; sex and in-scanner head 

motion were included as linear covariates. Each GAM estimates a smooth function (the 

model age fit) that describes the relationship between fluctuation amplitude and age, thereby 

modeling a region’s developmental trajectory. The first derivative of this smooth function 

represents the rate of change in fluctuation amplitude at a given developmental timepoint. 

We tested whether GAM-derived developmental effects provide support for a hierarchical 

neurodevelopmental framework. We also confirmed that effects were robust to controls 

for in-scanner motion, medication use, vascular effects, T2* signal strength, global BOLD 

properties, and cortical atlas.

Development of intrinsic fMRI activity varies across the cortex

Fluctuation amplitude significantly changed with age in the developmental window studied 

in nearly all cortical regions (pFDR < 0.05 in 95% of regions). To provide insight into 

the overall magnitude and direction of regional age effects, we calculated the variance 

explained by age (partial R2; i.e., the effect magnitude) and the sign of the average 

derivative of the age fit (i.e., the effect direction). The magnitude and direction of age effects 

differed across the cortex (Fig. 1a), signifying that there is variability in the maturation of 
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intrinsic activity across the developing cortex. Indeed, by visualizing age fits across regions 

we observed a cortical continuum of developmental trajectories ranging from large and 

prolonged decreases (light yellow fits in Fig. 1b) to inverted U-shaped curves (dark purple 

fits). Nearly all sensory regions showed continuous declines in fluctuation amplitude from 

early childhood through adolescence, as illustrated by the model fit for area V1 (Fig. 1c, 

top panel) which significantly decreased until age 18 years. This age fit is consistent with 

a progressive reduction, sparsification, or decorrelation of non-evoked cortical activity with 

age. In contrast, in select cortical regions such as the midcingulate gyrus (Fig. 1c, middle 

panel), fluctuation amplitude only began to decline in later childhood or early adolescence. 

Finally, many regions in transmodal association cortex (e.g., the dorsolateral prefrontal 

cortex; Fig. 1c, bottom panel) displayed significant increases in fluctuation amplitude until 

early to mid-adolescence, typically followed by amplitude decreases. This inverted U-shaped 

trajectory suggests there is heightened, synchronized activity in transmodal cortices at the 

start of adolescence.

We examined whether regional age fits differed by sex or could be accounted for by 

differences in participant pubertal stage. We first tested for age-by-sex interactions in 

each cortical region and found no significant effects (pFDR > 0.05 for all interactions), 

indicating that the timing of developmental change did not significantly differ between 

males and females in this age range. Next, we explored the potential impact of puberty 

by including participant pubertal stage (pre-pubertal, mid-pubertal, or post-pubertal) as a 

factor in regional GAMs. While the linear effects of pubertal stage on fluctuation amplitude 

tended to cohere with the observed age effects (positive effects in frontal transmodal regions, 

negative effects in posterior unimodal regions), pubertal stage did not explain significant 

variance in fluctuation amplitude above and beyond age in any cortical region (pFDR > 0.05 

for all pubertal stage effects). Moreover, accounting for pubertal stage did not alter regional 

age fits or age effects; age effects were highly correlated when age was modeled alone and 

when both age and pubertal stage were modeled together (r = 0.89). These findings suggest 

that age-dependent changes in intrinsic fMRI activity are heterogeneous across the cortex, 

present across sexes, and not driven by pubertal stage. More broadly, the present results 

establish that maturational trajectories diverge between sensory and association cortices.

Development of intrinsic fMRI activity mirrors myelin maturation

Prior work in animal models has shown that as the cortex transitions from plastic to 

mature, intrinsic cortical activity develops from prevalent and synchronized—producing 

high amplitude neural recordings—to sparse and decorrelated—producing lower amplitude 

recordings. These observations suggest that age-dependent changes in the amplitude of 

BOLD fluctuations could, in part, reflect changes in cortical plasticity26,35. We therefore 

endeavored to understand whether the development of fluctuation amplitude is related to the 

maturation of intracortical myelination: a key regulator and restrictor of cortical plasticity. 

We leveraged the recent work of Baum et al. (2022)42 who studied the development of 

the T1w/T2w ratio, a structural MRI measure sensitive to cortical myelin content, in a 

large, independent sample of youth ages 8–21 years old. These authors quantified the 

magnitude of age-related myelination (the partial R2 of the T1w/T2w ratio age effect) 

and demarcated the age of maximal myelin growth (the age with a maximal rate of 
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T1w/T2w ratio increase) within individual cortical regions. In comparing T1w/T2w ratio 

and fluctuation amplitude neurodevelopmental features, we unveiled substantial spatial and 

temporal correspondence between the refinement of these measures with age. Age-related 

changes (indexed by the signed partial R2) in these two putative plasticity-sensitive measures 

were strongly inversely correlated across cortical regions (r = −0.67, pspin = 0.00045), with 

regions showing larger increases in myelin content from childhood to early adulthood also 

showing larger decreases in BOLD signal amplitude (Fig. 2a–b). This finding accords with 

ample evidence of causal, bidirectional relationships between changes in neural activity 

patterns and changes in myelination43,44 and suggests a possible mechanistic link between 

microstructural refinement and changes in circuit activity during brain development.

To further study this link, we investigated whether there was a temporal relationship between 

increases in the T1w/T2w ratio and decreases in fluctuation amplitude. We first quantified 

the age at which fluctuation amplitude began to significantly decrease in each region and 

found that initial decreases in fluctuation amplitude were staggered heterochronously across 

the cortex, with select medial prefrontal and frontopolar regions showing no period of 

significant decline. Nearly half of regions (46%) showed a significant decrease in fluctuation 

amplitude at age 8, implying that BOLD amplitude in these regions likely begins to decline 

prior to the youngest age studied in this dataset. Across the rest of the cortex, however, 

fluctuation amplitude began to decline later in youth; in these cortices, a greater delay 

in the onset of fluctuation amplitude decline was associated with a later peak in the rate 

of T1w/T2w-indexed cortical myelination (r = 0.64, pspin = 0.01565; Fig. 2c–d). Notably, 

ages of fluctuation amplitude decrease onset and maximal T1w/T2w increase were not 

simply correlated but also showed a minimal temporal offset in years, indicating that they 

were closely coupled in time (average offset = 0.7 years; see also the best fit line for Fig. 

2d). Taken together, these results appear to link later-onset reductions in the amplitude 

of spontaneous fMRI activity to delayed maturation of a main regulator of developmental 

plasticity.

Developmental variability is patterned along the S-A axis

A primary goal of this work was to systematically assess whether the sequence of 

neurodevelopmental change progresses hierarchically across the cortical mantle. Having 

observed that fluctuation amplitude development tightly paralleled development of a 

plasticity regulator and broadly diverged between sensorimotor and association cortices, 

we next sought to determine whether developmental patterns spatially conformed to 

the S-A axis4. The S-A axis is a prominent axis of cortical variation that is rank 

ordered from primary sensory and motor cortices (lowest ranks) to modality-selective and 

multimodal cortices, then progressing to transmodal heteromodal and paralimbic cortices 

(highest ranks). This axis captures the concerted patterning of heterogeneous structural, 

metabolic, cellular, molecular, transcriptomic, and electrophysiological properties across the 

cortex4,12–15,45. Moreover, the S-A axis is spatially coupled to the brain’s anatomical45, 

functional14, and evolutionary46 hierarchies, thus each cortical region’s rank in the axis 

reflects its relative position in a global cortical hierarchy.
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We first examined whether inter-regional differences in the development of fluctuation 

amplitude reflected inter-regional differences in S-A axis rank. Region-wise age effects 

and S-A axis ranks were correlated (r = 0.54, pspin = 0.00215), with large negative age 

effects characterizing the S-A axis’s sensorimotor pole and smaller positive age effects 

distinguishing its association pole. We additionally observed continuous variation in the 

age at which fluctuation amplitude began to significantly decrease along this dominant 

organizational axis. When considering regions that showed an initial onset of decline within 

the age range studied as above, we found that fluctuation amplitude began to decline at a 

progressively later age in regions ranked higher in the S-A axis (r = 0.68, pspin = 0.00110). 

Hence, cortices at the top of the cortical hierarchy exhibit the smallest and latest-onset 

declines in the amplitude of intrinsic fMRI fluctuations during childhood and adolescence.

Following this initial analysis, we further probed the extent to which maturational 

trajectories differed as a function of S-A axis rank by mapping the principal spatial axis of 

fluctuation amplitude development. To accomplish this mapping, we performed a principal 

component analysis (PCA) on the age fits estimated by regional GAMs (Fig. 1b); this 

approach considers the entire fluctuation amplitude developmental trajectory rather than 

only one property of the age fit (e.g., the age at which it starts to decline). The first principal 

component from this PCA explained 87% of the variance in developmental profiles and can 

therefore be conceptualized as the principal axis of intrinsic fMRI activity development. 

This principal developmental axis closely resembled the S-A axis (Fig. 3a). Accordingly, 

regional loadings onto the principal developmental axis were very highly correlated with 

regional S-A axis ranks (r = 0.70, pspin < 0.0001; Fig. 3b), demonstrating that a substantial 

degree of spatiotemporal variance in developmental profiles was explained by the S-A axis.

The PCA of developmental fits suggests that the spatial and temporal maturation of intrinsic 

cortical activity conforms to the hierarchical organization of the cortex. In support of this 

conclusion, we confirmed that principal developmental axis loadings additionally correlated 

with cortex-wide anatomical45 (r = −0.61), functional14 (r = 0.60), and evolutionary46 

(r = 0.32) hierarchies. However, the principal developmental axis was significantly more 

correlated with the S-A axis than with these three hierarchies, which were defined using 

unimodal data (p < 0.001 for all three statistical tests comparing the magnitude of two 

dependent, overlapping corrections). Neurodevelopmental trajectories were therefore more 

parsimoniously captured by the S-A axis, which combines information from all three 

cortical hierarchies and multiple additional data types. To directly illustrate the manner in 

which developmental trajectories for fluctuation amplitude evolve from the sensorimotor to 

the association end of the S-A axis, we divided the axis into 10 decile bins and averaged age 

fits across all regions in a bin. The continuous spectrum of developmental trajectories visible 

at the regional level (Fig. 1b) was recapitulated by S-A axis deciles (Fig. 3c).

Development is hierarchical through adolescence

The above results underscore how between the ages of 8 and 23 years, age-related changes 

in fMRI-indexed intrinsic activity are governed by the brain’s S-A axis. We next aimed to 

elucidate whether this neurodevelopmental pattern was most pronounced during a specific 

age range or if it was equally present across all ages studied. To explore these possibilities, 
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we first calculated each cortical region’s rate of change in fluctuation amplitude at 1-month 

intervals between ages 8 and 23 years. Notably, visualizing regional rates of change across 

the S-A axis (Fig. 4a) confirmed that pre-adolescent increases in fluctuation amplitude were 

uniquely confined to higher-order association cortices. Using these data, we next performed 

an age-resolved analysis where, at each 1-month interval, we calculated the correlation 

between regional rates of amplitude change and regional S-A axis ranks. This procedure 

generates age-specific correlation values that quantify the extent to which maturational 

change is spatially ordered along the hierarchy of the S-A axis at a given developmental 

timepoint. This analysis confirmed a robust correlation between developmental change and 

S-A axis rank from age 8 to 17 years (Fig. 4b–c). A maximal correlation value of r = 

0.68 (95% credible interval: 0.66 to 0.70) was observed at age 15.0 years (95% credible 

interval: 14.7 to 15.3 years), indicating peak alignment between neurodevelopment and the 

S-A axis in mid-adolescence. However, following this peak, the correlation between regional 

age effects and S-A axis position rapidly declined, dropping to 0 by age 19.3 years (95% 

credible interval: 18.7 to 20.2 years). These findings suggest that the brain’s developmental 

program is hierarchical through late adolescence. Following adolescence, however, there 

may be a programmed switch in the spatial patterning of subsequent age-related change.

Development results are robust to methodological variation

To ensure that the developmental effects observed were robust to methodological variation 

and potential confounds, we performed six sensitivity analyses. We evaluated if age-

dependent changes in regional fluctuation amplitude were driven by in-scanner head motion, 

medication use, local cerebral blood flow, regional mean signal intensity, global amplitude 

differences, or the choice of cortical atlas. In the first two sensitivity analyses, regional 

GAMs were rerun in the two thirds of the sample with the lowest in-scanner head motion 

(low motion sample; n = 690; Fig. 5a) and in a sample that excluded individuals with current 

psychoactive medication use or a history of psychiatric hospitalization (no psychiatric 

treatment; n = 893; Fig. 5b). In the next two sensitivity analyses, regional GAMs were refit 

while additionally controlling for regional cerebral blood flow estimated from arterial spin 

labeling data (vascular control; n = 1,002; Fig. 5c) or regional mean T2* signal intensity 

(T2* signal control; Fig. 5d). In the final two sensitivity analyses, regional GAMs were refit 

with whole brain mean-normalized fluctuation amplitude (mean normalization; Fig. 5e) or 

fluctuation amplitude averaged within Schaefer-400 atlas regions (atlas replication; Fig. 5f) 

as the dependent variables.

In each of the six sensitivity analyses, region-specific fluctuation amplitude maturational 

trajectories closely mirrored the developmental fits from the main analysis, with negative 

age effects observed in most cortices but positive effects seen in select transmodal 

association cortices. Consequently, regardless of the sample used or controls performed, 

a cortical region’s age effect was fundamentally and significantly (all pspin < 0.05) related 

to its position in the S-A axis (main analysis: r = 0.54, low motion sample: r = 0.56, no 

psychiatric treatment: r = 0.51, vascular control: r = 0.51, T2* signal control: r = 0.49, mean 

normalization: r = 0.66, atlas replication: r = 0.43). Furthermore, for all sensitivity analyses, 

the age-resolved analysis confirmed a strong correlation between the rate of fluctuation 

amplitude change and S-A axis rank from childhood to late adolescence, with the peak 
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age of neurodevelopmental alignment to this axis occurring during adolescence. These 

analyses verify that findings concerning the nature and patterning of age-dependent changes 

in spontaneous cortical fMRI activity are robust to methodological variation.

Environmental effects vary along the S-A axis in adolescence

During brain maturation, environmental inputs can interact with neurodevelopmental 

malleability to become cortically embedded, suggesting that variability in children’s 

environments may be reflected in individual differences in development-linked brain 

changes. We therefore explored whether inter-individual differences in cortical intrinsic 

fMRI activity may be partly explained by variability in youths’ neighborhood environments. 

Multivariate features of each child’s neighborhood socioeconomic environment were 

summarized using a single previously published factor score47. Higher factor scores indicate 

that an individual lived in a neighborhood with a higher median family income, lower 

population density, fewer vacant housing lots, a greater percentage of residents who are 

married, employed, and high school educated, and a lower percentage of residents in poverty 

(Fig. 6a). We focused on the neighborhood environment, specifically, as the factor score 

robustly aggregates across a wide range of measures related to the physical, social, and 

cognitive environment, captures socioeconomic inequality at the societal and systems level, 

and has been shown to account for individual differences in brain function and behavior 

beyond the household environment47,48.

We first modeled linear associations between neighborhood environment factor scores 

and regional fluctuation amplitude using GAMs while controlling for developmental 

effects (age) and other covariates (in-scanner motion and sex). Forty-two percent of 

cortical regions showed a significant association between fluctuation amplitude and the 

neighborhood environment (pFDR < 0.05 in 141 regions). Higher environment factor 

scores were associated with higher fluctuation amplitude across the association cortex, 

but with lower fluctuation amplitude nearly exclusively within primary and early sensory 

and motor cortices (Fig. 6b). This pattern of relationships indicates that youth raised 

in neighborhoods with higher income, education, and employment rates and with lower 

population density and poverty tended to have greater amplitude intrinsic fMRI fluctuations 

in higher-order cortices and lower amplitude fluctuations in modality-specific cortices. 

Strikingly, environment effects and S-A axis ranks were significantly correlated across 

the cortical mantle (r = 0.48, pspin < 0.0001; Fig. 6c), establishing that variation in 

associations between the neighborhood environment and intrinsic fMRI activity is expressed 

along the brain’s global cortical hierarchy. We attempted to statistically disambiguate 

between the influence of the neighborhood environment and household socioeconomic 

position by controlling environment factor score GAMs for parental education, one indicator 

of individual socioeconomic status. In this specificity analysis, the association between 

neighborhood environment factor scores and fluctuation amplitude remained significant 

(pFDR < 0.05) in 101 of the original 141 regions and regional environment effects still 

significantly varied along the S-A axis (r = 0.54, pspin < 0.0001). Conversely, there were 

no significant associations between parental education and fluctuation amplitude (all pFDR 

> 0.05), supporting a potentially stronger role for neighborhood-level (dis)advantage than 

household socioeconomic position.
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To better appreciate the nature of associations between the neighborhood environment and 

fMRI activity amplitude from a developmental perspective, we modeled age-dependent 

changes in fluctuation amplitude as a function of environment factor score. We visualized 

developmental trajectories for low and high environment factor scores for deciles of the 

S-A axis (i.e. Fig. 3c, stratified by factor score). A higher neighborhood environment 

factor score (indicative of more advantaged socioeconomic circumstances) was associated 

with a steeper reduction in fluctuation amplitude in sensorimotor regions (deciles 1 and 3) 

during childhood and adolescence as well as with a greater peak in fluctuation amplitude in 

association regions (deciles 8 and 10) particularly during mid-adolescence (Fig. 6d). Factor 

score-stratified developmental trajectories thus suggested that environment effects may be 

largest and most divergent between sensorimotor and association cortex during adolescence.

To study this possibility further, we divided the sample into child (8–12 years), adolescent 

(13–17 years), and young adult (18–23 years) groups and quantified regional associations 

between environment factor scores and fluctuation amplitude at each developmental stage. 

Regional environment effect estimates were quite correlated across the three groups, 

suggesting relative stability in associations across development (r = 0.72 between child and 

adolescent t-values, r = 0.70 between adolescent and young adult t-values, r = 0.65 between 

child and young adult t-values). However, small differences in regional associations were 

present across developmental stages (Fig. 6e) and together resulted in environment effect 

estimates becoming most strongly differentiated across the S-A axis in adolescence. The 

correlation between regional environment effects and S-A axis ranks was r = 0.32 (pspin = 

0.00765) in children, r = 0.65 (pspin < 0.0001) in adolescents, and r = 0.31 (pspin = 0.01280) 

in young adults.

Given initial evidence that developmental timing may affect the global expression of brain-

environment associations, we used GAMs to formally model regional age-by-environment 

interactions, which estimate how relationships between environment factor scores and 

fluctuation amplitude vary continuously with age. This approach allowed for the derivation 

of age-specific environment effect estimates, providing insight into how the magnitude of 

effects changed over the developmental window studied in individual sensorimotor and 

association regions (Fig. 6f). Moreover, this approach facilitated a second age-resolved 

analysis in which we calculated the correlation between age-specific environment effects 

and S-A axis ranks at 1-month intervals between ages 8 and 23 years (Fig. 6g). The goal 

of this second age-resolved analysis was to investigate whether subtle changes in regional 

environment effects contribute to a shift in the global patterning of brain-environment 

associations with age. This analysis revealed that regional environment effects and regional 

S-A axis ranks were maximally correlated in adolescence at 15.5 years of age (95% credible 

interval: 14.4 to 16.6 years), providing convergent results to the grouped developmental 

stage analysis. The spatial correlation between environment effects and the S-A axis did not 

significantly differ from zero at the very youngest (< 8.8 years old) and oldest (> 21.0 years 

old) ages studied. These results collectively suggest that the patterning of brain-environment 

associations along this principal axis of brain organization is most prominent in adolescence.
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DISCUSSION

During embryonic and early postnatal cortical development, developmental programs 

are spatially and temporally governed by major organizing axes. Cortical arealization 

is cooperatively controlled by thalamocortical inputs and transcription factors expressed 

along anterior-medial to posterior-lateral axes49. Neurogenesis terminates along an anterior-

posterior axis50. The alignment of developmental programs with neuroaxes is thus a 

fundamental element of early cortical development. In the current study, we demonstrate 

that the maturation of intrinsic cortical activity conforms to the hierarchical S-A axis from 

ages 8 to 18 years, supporting that this core facet of development extends to childhood 

and adolescence. Specifically, we observed that declines in the amplitude of intrinsic fMRI 

activity are temporally coupled to the increasing expression of a plasticity-limiting factor 

and temporally staggered along the S-A axis of cortical organization. We additionally found 

that the S-A axis captures not only inter-regional variation in maturational profiles, but also 

variation in the effects of children’s developmental environment on intrinsic fMRI activity. 

Together, these results provide evidence of a hierarchical axis of neurodevelopment in youth.

Intrinsic neural activity has a profound influence on the immature brain, impacting 

neuron survival, circuit wiring, topographic map formation, synaptic connectivity, and 

overall cortical volume18,51–53. Prominent changes in the prevalence and patterning of 

this activity occur during development, engendered by shifts in the maturity of the cortex 

and in the level of cortical plasticity. Here, we identified prolonged declines in fMRI 

fluctuation amplitude, an in vivo measure sensitive to intrinsic cortical activity, throughout 

the protracted course of human neurodevelopment. Moreover, we observed substantial inter-

regional heterochronicity in periods of decline, with fluctuation amplitude beginning to 

decline around 8–12 years of age in unimodal sensory and motor regions, 13–16 years 

in many association cortices, and 18–22 years in prefrontal transmodal cortices. These 

region-specific windows of declining fluctuation amplitude occur after peak gray matter 

volume is obtained5 and coincide with regional windows of extensive synaptic pruning10. 

In addition, we demonstrated that each region’s onset of decline in fluctuation amplitude 

was linked to its period of maximal intracortical myelin growth. Maturational refinement of 

this non-invasive functional measure is thus temporally linked to developmental changes in 

multiple indicators of shifting circuit plasticity, suggesting the presence of a graded axis of 

neurodevelopmental plasticity during childhood and adolescence.

Indeed, in support of our proposed framework on developmental chronology4, we 

found that regional differences in maturational profiles were systematically explained 

by the asynchronous patterning of developmental change across the S-A axis. Regional 

developmental trajectories diverged in a continuous fashion across this axis, in a manner 

that suggests a maturational sequence progresses along the brain’s global cortical hierarchy 

with age. This underscores that the S-A axis can be considered both a dominant spatial 

feature axis and a primary neurodevelopmental axis, and intimates that spatial feature 

variability may in part emerge from temporal developmental variability4,50. Recent work has 

shown that cortical microstructure9 and functional connectivity7 increasingly differentiate 

across the S-A axis during late childhood and adolescence, when development is maximally 

organized by this axis. Hence, one main outcome of hierarchical development may be the 
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strengthening of variation along the S-A axis with a consequent strengthening of the cortex’s 

hierarchical topography4.

Although this non-invasive imaging study could not establish the mechanisms underlying 

the sensorimotor-to-associative sequence of fMRI activity refinement, prior work suggests 

that it may be produced by the hierarchical maturation of plasticity-regulating structural 

and chemical features. Key plasticity-regulating processes include the growth of intracortical 

myelin25,54, the strengthening of parvalbumin interneuron signaling24,54, and the assembly 

of perineuronal nets17,55. These processes elicit transitions in the prevalence, synchronicity, 

and recorded amplitude of spontaneous activity17,23,44,56, indicating that they could possibly 

contribute to developmental changes in fMRI activity amplitude. In the adult cortex, the 

cortical distribution of parvalbumin interneurons is coupled to regional differences in 

fMRI fluctuation amplitude, with parvalbumin interneuron-associated genes accounting 

for an enriched degree of heritable variance in this measure56. In the developing 

cortex, cortical myelin and perineuronal nets preferentially form around parvalbumin 

interneurons17,55,57, limiting developmental plasticity while simultaneously altering a 

circuit’s excitation:inhibition ratio and the production of intrinsic activity11,54. Critically, 

it has been established that cortical myelin8,42 and parvalbumin interneurons11,16,58 mature 

earlier in sensory cortices and later in association cortices, indicating that their temporal 

development parallels the developmental reductions in the amplitude of intrinsic fMRI 

activity characterized here. The amplitude of intrinsic fMRI activity also uniquely increased 

in transmodal cortices in adolescence (frequently until 13–17 years) suggesting that a 

functional signature of more highly malleable cortices increases in association areas in this 

developmental window. The neurobiological events that could contribute to late increases in 

association cortex plasticity in the human brain have yet to be identified. Candidate events 

identified in animal studies include slower degradation of molecules that can delay the onset 

of plasticity (e.g., polysialic acid54, histone deacetylases16) or late increases in plasticity 

facilitators (e.g., brain-derived neurotrophic factor54, thalamocortical inputs59, homeoprotein 

Otx254).

It has been hypothesized that the same external inputs may exert differential influences 

on the human brain depending on developmental timing, due to age-dependent changes 

in the distribution of cortical plasticity; the present work provides empirical support for 

this hypothesis. Specifically, we studied relationships between individual differences in 

intrinsic activity amplitude and environment factor scores; these scores index disparities in 

neighborhood-level socioeconomic conditions that should be recognized as a manifestation 

of systemic wealth and education inequity that is rooted in structural racism and 

racial inequity60. We found that youth living in neighborhoods with greater poverty, 

unemployment rates, and population density exhibited reduced fluctuation amplitude across 

the association cortex—most prominently, a reduced peak in amplitude in transmodal 

cortex during mid-adolescence. Yet, youth from more disadvantaged environments also had 

higher amplitude intrinsic fMRI activity in unimodal sensory and motor cortices. Together, 

these opposing environment effects in sensorimotor and association cortex indicate that 

greater environmental deprivation is associated with diminished differentiation of a putative 

functional plasticity signature across the maturing cortex. We speculate that this association 

could reflect reduced versus accelerated development of plasticity-restricting features such 
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as myelin in sensorimotor and association cortices, respectively, in youth from poorer 

socioeconomic environments61.

Significantly, the cortical expression of brain-environment associations was not uniform 

across the entire age range studied. An age-resolved analysis revealed that environment 

effects diverged most between sensorimotor and association cortex during adolescence

—coincident with when cortex-wide differences in developmental change were most 

hierarchically organized. In fact, both developmental and environmental effects exhibited 

maximal variation across the cortex’s S-A axis at 15 years of age. This temporal 

concurrence uncovers interdependence between ongoing neurodevelopmental refinement 

and environmental influences, further suggesting that the effects of the environment on 

the youth brain depend on developmental stage. Our analyses of youths’ neighborhood 

environments thus provide data consistent with the hypothesis that environmental influences 

are both sensitive to and capable of refining a cortical area’s current developmental state.

Several limitations and possible direct extensions of this work should be highlighted. First, 

this was a cross-sectional investigation of neurodevelopment in youth. Future investigations 

with longitudinal study designs could characterize within-individual changes in cortical 

intrinsic activity as well as the effects of the environment on the pace of an individual’s 

development. Longitudinal studies will also be better suited to examine temporal precedence 

between developmental refinement of intrinsic fMRI activity and maturation of plasticity-

regulating features. Second, we used resting-state functional MRI to study intrinsic cortical 

activity, however the BOLD signal is sensitive to neural, vascular, and respiratory factors. 

While sensitivity analyses aimed at assessing and mitigating these factors provided highly 

convergent results, future studies using more direct measures of neural activity will 

therefore be helpful for extending the present findings. Third, it is difficult to directly 

establish the extent to which age-related changes in non-invasive neuroimaging measures 

represent changes in developmental plasticity versus other processes, given that there is 

no gold-standard or singular measure of cortical plasticity in the human brain. To address 

this challenge, we studied an fMRI-derived measure that is modulated by changing the 

activity of cells that drive developmental plasticity16,34,56, is enhanced by behaviorally 

inducing plasticity33,35, and, as shown here, is refined during development in tandem with 

a biological regulator of plasticity. Fourth, only a coarse measure of pubertal stage was 

available in this sample, and it was only collected in individuals 10 years of age and 

older. This limited our ability to fully ascertain whether regional fluctuation amplitude was 

influenced by puberty or hormone levels, especially in the youngest participants. Rodent 

studies have shown that pubertal hormones can affect synaptic pruning and inhibitory 

signaling in association cortex62, highlighting this as an area for further investigation. 

Fifth, we aggregated a set of interrelated neighborhood variables into one factor score, 

precluding inference about specific proximal or distal causes of the brain-environment 

associations observed in these data. Potential causes may involve neighborhood features 

that are socioeconomically stratified and socio-politically determined including access to 

physical resources, healthcare, and education, exposure to environmental enrichment and 

community programs, or experiences of psychological safety and chronic stress. Developing 

a more nuanced understanding of the causes and behavioral correlates of these environment 
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effects may ultimately help to inform interventions or policies that equitably support healthy 

child neurodevelopment across socioeconomic circumstances.

The present study demonstrates that during childhood and adolescence, the spatiotemporal 

patterning of developmental change in intrinsic cortical fMRI activity coheres with a 

hierarchical axis of cortical organization. The observed refinements in fMRI fluctuations 

lend support to the theory that shifts in circuit plasticity temporally progress along this axis, 

calling for studies that can mechanistically test for neurobiological events driving a S-A 

gradient of neurodevelopment. Such events may include the maturation of neurochemical 

and structural plasticity-regulating features as well as successive expression of molecules 

that can orchestrate developmental timing, for example circadian clock genes and temporally 

organized transcription factors16,63,64. Given the relevance of the S-A axis for understanding 

cortical development in childhood and adolescence, future work should explore whether 

this and other major organizing axes (e.g., anatomical axes) play a role in cortical 

refinement during infancy and early childhood. Studies of the infant brain have shown 

that developmental change in thalamocortical structural connectivity and cortico-cortical 

functional connectivity is more pronounced within sensorimotor than association cortex, 

suggesting maturational relevance of the S-A axis in the first years of life65. Continued 

discovery of temporal axes of neurodevelopment across human’s multi-decade maturational 

course will help elucidate how plasticity is distributed across brain regions at different 

developmental stages. Such insights into the temporal patterning of plasticity will facilitate 

an understanding of how the effects of experience and the environment on the brain change 

as cortical malleability is refined, and may thus ultimately help to guide interventions in 

youth that align with each child’s neurotemporal context.

METHODS

Participants

Participants were recruited as part of the Philadelphia Neurodevelopmental Cohort66, 

a community study of child and adolescent brain development. Demographic, clinical, 

environmental, and neuroimaging data from 1,033 youth were included in the present 

cross-sectional study. Study sample demographics include an age range of 8 to 23 years 

(mean age = 15.7 ± 3.3 years), a sex distribution of 467 males and 566 females (sex was 

self-reported; intersex was not assessed), and a race and ethnicity distribution that was 0.3% 

American Indian or Alaskan Native, 0.7% Asian, 41% Black or African American, 11% 

identifying as multiracial, and 47% White. All participants over the age of 18 gave written 

informed consent prior to study participation. Participants under the age of 18 gave informed 

assent with written parental consent. All individuals received monetary compensation for 

participation in the study. All study procedures were approved by the Institutional Review 

Boards of the University of Pennsylvania and the Children’s Hospital of Philadelphia.

MRI data acquisition

T1-weighted structural MRI and resting-state functional MRI data were used in the present 

study. All MRI scans were acquired on the same 3T Siemens TIM Trio scanner (software 

version VB17) at the University of Pennsylvania with a 32-channel head coil. T1-weighted 
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structural images were acquired with a magnetization-prepared rapid acquisition gradient-

echo (MPRAGE) sequence with the following parameters: repetition time = 1810 ms, echo 

time = 3.51 ms, inversion time = 1100 ms, flip angle = 9 degrees, field of view = 180 

× 240 mm, matrix = 192 × 256, slice number = 160, voxel resolution = 0.94 × 0.94 × 

1 mm. Resting-state functional images were acquired with a single-shot, interleaved multi-

slice gradient-echo echo planar imaging (GE-EPI) sequence with the following parameters: 

repetition time = 3 s, echo time = 32 ms, flip angle = 90 degrees, field of view = 192 × 

192 mm, matrix = 64 × 64, slice number = 46, voxel resolution = 3 mm3, volumes = 124. 

To enable susceptibility distortion correction of resting-state functional images, a map of 

the main magnetic field (i.e., a B0 field map) was additionally collected using a dual-echo, 

gradient-recalled echo (GRE) sequence with the following parameters: repetition time = 

1000 ms, echo time 1 = 2.69 ms, echo time 2 = 5.27 ms, flip angle = 60 degrees, field of 

view = 240 × 240 mm, matrix = 64 × 64, slice number = 44, voxel resolution = 3.8 × 3.8 × 4 

mm.

MRI data processing

T1-weighted images and resting-state functional MRI timeseries were processed with 

fMRIPrep 20.2.367. The T1-weighted image was corrected for intensity non-uniformity with 

Advanced Normalization Tools68 (ANTs; 2.3.3) N4BiasFieldCorrection, skull stripped with 

a Nipype (1.6.1) implementation of the ANTs brain extraction workflow, tissue segmented 

with FSL (5.0.9) fast, and used for cortical surface reconstruction with FreeSurfer (6.0.1)69. 

The T1-weighted image was additionally non-linearly registered to the MNI152 T1 template 

(volume-based spatial normalization) with antsRegistration.

To preprocess functional scans, a skull-stripped reference BOLD volume was first generated 

and a B0 fieldmap was co-registered to this reference volume. The B0 field map was 

estimated based on the phase-difference map calculated with the dual-echo GRE sequence, 

converted to a displacements field map with FSL’s fugue and SDCflow tools, and used 

for susceptibility distortion correction of the reference BOLD volume. The susceptibility 

corrected BOLD reference was then rigidly co-registered (6 degrees of freedom) to the T1 

reference using boundary-based registration implemented with FreeSurfer’s bbregister. The 

functional MRI timeseries were slice-time corrected using 3dTshift from AFNI 20160207 

and then resampled onto their original, native space by applying a single, composite 

transform to correct for susceptibility distortions and for in-scanner head motion. Head 

motion parameters were calculated with respect to the reference BOLD volume prior to 

any spatiotemporal filtering using FSL mcflirt; six rotation and translation parameters were 

calculated. BOLD timeseries were additionally resampled into standard space, generating 

preprocessed timeseries in the MNI152NLin6Asym T1 template, and onto the fsaverage 

surface. Finally, to project functional timeseries onto the fsLR cortical surface for study 

analyses, grayordinates files containing 32k vertices per hemisphere were generated 

using the highest-resolution fsaverage as an intermediate standardized surface space. 

Volumetric resampling was performed using antsApplyTransforms, configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels. Surface resampling was 

performed using FreeSurfer’s mri_vol2surf.
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fMRIPrep was additionally used to estimate the following 36 confounds from the 

preprocessed timeseries: six head motion parameters; three region-wise global signals (mean 

cerebrospinal fluid, white matter, and whole brain signals); temporal derivatives of the 

six head motion parameters and the three global signal estimates; and quadratic terms for 

the motion parameters, tissue signals, and their temporal derivatives70,71. These confound 

matrices were utilized within xcp_d 0.0.4, which is an extension of the top-performing 

eXtensible Connectivity Pipeline (XCP) Engine70,71 specifically developed to mitigate 

motion-related artifacts and noise in resting-state functional MRI data from developmental 

samples. With xcp_d, preprocessed functional timeseries on the fsLR cortical surface 

underwent nuisance regression using the 36 confounds listed above. Confounds were 

regressed using linear regression as implemented in Scikit-Learn (0.24.2).

Fluctuation amplitude quantification

To calculate fluctuation amplitude, defined as the power of low frequency fMRI recordings, 

processed fsLR surface BOLD timeseries were first transformed from the time domain to 

the frequency domain and a power spectrum was generated in the 0.01–0.08 Hz range. 

The mean square root of the power spectrum was then calculated. The mean square root 

represents the average amplitude (intensity) of time-varying resting-state BOLD fluctuations 

within this low frequency band32. Of note, the fluctuation amplitude measure used here is 

analogous to other commonly used spectral- or variability-based BOLD measures, including 

the amplitude of low frequency fluctuations (ALFF) and resting-state functional amplitude 

(RSFA).

Fluctuation amplitude was quantified at the vertex-level with xcp_d 0.0.4 and then 

parcellated with fsLR surface atlases to provide mean fluctuation amplitude within 

individual cortical regions. The HCP multimodal atlas72 was used for all primary analyses 

and the Schaefer-400 atlas73 was used for a sensitivity analysis. Parcellation was conducted 

in R with the ciftiTools package74 utilizing Connectome Workbench 1.5.0. Fluctuation 

amplitude was not analyzed within cortical regions that exhibited low signal to noise ratio 

(SNR) in >= 25% of their assigned vertices. Low SNR vertices were defined identically to 

our prior work75 as vertices with an average (across-participant) BOLD signal < 670 after 

normalizing signal to a mode of 1000. Twenty-four parcels located within the orbitofrontal 

cortex and the ventral temporal lobe were excluded from both the HCP multimodal atlas and 

the Schaefer-400 atlas.

MRI sample construction

The study sample used in the present work is comprised of individuals who received an MRI 

scan as part of the Philadelphia Neurodevelopmental Cohort. No statistical methods were 

used to pre-determine the sample size of the Philadelphia Neurodevelopmental Cohort as 

this was designed as a large, publicly available, community data resource, but the sample 

size is similar to that reported in previous publications of youth brain development42,48,66. 

1,374 individuals in the Philadelphia Neurodevelopmental Cohort had T1-weighted images, 

B0 field maps, and identical parameter76 resting-state functional MRI scans available and 

were considered for inclusion in this study. From this original sample of n = 1,374, 120 

individuals were excluded from the study due to medical problems that could impact 
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brain function or incidentally encountered abnormalities of brain structure. Data from 

202 additional participants were excluded due to low quality T1-weighted images and 

FreeSurfer reconstructions (n = 23) or high in-scanner head motion (n = 179). As in 

our prior work, high in-scanner head motion was defined as a mean relative root mean 

squared framewise displacement > 0.2 mm during the functional scan. Using data from the 

remaining sample (n = 1,052), we identified fluctuation amplitude outliers at the regional 

level based on a cut off of ± 4 standard deviations from the mean. Individuals with outlier 

data in more than 5% of cortical regions (n = 19) were excluded, producing the final study 

sample of 1,033 individuals. Participants from this final study sample were not assigned to 

separate experimental groups or conditions, thus data collection and analysis did not involve 

randomization or blinding.

Characterizing developmental effects

Generalized additive models—All statistics were carried out in R 4.0.2. In order to 

flexibly model linear and non-linear relationships between fluctuation amplitude and age, 

we implemented GAMs (semi-parametric, additive models) using the mgcv package in 

R77. GAMs were fit with regional fluctuation amplitude as the dependent variable, age 

as a smooth term, and sex and in-scanner head motion as linear covariates. Models were 

fit separately for each parcellated cortical region using thin plate regression splines as 

the smooth term basis set and the restricted maximal likelihood approach for smoothing 

parameter selection. The GAM smooth term for age produces a spline, or a smooth function 

generated from a linear combination of weighted basis functions, that represents a region’s 

developmental trajectory. To prevent overfitting of the spline, we set the maximum basis 

complexity (k) to 3 to limit the number of basis functions that could be used to estimate the 

overall model fit. A value of k = 3 was chosen over higher values (i.e., k = 4–6) given that 

this basis complexity resulted in the lowest model Akaike information criterion (AIC) for 

the majority of cortical regions. Statistical tests of the k-index77, which estimate the degree 

of unaccounted for, non-random pattern in the residuals, confirmed that this basis dimension 

was sufficient.

For each regional GAM, the significance of the association between fluctuation amplitude 

and age was assessed through an analysis of variance (ANOVA) that compared the full 

GAM model to a nested, reduced model with no age term. A significant result indicates that 

the residual deviance was significantly lower when a smooth term for age was included in 

the model, as assessed with the chi-square test statistic. We corrected ANOVA p-values 

across all region-wise GAMs using the false discovery rate (FDR) correction and set 

statistical significance at pFDR < 0.05 corrected. For each regional GAM with a significant 

age smooth term, we furthermore identified the specific age range(s) wherein fluctuation 

amplitude was significantly changing through the gratia package in R. Age windows of 

significant change were identified by quantifying the first derivative of the age smooth 

function (Δ fluctuation amplitude / Δ age) using finite differences and determining when 

the simultaneous 95% confidence interval of this derivative did not include 078 (two-sided). 

To establish the overall magnitude and direction of the association between fluctuation 

amplitude and age, which we refer to throughout as a region’s overall age effect, we 

calculated the partial R2 between the full GAM model and the reduced model (effect 
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magnitude) and signed the partial R2 by the sign of the average first derivative of the smooth 

function (effect direction).

For each cortical region, we additionally tested the effects of participant sex and pubertal 

stage on fluctuation amplitude development. We first assessed whether the developmental 

trajectories of fluctuation amplitude differed between males and females by testing the 

significance of a factor-smooth interaction term added to the main GAM model (i.e., an 

age-by-sex interaction that allowed age-dependent changes to vary by sex). To assess the 

potential influence of participant pubertal stage, we added a three-level ordered factor 

for pubertal stage (with levels for pre-pubertal, mid-pubertal, and post-pubertal) to the 

main GAM models. Participants self-reported their pubertal stage by viewing pictorial 

representations and text descriptions of the five Tanner stages of pubic hair growth and 

reporting which best matched their own development of secondary sex characteristics. 

Following our prior work in this same sample79, we considered Tanner stages 1–3 as 

“pre-pubertal”, Tanner stage 4 as “mid-pubertal” and Tanner stage 5 as “post-pubertal”. 

Self-reporting of Tanner staging was only conducted in participants ages 10 and older (n = 

949; 518 female). As a result, there were fewer pre-pubertal participants (n = 176, Tanner 

stages 1–3) than mid-pubertal (n = 283, Tanner stage 4) and post-pubertal (n = 490, Tanner 

stage 5) participants. We evaluated whether pubertal stage explained significant variance in 

fluctuation amplitude above and beyond age in each region by using an ANOVA to compare 

the full GAM model (with the pubertal stage factor) to a reduced model that did not include 

pubertal information. We corrected p-values for multiple comparisons across region-wise 

GAMs within sex and pubertal stage analyses using FDR correction.

Associations with cortical myelin development—We formally assessed whether the 

development of intrinsic fMRI activity amplitude was spatially and temporally related to 

the development of an imaging measure sensitive to intracortical myelin content. Cortical 

myelin development was previously comprehensively characterized by Baum et al. (2022)42 

using T1w/T2w surface-based myelin mapping in a sample of 628 youth ages 8 to 21 

years (336 female) who had data collected as part of the Human Connectome Project in 

Development. Using high resolution (0.8 mm3) T1-weighted and T2-weighted images, HCP 

processing pipelines, and state of the art methods for B1+ transmit field bias correction 

and partial volume reduction, Baum et al. (2022)42 investigated the maturational trajectory 

of increases in the T1w/T2w ratio in each cortical region. In this investigation, the authors 

fit region-specific GAMs with a smooth term for age using thin plate regression splines 

as the smoothing basis, paralleling the present work. GAMs included covariates for sex, 

scanner, and B1+ transmit field correction-related variables, following current best practices 

for statistically comparing the T1w/T2w ratio across individuals.

To test if the extent to which fluctuation amplitude changed with age was related to the 

degree to which cortical myelin content changed with age, we calculated the correlation 

coefficient between the two distinct age effects: those calculated from regional fluctuation 

amplitude GAMs and those calculated from regional T1w/T2w ratio GAMs reported by 

Baum et al. (2022)42. As in the present work, T1w/T2w ratio age effects were determined by 

a partial R2 derived by comparing the full GAM model to a reduced model with no smooth 

term for age. The association between fluctuation amplitude age effects and T1w/T2w 
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ratio age effects was quantified with a Spearman’s correlation, a non-parametric, rank-

based correlation test that does not assume normality. A Spearman’s correlation was also 

used to evaluate whether there was temporal correspondence between the development of 

fluctuation amplitude and the T1w/T2w ratio across the cortex. Specifically, we calculated 

the correlation coefficient between the age at which fluctuation amplitude began to 

significantly decrease in each region and the age at which the T1w/T2w ratio maximally 

increased in each region. The age at which fluctuation amplitude began to significantly 

decrease was the youngest age at which the first derivative of the age smooth function was 

significantly negative. The age at which the T1w/T2w ratio had a maximal rate of increase 

was the age at which the first derivative of the age smooth function was maximal.

Alignment with the sensorimotor-association axis—This work set out to test the 

overarching hypothesis that neurodevelopmental patterns are organized by the S-A axis 

during childhood and adolescence. We therefore examined whether patterns of fluctuation 

amplitude maturation aligned with the S-A axis derived in our prior work4. The S-A axis 

was derived by averaging rank orderings of ten cortical feature maps that exhibit systematic 

variation between lower-order sensorimotor cortices, middle-order unimodal and multimodal 

cortices, and higher-order heteromodal and paralimbic association cortices4. These maps 

include: the functional hierarchy delineated by the principal gradient of functional 

connectivity14, the evolutionary hierarchy defined by macaque-to-human cortical areal 

expansion46, the anatomical hierarchy as quantified by the adult T1w/T2w ratio45, allometric 

scaling calculated as local areal scaling with scaling of total brain size80, aerobic glycolysis 

measures of brain metabolism81, cerebral blood flow measures of brain perfusion79, gene 

expression patterning indexed by the principal component of brain-expressed genes45, a 

primary mode of brain function characterized by the principal component of NeuroSynth 

meta-analytic decodings82, a histological gradient of cytoarchitectural similarity developed 

using the BigBrain atlas83, and cortical thickness measured by structural MRI. The resulting 

S-A axis represents a dominant, large-scale motif of cortical organization that captures the 

stereotyped patterning of cortical heterogeneity from primary visual, somatosensory, and 

motor regions (lowest ranks in the S-A axis) to transmodal frontal, temporal, and parietal 

association regions (highest ranks in the S-A axis).

We performed the following analyses to ascertain whether the development of fluctuation 

amplitude is related to the S-A axis. Using Spearman’s correlations, we evaluated 

associations between cortical regions’ S-A axis ranks and both 1) their magnitude of 

fluctuation amplitude development (signed GAM partial R2) and 2) the age at which their 

fluctuation amplitude began significantly decreasing (first significant negative derivative). 

We next conducted a PCA on regional developmental trajectories. The goal of this PCA was 

to visualize the spatial axis that explained the greatest variance in how an in vivo measure 

of cortical intrinsic activity changed with age. The input to the PCA was region-wise age 

fits (zero-averaged smooth function estimates). The first principal component generated by 

this PCA contained regional loadings that capture differences in maturational patterns across 

one low-dimensional embedding. We quantified the similarity between the first principal 

component (loadings) and the cortex’s S-A axis4, anatomical hierarchy45, functional 

hierarchy14, and evolutionary hierarchy46 with independent Spearman’s correlations. We 
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additionally assessed whether the correlation with the S-A axis was significantly greater 

in magnitude than correlations with the three aforementioned hierarchies using a statistical 

test for comparing two dependent, overlapping correlations that utilizes a back-transformed 

average Fisher’s Z procedure; tests were executed using the cocor package in R84 

(hittner2003 test; two-sided).

Finally, we implemented an age-resolved analysis to evaluate if the development of 

fluctuation amplitude aligned with the S-A axis throughout the entire developmental window 

studied. For this analysis, we computed across-region Spearman’s correlations between S-A 

axis rank and the first derivative of the GAM age spline estimated at 200 ages between 

8 and 23 years—producing 200 age-specific correlations. In other words, we quantified 

the relationship between a region’s fluctuation amplitude rate of change and its position 

in the S-A axis at 200 age increments, allowing us to study changes in the extent of S-A 

axis alignment over the course of development. We determined a correlation coefficient 

point estimate as well as a 95% credible interval for these age-specific correlation values 

at all 200 age increments. To do so, we sampled from the posterior distribution of each 

region’s fitted GAM 10,000 times, generating 10,000 simulated age smooth functions and 

corresponding derivatives. We then repeated the process of correlating S-A axis rank with 

the first derivative of the age smooth function at each of the 200 ages for all 10,000 

posterior draws, generating a sampling distribution of possible correlation values at each 

age increment. This distribution was used to calculate the median correlation value (point 

estimate) and the 95% credible interval of correlation values at each age increment. In 

addition, the sampling distribution of age-specific S-A axis correlation values was used to 

identify the age at which fluctuation amplitude development maximally aligned with the 

S-A axis and the youngest age at which no alignment to the axis was observed. To discover 

ages of maximal and null alignment, we calculated the age at which the axis correlation was 

largest as well as the first age at which the correlation equaled 0 for all 10,000 draws. For 

both measures, the median age across all draws and a 95% credible interval was calculated.

Sensitivity analyses—We performed a series of sensitivity analyses to confirm that the 

developmental effects observed were not being driven by potentially confounding factors 

including in-scanner head motion, psychiatric medication use, cerebrovascular perfusion, 

BOLD signal intensity, global amplitude effects, or the atlas used for cortical parcellation. 

For each sensitivity analysis, regional GAMs were refit either in a reduced sample (head 

motion and psychiatric medication analyses), in the full sample but with an additional 

model covariate (vascular and BOLD signal intensity analyses), or in the full sample with 

a modified dependent variable (global amplitude normalization and cortical atlas analyses). 

GAM-derived fluctuation amplitude trajectories were then visualized and developmental 

alignment with the S-A axis was assessed.

The first sensitivity analysis was conducted with a low motion sample to mitigate the 

potential confounding effect of in-scanner head motion on fluctuation amplitude. From the 

main study sample of 1,033 individuals, we excluded 343 individuals with a mean relative 

root mean squared framewise displacement > 0.075, retaining a low motion sample of n = 

690 (ages 8–23 years; mean age = 16.1 years; 395 female). The second sensitivity analysis 

was carried out to ensure that psychotropic medication use, which was more frequent among 

Sydnor et al. Page 20

Nat Neurosci. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



older study participants, did not explain the age-related changes in fluctuation amplitude. 

GAMs were refit after removing all participants (n = 140) from the original sample of 1,033 

individuals that reported current psychoactive medication use or a history of psychiatric 

hospitalization (remaining n = 893; ages 8–23 years; mean age = 15.6 years; 507 female).

The third sensitivity analysis aimed to address the fact that the hemodynamic BOLD 

signal has vascular contributions. Prior work has demonstrated that measures of BOLD 

fluctuation amplitude contain substantial physiological information not attributable to 

vascular properties such cerebrovascular reactivity, rigidity, and blood flow85. Nonetheless, 

we still evaluated whether changes in vascular reactivity or cerebral perfusion with age could 

potentially be contributing to our developmental findings concerning fluctuation amplitude. 

We approached this evaluation by directly controlling for each participant’s regional cerebral 

blood flow, a measure of local blood perfusion, in region-wise GAMs. Cerebral blood 

flow was estimated from arterial spin labeling (ASL) data collected from participants with 

a pseudo-continuous ASL (pCASL) sequence with the following acquisition parameters: 

repetition time = 4000 ms, echo time = 2.9 ms, voxel resolution = 2.29 × 2.29 × 6 mm, 

label duration = 1500 ms, post label delay = 1250 ms, 40 paired label and control acquisition 

volumes. Data were processed using ASLPrep version 0.2.7 using the analysis pipeline 

reported in Adebimpe et al. (2022)86. Basic cerebral blood flow maps were generated and 

parcellated with the HCP multimodal atlas. Thirty-one participants included in the main 

study sample did not have ASL data available thus this vascular control analysis was 

performed using data from the remaining 1,002 participants (ages 8–23 years; mean age = 

15.7 years; 552 female).

The fourth sensitivity analysis was undertaken to rule out the possibility that inter-individual 

differences in regional mean BOLD signal intensity, rather than BOLD fluctuations per se, 

could account for our findings. In the full study sample (n = 1,033), region-specific GAMs 

were refit while adding regional mean BOLD signal (i.e., the average T2* signal from 

minimally preprocessed functional timeseries) as an additional control covariate. Regional 

mean BOLD signal was calculated from parcellated fsLR surface BOLD timeseries 

generated with fMRIPrep by averaging the BOLD signal intensity in each parcellated 

cortical region across all volumes; this measure was calculated prior to regression of 

confounding signals.

The fifth sensitivity analysis used mean normalized fluctuation amplitude as the dependent 

variable in all regional GAMs to examine the extent to which region-specific changes 

in fluctuation amplitude with age occurred above and beyond changes in global mean 

fluctuation amplitude. This sensitivity analysis was motivated by prior work that normalized 

local brain measures by a whole-brain mean to reduce inter-individual differences in 

global values45. It furthermore accounts for potential global differences in the scale of 

the BOLD signal across scans. Mean normalized fluctuation amplitude was quantified 

for all participants (n = 1,033) by dividing an individual’s fluctuation amplitude in each 

parcellated cortical region by the average fluctuation amplitude computed across all cortical 

regions. Notably, because whole-brain mean fluctuation amplitude declined across the age 

range studied, regional trajectories in this sensitivity analysis represent regional age-related 

decreases or increases relative to this global change.
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The sixth and final sensitivity analysis was implemented to verify that the hierarchical 

sequence of fluctuation amplitude maturation would be observed when using a different 

atlas for cortical parcellation. As described above, vertex-wise fluctuation amplitude data in 

fsLR surface space were parcellated with the Schaefer-400 atlas. GAMs were fit using data 

from the main study sample of 1,033 individuals for each Schaefer atlas region.

Characterizing environmental effects

Neighborhood environment factor scores—To ascertain whether children’s 

developmental environment may influence intrinsic cortical activity patterns, we investigated 

associations between spontaneous BOLD fluctuations and neighborhood environment factor 

scores that index differences in neighborhood-level socioeconomic circumstances. The 

derivation of these factor scores has been previously explained in detail47. Briefly, geocoded 

information about each individual’s neighborhood environment was extracted using their 

home address and the census-based American Community Survey. The first factor from 

an exploratory, two-factor factor analysis conducted on census variables by Moore et al. 

(2016)47 is used in the present study. This neighborhood environment factor score had 

positive loadings for the percent of residents who are married (loading = 0.85), median 

family income (0.82), the percent of residents with a high school education (0.74), the 

percent of residents who are employed (0.68), and median age (0.61) as well as negative 

loadings for the percent of residents in poverty (−0.86), population density (−0.71), and 

the percent of houses that are vacant (−0.60), and a weak loading for the percent of 

residents who are female (−0.26). There was no correlation between age and neighborhood 

environment factor scores (r = 0.01).

Generalized additive models—GAMs were used to investigate whether variability 

in youths’ neighborhood environments was associated with variability in regional 

fluctuation amplitude. We first used GAMs to resolve age-independent main effects of the 

neighborhood environment by modeling environment factor scores as a linear independent 

variable. For each region in the HCP multimodal atlas, a GAM was fit with fluctuation 

amplitude as the dependent variable, age as a smooth term, and sex, in-scanner motion, and 

the environment factor score as linear covariates. These main effect models thus identify 

linear associations between factor scores and regional fluctuation amplitude across the 

entire developmental age range studied. The t-value associated with the factor score term 

in each GAM represents the magnitude and direction of the regional fluctuation amplitude-

neighborhood environment association. The significance of this association was assessed 

with an ANOVA that compared the full GAM model to a reduced model without the 

environment factor score term; ANOVA p-values were FDR corrected across all region-wise 

GAMs.

The main effect GAMs described above were also used in a follow-up specificity analysis. 

The specificity analysis was conducted to evaluate whether the observed environmental 

effects were specific to youths’ neighborhood environments or could be better accounted for 

by the household-level socioeconomic environment. To investigate this, parental education—

one indicator of household socioeconomic position—was included as an additional linear 

covariate in regional GAMs. For each region, the significance (FDR-corrected) of both 
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the environment factor score term and the parental education term was assessed using 

ANOVAs as indicated above. Parental education was defined as the average years of 

education obtained by both parents (when data was available, n = 943) or by one parent 

(n = 83). Parental education information was not available for seven participants who were 

thus removed from this secondary analysis. Parental education was used as a proxy for 

household-level socioeconomic position as other socioeconomic measures (e.g., household 

income or parental occupational status) were not collected, though we note that individual 

socioeconomic position may be more robustly operationalized by combining multiple 

measures.

After assessing the specificity of effects to the neighborhood environment, we conducted 

two complementary analyses aimed at understanding whether the global cortical patterning 

of associations between fluctuation amplitude and neighborhood environment factor scores 

varies by age. We first examined main effect associations between the factor scores and 

regional fluctuation amplitude in groups of participants at different developmental stages. 

The study sample was divided into child (8–12 years; n =175; 94 female), adolescent (13–

17 years; n = 405; 225 female), and young adult (18–23 years; n = 299; 167 female) 

groups and region-wise main effect environment GAMs (as described above) were fit 

independently in each group. Regional environment factor score t-values were then obtained 

for each group. This developmental stage analysis suggested that associations between the 

neighborhood environment and fluctuation amplitude may vary by age in some regions, 

producing changes in the cortical expression of environment effects. To further explore 

this possibility, we examined regional age-by-environment interactions, which explicitly 

model how associations between the neighborhood environment and regional fluctuation 

amplitude change continuously with age. In each region, we fit a varying coefficient GAM 

with fluctuation amplitude as the dependent variable; predictors included an age-by-factor 

score interaction term, a smooth term for age, and control covariates including sex and 

in-scanner motion. These models use data from the entire sample and allow the linear 

association between environment factor scores and regional fluctuation amplitude to vary 

as a smooth function of age. Region-wise varying coefficient GAMs were utilized for two 

main objectives. First, we used these models to generate predicted trajectories of fluctuation 

amplitude development for low (10th percentile) and high (90th percentile) factor scores for 

every region. We then averaged trajectories for low and high factor scores independently 

within deciles of the S-A axis for visualization purposes. Second, we used these models to 

quantify age-specific environment effects in each region. Age-specific environment effects 

were computed as the slope of the linear association between fluctuation amplitude and 

environment factor scores at a given age (Δ fluctuation amplitude / Δ factor score). The 

organization of age-specific environment effects along the S-A axis was then examined 

across development (detailed further below).

Alignment with the sensorimotor-association axis—To first assess whether the 

main effects of the environment on fluctuation amplitude were systematically related to 

the S-A axis, we tested for an association between neighborhood environment factor 

score t-values and S-A axis ranks using a Spearman’s correlation. Correlations between 

t-values and S-A axis ranks were quantified for the primary analysis as well as for the 
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follow-up specificity and developmental stage analyses. To additionally understand how 

the spatial correlation between regional brain-environment associations and S-A axis ranks 

changed across the entire developmental window studied, we conducted an age-resolved 

environmental effects analysis. Akin to the age-resolved development analysis, we computed 

across-region Spearman’s correlations between S-A axis ranks and age-specific environment 

effects (varying coefficient model slopes) at 200 ages between 8 and 23 years. We 

determined a correlation coefficient point estimate (median correlation value) as well 

as a 95% credible interval for these age-specific correlation values from 10,000 draws 

from the posterior distribution of each region’s fitted varying coefficient GAM. As in the 

development analysis, we also identified the age at which variation in environment effects 

was maximally captured by the S-A axis; a point estimate and a 95% credible interval for the 

age of maximal S-A axis correlation was calculated.

Spin-based spatial permutation testing

Cortical data often exhibit distance-dependent spatial autocorrelation that can inflate the 

significance of correlations between two cortical feature maps. To mitigate this issue, we 

assessed the significance of each Spearman’s correlation that compared two whole-brain 

cortical feature maps with non-parametric, spin-based, spatially-constrained rotation tests, or 

“spin tests”87. Spin tests compute a p-value (denoted pspin) by comparing the empirically 

observed correlation to a null distribution of correlations obtained by randomly spatially 

iterating (spinning) one of the two cortical feature maps. In particular, spin tests generate 

a null by rotating spherical projections of one feature map while maintaining its spatial 

covariance structure. The direction of the empirical Spearman’s correlation can be positive 

or negative; the p-value for the correlation is quantified as the number of times the 

spatial rotation-based correlation is greater than (for positive correlations) or less than (for 

negative correlations) the empirical correlation, divided by the number of spatial rotations. 

Here, we generated a null distribution based on 10,000 spatial rotations. Spin tests were 

implemented using the rotate_parcellation algorithm in R (https://github.com/frantisekvasa/

rotate_parcellation)88.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DATA AVAILABILITY

The current study analyzes an existing, publicly available dataset from 

the Philadelphia Neurodevelopmental Cohort, available in the Database of 

Genotypes and Phenotypes (phs000607.v3.p2) at https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. Study analyses additionally 

made use of publicly available cortical atlases including the HCP 

multimodal atlas (downloaded from https://github.com/PennLINC/xcp_d/blob/main/xcp_d/

data/ciftiatlas/glasser_space-fsLR_den-32k_desc-atlas.dlabel.nii), the Schaefer-400 atlas 

(downloaded from https://github.com/PennLINC/xcp_d/blob/main/xcp_d/data/ciftiatlas/

Schaefer2018_400Parcels_17Networks_order.dlabel.nii), and the sensorimotor-association 

axis (downloaded from https://pennlinc.github.io/S-A_ArchetypalAxis/). Data derivatives 

from the current study, including development effect and environment effect maps, are 

available for download from https://doi.org/10.5281/zenodo.7606653.
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Fig. 1. Developmental refinement of fluctuation amplitude varies across the cortex.
a) The heterogeneous patterning of fluctuation amplitude age effects (partial R2) is 

displayed across the cortical surface. b) Fluctuation amplitude developmental trajectories 

(zero-centered GAM smooth functions) are shown for all left hemisphere cortical regions, 

revealing a spectrum of age-related change. Trajectories are colored by each region’s age 

effect using the color bar in panel a. c) Fluctuation amplitude developmental trajectories 

are shown overlaid on data from all participants for the primary visual cortex (area V1, 

yellow), the midcingulate gyrus (area p24pr, pink), and the dorsolateral prefrontal cortex 

(area IFSa, purple). Regional trajectories represent the GAM-predicted fluctuation amplitude 

value at each age with a 95% credible interval band. The color bars below each regional plot 

depict the age window(s) wherein fluctuation amplitude significantly changed in that region, 

shaded by the rate of change, as determined by the first derivative of the age function and the 

simultaneous 95% confidence interval around this derivative (two-sided).
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Fig. 2. Development of fluctuation amplitude spatially and temporally parallels cortical myelin 
development.
a) The cortical distribution of fluctuation amplitude age effects closely resembles the 

distribution of T1w/T2w ratio age effects, suggesting interdependent refinement of cortical 

function and microstructure in youth. Age effects (partial R2) are signed by the sign 

of the average first derivative of the age smooth function. b) Regions that show larger 

declines in fluctuation amplitude during childhood and adolescence additionally undergo 

greater increases in the cortical T1w/T2w ratio in this developmental period. A Spearman’s 

correlation between age effects for these two measures was significant (r = −0.67, pspin = 

0.00045) as assessed by a conservative spin-based spatial rotation test. The negative linear 

fit between these measures is shown with a 95% confidence interval. c) Maps depicting the 

age at which fluctuation amplitude began to decrease (earliest significant negative derivative 

of the age function) and the age of maximal T1w/T2w-indexed myelin growth (largest 

significant derivative of the age function) reveal temporal similarity in the development of 

these two measures in youth. d) Across regions, the age at which fluctuation amplitude 

began to significantly decrease is closely coupled to the age at which the T1w/T2w ratio 

shows a maximal rate of increase, providing evidence for temporal coordination between 

functional and structural maturation. A Spearman’s correlation between these temporal 

measures was significant (r = 0.64, pspin = 0.01565) as assessed by the spatial rotation test 

procedure. The positive linear relationship between these two measures is plotted with a 

95% confidence interval.
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Fig. 3. The principal axis of fluctuation amplitude development exhibits convergent spatial 
embedding with the sensorimotor-association axis.
a) The principal axis of fluctuation amplitude development closely resembles the 

sensorimotor-association (S-A) axis, illustrating that the spatiotemporal maturation of 

intrinsic cortical fMRI activity aligns to the brain’s global cortical hierarchy. The S-A 

axis, derived in Sydnor et al. (2021)4, is a dominant axis of cortical feature organization 

that spans from primary sensory and motor cortices (sensorimotor pole; dark yellow), to 

modality-selective and multimodal cortices, and then to transmodal association cortices 

(association pole; dark purple). The principal developmental axis is the first component 

from a PCA conducted on regional fluctuation amplitude maturational trajectories. This 

component quantitatively captures cortex-wide differences in maturational patterns along 

a unidimensional spatial gradient. b) Across the cortex, principal developmental axis 
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loadings are strongly related to S-A axis ranks (linear association shown with a 95% 

confidence interval). The Spearman’s correlation between these two measures, which 

represent developmental and organizational maps, was significant (r = 0.70, pspin < 0.0001) 

as assessed by a conservative spin-based spatial rotation test. c) Average model fits depicting 

the relationship between fluctuation amplitude and age are shown for deciles of the S-A 

axis. To generate average decile fits, the S-A axis was divided into 10 bins each consisting of 

33–34 regions, and age smooth functions were averaged across all regions in a bin. The first 

decile (darkest yellow; linear decline) represents the sensorimotor pole of the axis, the tenth 

(darkest purple; inverted U) represents the association pole of the axis. Maturational patterns 

diverged most between S-A axis poles and varied continuously between them.
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Fig. 4. Neurodevelopment unfolds along the sensorimotor-association axis until late adolescence.
a) The rate and direction of developmental change in fluctuation amplitude is displayed 

for each cortical region from ages 8 to 23 years. Regions are ordered along the y-axis by 

S-A axis rank. Fluctuation amplitude rate of change, expressed as the change in amplitude 

per year, was estimated from the first derivative of each region’s GAM smooth function 

for age. Cortical regions near the association pole of the S-A axis exhibit unique increases 

in fluctuation amplitude through childhood that culminate in adolescent BOLD amplitude 

peaks. b) Developmental change in intrinsic fMRI activity aligns with the S-A axis from 

childhood until late adolescence. The line plot displays age-specific correlation values (r) 
between regional rates of fluctuation amplitude change and regional S-A axis ranks from 

ages 8 to 23 years. To obtain reliable estimates of this correlation value at each age, we 

sampled 10,000 draws from the posterior derivative of each region’s age smooth function 

and quantified age-specific correlations between derivatives and S-A axis ranks for each 

draw. The median correlation value obtained across all draws is depicted by the black 

line and the 95% credible interval around this value is represented by the gray band. 

We additionally determined the age of maximal alignment between fluctuation amplitude 

change and S-A axis rank for all 10,000 draws. The 95% credible interval for the age of 

maximal alignment is depicted on the line plot by the pink band. The full distribution of ages 

obtained from all draws is portrayed in the inset histogram. c) Age-specific developmental 
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effects (first derivative maps) are visualized on the cortical surface at age 10, 15, and 20 

years. Maps are shown above scatterplots that depict the linear relationship (with a 95% 

confidence interval band) between regional S-A axis ranks and regional age-specific rates of 

fluctuation amplitude change. Scatterplot points are colored by age-specific rates of change. 

Developmental refinement of fluctuation amplitude is governed by the S-A axis at ages 10 

and 15 years. By age 20, further refinement of fluctuation amplitude is unrelated to the S-A 

axis.
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Fig. 5. Region-specific and cortex-wide developmental patterns are robust to methodological 
variation.
a-f) Key results are shown for each of the six sensitivity analyses performed. For each 

analysis, the left plot shows fluctuation amplitude developmental trajectories (zero-centered 

GAM smooth functions) for left hemisphere regions, colored by age effects. The right 

plot presents the age-resolved analysis of the correlation between developmental change 

in fluctuation amplitude and S-A axis rank from ages 8 to 23 years. Both the medial 

correlation value (r) and the 95% credible interval around this value are shown for the 

age-resolved analysis. All six sensitivity analyses yielded convergent region-specific and 

cortex-wide results, confirming that our developmental findings were not being driven by 

head motion in the scanner (a), the use of psychotropic medications (b), age-related changes 

in cerebrovascular perfusion (c), inter-scan differences in T2* signal strength (d), global 

effects (e), or the specific atlas used for cortical parcellation (f).
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Fig. 6. Associations between fluctuation amplitude and the developmental environment vary 
along the sensorimotor-association axis in adolescence.
a) An environment factor score captures multiple features of each child’s neighborhood 

environment. Variables listed above (+) and below (−) the arrow positively and negatively 

loaded onto the factor score, respectively. Darker and larger text indicates stronger 

loadings. Higher factor scores reflect greater neighborhood-level socioeconomic advantage. 

b) A cortical map displaying regional associations (quantified by model t-values) 

between environment factor scores and fluctuation amplitude is displayed; the map 

partly recapitulates the S-A axis. c) Each region’s environment effect (t-value) is plotted 

against its S-A axis rank (linear fit shown with a 95% confidence interval). Regions 

with a significant environment effect following correction for multiple comparisons are 

outlined in black. The S-A axis explains significant variability in brain-environment 

associations (Spearman’s correlation with a spatial rotation-based significance test: r = 

0.48, pspin < 0.0001). d) Fluctuation amplitude developmental trajectories are displayed 

for low and high environment factor scores for five deciles of the S-A axis, illustrating 

environment-associated differences in this measure by developmental timing. e) Cortical 

maps depicting region-wise associations between environment factor scores and fluctuation 

amplitude (as in b) in child, adolescent, and young adult groups show subtle differences 

in associations throughout development. Magenta and orange denote positive and negative 

environment effects (t-values), as in b. f) Age-specific environment effects are shown for an 
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exemplar primary sensorimotor region (primary somatosensory cortex, area 3b, yellow) and 

transmodal association region (medial prefrontal cortex, area 9m, purple). The magnitude 

of effects is largest in adolescence in these regions. g) Regional differences in environment 

associations are most organized along the S-A axis in adolescence, as revealed by age-

specific correlations between regional environment effects and S-A axis ranks. The plot 

depicts the median correlation value (r) at each age (black line) and the 95% credible 

interval around this value (gray band) obtained by sampling the posterior distribution of 

regional age-by-environment interaction GAMs 10,000 times. The orange and dark gray 

bands respectively designate credible intervals for the ages of maximal and zero correlation 

of environment effects with the S-A axis.
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