Table 3.
Result of the machine learning process of test and validation data.
| Model | Error | GWC | CGC | CWC | SNR-CSF | SNR-GM | SNR-WM | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| test | val | test | val | test | val | test | val | test | val | test | val | ||
| svm | rrse | 0.45 | 0.8 | 0.77 | 0.28 | 0.47 | 0.49 | 0.53 | 0.52 | ||||
| rmse | 0.14 | 5.04 | 4.06 | 15.3 | 11.5 | 10.8 | 9.01 | 7.75 | |||||
| rsle | 0.06 | 0.39 | 0.42 | 0.17 | 0.55 | 0.53 | 0.51 | 0.46 | |||||
| knn | rrse | 0.43 | 0.43 | 0.38 | 0.36 | 0.38 | 0.41 | 0.19 | 0.43 | 0.52 | 0.58 | ||
| rmse | 0.13 | 0.13 | 2.38 | 2.5 | 2.01 | 2.48 | 10.7 | 22.3 | 12.8 | 9.88 | |||
| rsle | 0.05 | 0.05 | 0.25 | 0.3 | 0.25 | 0.25 | 0.21 | 0.25 | 0.48 | 0.45 | |||
| ranfor | rrse | 0.80 | 0.76 | 0.72 | 0.76 | 0.87 | 0.88 | ||||||
| rmse | 0.25 | 4.84 | 3.76 | 41.7 | 21.3 | 14.9 | |||||||
| rsle | 0.1 | 0.46 | 0.44 | 0.48 | 0.80 | 0.7 | |||||||
| Ghost | Sharpness | Homogeneity | Motion | Distortion | Time | ||||||||
| test | val | test | val | test | val | test | val | test | val | test | val | ||
| svm | rrse | 0.53 | 0.32 | 0.29 | 0.75 | 0.69 | 0.5 | 0.48 | 0.11 | 0.11 | 0.54 | ||
| rmse | 0.05 | 0.02 | 0.02 | 0.01 | 0.01 | 0.03 | 0.03 | 0.00 | 0.01 | 5.5e6 | |||
| rsle | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.01 | - | ||||
| knn | rrse | 0.45 | 0.61 | 0.52 | 0.76 | 0.73 | 0.18 | 0.58 | 0.46 | ||||
| rmse | 0.04 | 0.04 | 0.03 | 0.01 | 0.04 | 0.01 | 2.7e6 | 2.5e6 | |||||
| rsle | 0.02 | 0.04 | 0.18 | 0.01 | 0.04 | 0.01 | 1.21 | - | |||||
| ranfor | rrse | 0.96 | 0.64 | 0.85 | 0.89 | 0.49 | 0.88 | ||||||
| rmse | 0.08 | 0.04 | 0.01 | 0.49 | 0.03 | 4.1e6 | |||||||
| rsle | 0.07 | 0.02 | 0.01 | 0.04 | 0.03 | 2.3 | |||||||
Bold values indicate hyperparameter sets and ML models chosen for training based on error metrics.