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Abstract
Multiple sclerosis (MS) is a severely debilitating disease which requires accurate and timely diagnosis. MRI is the primary 
diagnostic vehicle; however, it is susceptible to noise and artifact which can limit diagnostic accuracy. A myriad of denoising 
algorithms have been developed over the years for medical imaging yet the models continue to become more complex. We 
developed a lightweight algorithm which utilizes the image’s inherent noise via dictionary learning to improve image qual-
ity without high computational complexity or pretraining through a process known as orthogonal matching pursuit (OMP). 
Our algorithm is compared to existing traditional denoising algorithms to evaluate performance on real noise that would 
commonly be encountered in a clinical setting. Fifty patients with a history of MS who received 1.5 T MRI of the spine 
between the years of 2018 and 2022 were retrospectively identified in accordance with local IRB policies. Native resolution 
5 mm sagittal images were selected from T2 weighted sequences for evaluation using various denoising techniques includ-
ing our proposed OMP denoising algorithm. Peak signal to noise ratio (PSNR) and structural similarity index (SSIM) were 
measured. While wavelet denoising demonstrated an expected higher PSNR than other models, its SSIM was variable and 
consistently underperformed its comparators (0.94 ± 0.10). Our pilot OMP denoising algorithm provided superior perfor-
mance with greater consistency in terms of SSIM (0.99 ± 0.01) with similar PSNR to non-local means filtering (NLM), 
both of which were superior to other comparators (OMP 37.6 ± 2.2, NLM 38.0 ± 1.8). The superior performance of our 
OMP denoising algorithm in comparison to traditional models is promising for clinical utility. Given its individualized and 
lightweight approach, implementation into PACS may be more easily incorporated. It is our hope that this technology will 
provide improved diagnostic accuracy and workflow optimization for Neurologists and Radiologists, as well as improved 
patient outcomes.
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pursuit (OMP)

Introduction

Multiple sclerosis (MS) is a serious and often fatal autoim-
mune demyelinating disease which effects patients and forma-
tive years of their lives, often while building a family or devel-
oping their careers [1, 2]. It is estimated that MS impacted 
approximately 2.8 million individuals in 2020 [1], a troubling  

diagnosis as it is typically during the stage of a patient’s life 
when they may be developing a family or the next step in their 
career. The diagnosis of MS depends on the clinical symp-
tomatology but also the imaging findings suggestive of demy-
elination in the central nervous system (CNS) where patients 
often deteriorate with varying degrees of disability [1–3].  
Treatment involves immunosuppression which has deleterious 
consequences and may not always be effective in certain popu-
lations. As such, accurate and timely diagnosis are paramount 
to patients’ well-being as well as their future treatment and 
life planning [1–4]. To this end, magnetic resonance imaging  
(MRI) is the primary vehicle of radiologic diagnosis for these 
patients [3, 4, 7–10]. For neurologist and neuroimmunolo-
gists, the modification of the existing McDonald criteria from 
the 2010 version to the 2017 version provided an enhanced 
role of MRI to provide early diagnosis of MS [3, 4]. Unfortu-
nately, noise in MRI images can mislead diagnosis of subtle 
MS lesions which may be as small as 3 mm [4–6]. Artifact 
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is considered a general term which incorporates inherent and 
extrinsic aberrations in the resultant image which includes 
noise, a signal that is additive to the patient’s anatomic scan 
and may be due to the MRI, the coil, the patient’s clothing, or  
the postprocessing steps. Inherent noise such as Gaussian, ther-
mal, and Rician noise as well as motion artifact can produce 
perceived increased signal most noticeable in the spinal cord 
given its smaller relative diameter compared to intracranial 
structures [5]. This is an important point as spinal lesions are 
more specific for MS diagnosis than intracranial lesions [4]; 
therefore, denoising algorithms have the potential to provide 
improved diagnostic accuracy and resultant planning.

Related Works

MRI Denoising

Denoising techniques have continued to evolve from domain 
space filters to modern deep learning algorithms [11–14]. Spa-
tial domain filters such as Gaussian blur [15], non-local means 
filtering (NLM) [16, 17], median filters, et cetera provide a low 
computational cost, but at the expense of signal to noise ratio 
resulting in a decrease in diagnostic quality of images. Domain 
transform filters, such as wavelet transform denoising [18] can 
be beneficial in maintaining spatial resolution in MRI; however, 
there needs to be an existing knowledge of the noise present in 
the image. Combinations of these filters known as fast bilat-
eral filters [19] can maintain edge features and can serve as 
a viable solution. Linear time-invariant filters such as Weiner 
filters [20] can provide suitable, low-cost denoising based 
upon a stochastic noise and signal estimations. Recent stud-
ies have demonstrated that single value decomposition (SVD) 
algorithms can provide benefit in simulated noise removal for 
MR images whereas spatially adaptive NLM filters provided 
superior structural similarity to original noisy images [11, 14, 
16, 21]. With the technological progression of deep learning 
models, several studies have shown the superior denoising per-
formance of pretrained CNNs such as ResNet (Residual Net-
work), autoencoders, and generative models [22–26].

While these algorithms have demonstrated objective 
improvement in medical image quality, there are also sev-
eral drawbacks that make clinical implementation difficult 
[22]. The majority of literature involving traditional filtering 
methods (no deep learning) used simulated noise which can 
be rather uniform in distribution, unlike real noise created by 
the patient or scanner. Deep learning models have significant 
drawbacks to practical use as (1) they must be pretrained, (2) 
the computational complexity can be an obstacle for fast utili-
zation in a global capacity, and (3) inherent bias can be intro-
duced to these models based upon the training population.

We seek to provide a fast, efficient denoising algorithm 
that is readily deployable without significant hardware or soft-
ware requirements based upon sparse representation theory.

Sparse Representation

Sparse representation in computer vision has continued to 
develop as an emerging technology based upon classical math-
ematical theories [27–29]. The driving concept is that a small 
representative matrix consisting of limited data points can 
be used to reconstruct an image, thus removing unnecessary 
information such as noise. These techniques have been used 
in various fields including security surveillance and national 
intelligence as well as image compression technology. More 
specifically, these algorithms provide a way to separate texture 
versus non-texture surfaces using what is known as a greedy 
pursuit algorithm, a broad category of optimization algorithms 
to provide the least number of building blocks necessary to rec-
reate a signal. Similar in purpose to stochastic gradient descent 
algorithms in machine learning, matching pursuit seeks to 
minimize the error of recreating the base image from an over-
complete dictionary, a list of multiple vectors either taken from 
a signal distribution such as discrete cosine transform, or DCT, 
or an inherent distribution from the noisy image itself. Orthog-
onal matching pursuit (OMP) requires the sparsest of solutions, 
in other words the least number of building blocks, in order 
to reconstruct the denoised original image. There have been a 
handful of studies [30–35] which have used dictionary learn-
ing or sparse representation models in conjunction with deep 
learning architectures; however, none of these studies utilized 
solely OMP as a lightweight denoising algorithm.

These preeminent works provided motivation for the 
algorithm given its performance not only in other fields, 
however its promise of providing the basic building blocks 
of an image in an environment of low computational com-
plexity. We feel that this is a significant innovation point 
in which we are able to provide an individualized denois-
ing algorithm without significant hardware or software 
investment that can provide improved diagnostic accuracy, 
clinical workflow, and hopefully, patient outcomes.

Organization of the rest of the paper is as such: The 
“Methods” section will provide insight into the proposed algo-
rithm. Sections titled “Experiment Setup” will describe how 
the images were denoised and their comparators to traditional 
denoising algorithms. The “Results” section will elucidate the 
findings and demonstrate qualitative comparisons. Finally, the 
“Discussion” section will provide discourse on the impact of 
the findings with a final synopsis in the “Conclusion” section.

Methods

Objective

The primary objective of the study was to develop a light-
weight denoising algorithm that would learn noise inherent 
to the input image and use this overcomplete dictionary of 
noisy patches in order to create A resultant denoised image 
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with improved clarity, and specific to clinical application, 
improved visualization of lesions or dissolution of artifact. 
Comparison to previously identified domain filtering and 
transform algorithms was then performed on the same noisy 
image with resultant peak signal to noise ratio (PSNR) and 
structural similarity index (SSIM) reported to provide com-
parison of denoising and edge preservation.

Performance comparison was made to Gaussian blur, NLM 
filtering, Wavelet denoising, Bilateral filtering, and Weiner 
filtering. Gaussian blur is of the lowest complexity and sim-
ply iterates a kernel over the image with an implied Gaussian 
distribution of noise. NLM filtering is a form of Low Rank 
Approximation (LRA) which uses a weighted nuclear norm 
minimization (WNNM) using spatial Gaussian weighting, 
usually providing greater edge preservation. Fast NLM was 
utilized to optimize computation time where sigma (expected 
noise distribution) was not provided based upon studies dem-
onstrating minimal PSNR increase at the cost of computa-
tional time. In contrast, wavelet transformation computed 
the estimated noise distribution and utilized the BayesShrink 
algorithm which assigns and individualized soft thresholding 
for each wavelet representation. Bilateral filtering involves the 
use of a normalization factor applied to the summation of an 
image’s space and range weights, in other words the impact 
of a pixel neighborhood and its edges’ minimum amplitudes, 

theoretically resulting in improved edge preservation. Finally, 
Weiner filtering using linear time-invariant (LTI) filtering in 
order to determine the transfer function of the image given a 
stationary noise, similar to a sinusoidal frequency filter.

Algorithm Architecture

Dictionary Learning was chosen over a generic DCT over-
complete dictionary to provide individualized denoising 
that is unique to the image. To create the dictionary, the 
noisy image was deconstructed into 8 × 8 overlapping, noisy 
patches. Least angle regression method (LARS) was used 
to develop an ideal dictionary based upon the noisy patches 
which solves for the lasso problem with the optimization 
objective over 500 iterations such that:

where n is the number of samples, y is the original noisy 
image, D is a dictionary which is learned from the given ref-
erence patches, w is the projected noiseless image, and � is a 
sparsity-inducing penalty term for the �

1
 norm. This process 

produces an overcomplete dictionary (Fig. 1) that is used to 
sparsify the representations.

���
1

2n
‖y − Dw‖2

2
+ �‖w‖1



1880	 Journal of Digital Imaging (2023) 36:1877–1884

1 3

Orthogonal Matching Pursuit (OMP) was selected to 
denoise the patches in order to impose the sparsest solution, 
wherein each row of the original image patch is compared 
to the corresponding dictionary column and only the corre-
lating, sparse atoms are kept as a projection of the denoised 
image. Images were subsequently reconstructed using the 
learned dictionary via OMP such that

where the dictionary is updated column-by-column.

� = argmin�‖�‖00s.t.
1

2
‖D� − y‖2

2
≤ �2

Experiment Setup

Patient Datasets

Fifty patients with a history of MS who underwent an MRI 
of the spine between the years 2018 and 2021 and whose 
scans demonstrated noise or artifact as reported by the Neu-
roradiologists were identified retrospectively in accordance 
with local IRB protocols. No patient was excluded based 
upon demographic or background; however, all patients 
identified were female, not by selection but by availability. 
Images were captured using a Toshiba 1.5 T and Siemens 
1.5 T MRI scanners. Anterior and posterior head coils were 
combined with the table coils to provide 4 to 5 channels 
based upon patient size.

Implementation

Native T2-weighted sequence image resolution of 256 × 256-
pixel slices from was maintained and saved as JPEG format 
from the DICOM files. Select 4 mm slices with the lesion 
in question were isolated for denoising. Two dimensional 
(2D) images were used as the current libraries limit SVD 
in 3D matrices. As the above, a separate dictionary was 
created beforehand to use as the overcomplete dictionary 
required for OMP favored over a generic DCT or equivalent 
dictionary which would not be specific to the images noise. 

In other words, this provides some pre-existing knowledge 
of the noise to optimize the denoising algorithm. As part of 
the overcomplete dictionary process, least angle regression 
(LARS) is used to identify salient features from each noisy 
patch in order to create the dictionary. Following OMP as 
described above, the denoised patches are then reconstructed 
without overlap or compression in order to recreate the origi-
nal resolution of 256 × 256.

Results

Analysis of Denoised Images and Similarity

Similar to findings in the literature review, Wavelet denois-
ing demonstrated superior PSNR compared to other 
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traditional filtering mechanisms but with lower, inconsist-
ent SSIM (0.94 ± 0.01) which was similar to Gaussian Blur 
(0.94 ± 0.02); however, OMP denoising maintained signifi-
cantly improved SSIM over all algorithms (0.99 ± 0.01). Both 
NLM and OMP demonstrated increased PSNR in comparison 
to the other algorithms with the former demonstrating a non-
significant increase in PSNR over OMP (p = 0.464). Samples 
of the denoising algorithms are shown with two cases of sus-
pected artifact and two cases of suspected lesions (Fig. 2) 
with their respective performances (Table 1).

Discussion

Comparison to previous studies demonstrated superior 
performance of the OMP denoising algorithm in terms of 
denoising and similarity to the original image in terms of 
edge preservation. While the NLM algorithm demonstrated 
previously documented edge preservation and thus improved 
SSIM, OMP denoising provided greater edge preservation 

and general semblance to the original image. This is an 
important quantitative aspect to consider in MRI which has 
inherently lower contrast resolution than CT (Table 1).

As expected, Gaussian blur demonstrated the lowest 
performance as it is a low complexity filter assuming a 
normal distribution of noise. Wavelet transformation dem-
onstrated expected superior PSNR, however, many images 
lost edge detail resulting in a wide variation in SSIM, often 
well below the OMP algorithm. Bilateral and Wiener fil-
ters demonstrated improved edge preservation as expected 
with the bilateral filter extracting slightly more noise than 
its counterpart (Table 2).

OMP denoising demonstrates a lean, individualized 
denoising algorithm that does not require pretraining. 
Wavelet denoising was the only traditional comparator that 
consistently outperformed OMP in PSNR but with much 
lower SSIM. Spatial resolution is already limited in MRI 
in comparison to CT, therefore, any loss of fine detail may 
impact diagnostic potential of the image despite increased 
pixel quality.

The OMP algorithm’s performance in comparison to 
more advanced deep learning models was beyond the scope 
of this study. These convolutional and generative advanced 
models may outperform OMP; however, the computational 
cost and setup are significantly higher. Given the lightweight 
nature of the OMP denoising algorithm, it could be read-
ily deployed within a Docker container which may be able 
to integrate easily with PACS versus existing as an inlaid 
sequence or filter within the Imaging Enterprise system.

Given these benefits, there are still several limitations to 
this algorithm. Despite the improved SSIM, there is still a 
perceived generalized blurring that occurs with the denoised 
image that was readily identified by the neuroradiologists in 
the study. An additional technical limitation is the current 
ability of these image processing libraries to evaluate only 
two-dimensional images and matrices. Further evaluation 
with 3D models and volumes may provide greater transla-
tion to medical imaging which is typically volumetric in 
nature. Additionally, this small cohort of patients from a 
single institution may not demonstrate the full potential of 
the algorithm’s ability to denoise images. Further evaluation 
with the larger cohort is warranted.

Fig. 1   Representative display of an overcomplete dictionary from noisy 
patches. A matrix of vectors with more representative columns than rows 
is created using a modified least angle regression algorithm (LARS) 
which serves as an individualized “noise map” for the subsequent 
Orthogonal Matching Pursuit (OMP) denoising algorithm

Table 1   Performance comparison of Fig. 2 examples

Gaussian
blur (k = 3)

Nonlocal
means

Wavelet
(� = 0.1)

Bilateral
diffusion

Weiner
filtering

OMP
denoise

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Artifact 1 31.8 0.93 37.7 0.97 62.7 0.95 33.8 0.92 35.3 0.96 38.3 0.99
Artifact 2 27.3 0.89 35.5 0.93 46.7 0.99 38.7 0.88 30.7 0.91 34.8 0.98
Lesion 1 33.6 0.94 38.1 0.95 57.4 0.78 34.5 0.89 35.6 0.96 38.8 0.99
Lesion 2 30.6 0.96 40.8 0.98 53.7 0.98 35.0 0.96 35.0 0.97 38.3 0.99
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Fig. 2   Denoising Examples with 
Compared Algorithms. Sagittal 
T2-weighted images of the tho-
racic spine demonstrating signal 
abnormalities of the spinal cord 
which were initially reported 
as artifact (a and b) versus true 
lesion (c and d). a Suspected 
Artifact #1, b Suspected Artifact 
#2, c Suspected Lesion #1, 
d Suspected Lesion #2
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Current efforts include utilization of containerizing the 
algorithm which has been created but not yet implemented 
within a PACS system. Once deployed within a clinical 
environment, further research in a prospective manner is 
planned for further characterization of not only the quanti-
tative improvement in image quality, but the improved clini-
cal performance and workflow optimization with resultant 
patient outcomes.

Conclusion

Our study has provided a glimpse at a unique, individualized, 
lightweight denoising algorithm which was superior with 
a consistent SSIM when compared to traditional filtering 
mechanisms in the study. While wavelet denoising provided 
significant PSNR in most cases, the SSIM was widely vari-
able which may impact consistent diagnostic accuracy. OMP 
denoising of medical images may provide enhanced benefits 
to the Neurologist and Radiologist, workflow optimization of 
both parties, and hopefully the improved treatment outcomes 
of patients who suffer from MS. Continued work within the 
clinical environment is underway to experimentally test the 
utility of this algorithm in real-world Imaging Enterprises.
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