Skip to main content
. 2023 May 12;2:1090054. doi: 10.3389/fnimg.2023.1090054

Table 3.

Result of the machine learning process of test and validation data.

Model Error GWC CGC CWC SNR-CSF SNR-GM SNR-WM
test val test val test val test val test val test val
svm rrse 0.45 0.8 0.77 0.28 0.47 0.49 0.53 0.52
rmse 0.14 5.04 4.06 15.3 11.5 10.8 9.01 7.75
rsle 0.06 0.39 0.42 0.17 0.55 0.53 0.51 0.46
knn rrse 0.43 0.43 0.38 0.36 0.38 0.41 0.19 0.43 0.52 0.58
rmse 0.13 0.13 2.38 2.5 2.01 2.48 10.7 22.3 12.8 9.88
rsle 0.05 0.05 0.25 0.3 0.25 0.25 0.21 0.25 0.48 0.45
ranfor rrse 0.80 0.76 0.72 0.76 0.87 0.88
rmse 0.25 4.84 3.76 41.7 21.3 14.9
rsle 0.1 0.46 0.44 0.48 0.80 0.7
Ghost Sharpness Homogeneity Motion Distortion Time
test val test val test val test val test val test val
svm rrse 0.53 0.32 0.29 0.75 0.69 0.5 0.48 0.11 0.11 0.54
rmse 0.05 0.02 0.02 0.01 0.01 0.03 0.03 0.00 0.01 5.5e6
rsle 0.04 0.01 0.01 0.01 0.01 0.02 0.03 0.01 -
knn rrse 0.45 0.61 0.52 0.76 0.73 0.18 0.58 0.46
rmse 0.04 0.04 0.03 0.01 0.04 0.01 2.7e6 2.5e6
rsle 0.02 0.04 0.18 0.01 0.04 0.01 1.21 -
ranfor rrse 0.96 0.64 0.85 0.89 0.49 0.88
rmse 0.08 0.04 0.01 0.49 0.03 4.1e6
rsle 0.07 0.02 0.01 0.04 0.03 2.3

Bold values indicate hyperparameter sets and ML models chosen for training based on error metrics.