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Abstract
The existing deep learning-based denoising methods predicting standard-dose PET images (S-PET) from the low-dose 
versions (L-PET) solely rely on a single-dose level of PET images as the input of deep learning network. In this work, we 
exploited the prior knowledge in the form of multiple low-dose levels of PET images to estimate the S-PET images. To this 
end, a high-resolution ResNet architecture was utilized to predict S-PET images from 6 to 4% L-PET images. For the 6% 
L-PET imaging, two models were developed; the first and second models were trained using a single input of 6% L-PET 
and three inputs of 6%, 4%, and 2% L-PET as input to predict S-PET images, respectively. Similarly, for 4% L-PET imag-
ing, a model was trained using a single input of 4% low-dose data, and a three-channel model was developed getting 4%, 
3%, and 2% L-PET images. The performance of the four models was evaluated using structural similarity index (SSI), peak 
signal-to-noise ratio (PSNR), and root mean square error (RMSE) within the entire head regions and malignant lesions. The 
4% multi-input model led to improved SSI and PSNR and a significant decrease in RMSE by 22.22% and 25.42% within 
the entire head region and malignant lesions, respectively. Furthermore, the 4% multi-input network remarkably decreased 
the lesions’  SUVmean bias and  SUVmax bias by 64.58% and 37.12% comparing to single-input network. In addition, the 6% 
multi-input network decreased the RMSE within the entire head region, within the lesions, lesions’  SUVmean bias, and  SUVmax 
bias by 37.5%, 39.58%, 86.99%, and 45.60%, respectively. This study demonstrated the significant benefits of using prior 
knowledge in the form of multiple L-PET images to predict S-PET images.
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Introduction

Positron emission tomography (PET) imaging is widely used 
as an essential tool for many clinical applications such as 
cancer diagnosis, tumor detection, evaluation of the lesion 
malignancy, staging of diseases, and treatment follow-up 
[1, 2]. Injection of a standard dose of radioactive tracer is 

normally required to achieve high-quality PET images in 
clinical settings. Though injection of high doses of radiop-
harmaceutical reduces the statistical noise and consequently 
leads to a better-quality PET image, it raises concerns due 
to the increased risk of radiation exposure to the patients 
and healthcare providers [3–5]. On the other hand, using a 
reduced dose of radioactive tracer would result in quality 
degradation in PET images due to the increased noise levels 
and loss of signal (low signal-to-noise ratio (SNR)) [6–8].

To address this issue, many efforts have been made 
to improve the quality of low-dose PET (L-PET) images 
through application of iterative reconstruction algorithms 
[9–12], image filtering and post-processing [13, 14], 
and machine learning (ML) methods [4, 15]. In iterative 
reconstruction algorithms, penalized reconstruction ker-
nels and/or prior knowledge from the anatomical images 
(MR sequences) are exploited to regularize and/or guide 
PET image reconstruction to suppress the excessive noise 
induced by the reduce injected dose [12, 16]. There are two 
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categories of post-reconstruction image denoising including 
image denoising techniques in the spatial domain and trans-
form domain [13, 17]. These approaches may suffer from 
some drawbacks such as generating artifacts and/or pseudo 
signals, over smoothing, hallucinated structures, and high 
computational time. To address these issues, deep learning 
(DL) methods, as a special type of machine learning meth-
ods, have been dedicatedly developed in which a relation-
ship between L-PET images and standard-dose PET (S-PET) 
images is learned to predict S-PET images from their low-
dose counterparts [7, 18, 19]. Regarding the extraordinary 
performance of the deep learning methods [18], a number of 
deep learning-based solutions have been proposed for esti-
mation of the high-quality PET from the low-dose versions 
with or without aid of anatomical images [20, 21].

Xu et al. [22] employed a U-Net model to predict S-PET 
images from 0.5% L-PET/MR images. This model exhibited 
superior performance in terms of noise suppression and sig-
nal recovery bias compared to conventional methods such 
as non-local means (NLM), block-matching and 3D filter-
ing (BM3D), and auto-context network (AC-Net). Relying 
on the generative adversarial network (GAN), Wang et al. 
[23] introduced a 3D conditional GAN and compared it with 
2D conditional GAN models, and some previously utilized 
approaches such as mapping-based sparse presentation 
method (m-SR), semi-supervised tripled dictionary learning 
method (t-DL), and convolutional neural networks (CNN). 
The GAN model, implemented in 3D mode, outperformed 
the aforementioned denoising approaches. Furthermore, Lei 
et al. [24] proposed a cycle-consistent GAN to estimate high-
quality S-PET images from L-PET images (1/8th of S-PET). 
The results of this study showed a significant decrease in 
mean error (ME) values and a remarkable increase in PSNRs 
when using the cycle GAN model compared to L-PET and 
S-PET predicted by U-Net and conventional GAN models. 
Besides, Chen et al. [25] implemented a network similar to 
the model proposed by Xu et al. [22] to predict S-PET from 
a combination of L-PET (1% of S-PET) and MR images 
as well as L-PET alone. They claimed that the synthesized 
images generated from the combination of L-PET and MR 
bear higher image quality and lower SUV bias compared to 
the L-PET-alone model. All the above-mentioned studies 
merely consider the single-dose level of low-dose PET data 
as the input into the deep learning-based neural network, 
and they did not exploit the additional/auxiliary informa-
tion that could be obtained from using multiple dose level 
of L-PET images (lower-dose levels of L-PET in addition to 
the original L-PET images).

The deep learning-based denoising approaches solely 
rely on a single-dose level of L-PET images as the input 
of models to predict the S-PET images. Given the PET raw 
data, any low-dose versions of the PET data could be gener-
ated. For instance, given a low-dose imaging at 10% of the 

standard dose, lower-dose levels of the current PET data, 
such as 8%, 6%, and 4%, could easily be generated/recon-
structed from the 10% low-dose data. Due to the stochastic 
nature of PET acquisition, any of these low-dose versions of 
the PET data would bear complementary/additional infor-
mation regarding the underlying signal in the standard PET 
image. In other words, all these lower-dose versions of the 
PET data contain the same or similar signals contaminated 
with different noise levels and/or distributions. In this light, 
lower-dose PET images could provide prior and/or addi-
tional knowledge for the prediction of the standard-dose 
PET images. This prior and/or additional knowledge could 
be exploited in a deep learning-based denoising framework 
to enhance the quality of standard dose prediction. To the 
best of our knowledge, this is the first study employing mul-
tiple low-dose levels of PET images as prior knowledge to 
develop a deep learning-based denoising model.

In this study, we investigate the benefits of utilizing addi-
tional information in the form of multiple low-dose PET 
images in a deep learning model. In this regard, we use 6% 
L-PET imaging data as the input of deep learning model, 
wherein lower-dose PET images with 4% and 2% of standard 
dose levels (extracted from the raw data of the 6% low-dose 
PET data) were employed as additional information.

Materials and Methods

Data Acquisition

This study was conducted on PET/CT brain images from 
140 patients with head and neck malignant lesions (68 males 
and 72 females, 71 ± 9 years, mean age ± standard deviation 
(SD)) (100 subjects for training and 40 subjects for evalua-
tion) acquired on a Biograph-6 scanner (Siemens Healthcare, 
Erlangen, Germany) with a standard dose of 210 ± 8 MBq 
of 18F-FDG. PET images were acquired for an acquisition 
time of 20 min, about 40 min after the injection. The PET 
raw data was registered in list-mode format, and then 6% 
low-dose PET data were extracted from the standard data. 
Then, lower-dose PET data, including 4%, 3%, and 2%, were 
generated from the 6% low-dose data. The low-dose data 
with the aforementioned percentages were reconstructed 
using ordered subsets-expectation maximization (OSEM) 
algorithm with 4 iterations and 18 subsets. The entire PET 
images were normalized to a range of between 0 and about 
1 using a fixed normalization factor for the entire dataset.

The aim of low-dose and/or fast PET imaging is to 
reduce patient-absorbed dose in PET imaging (for instance 
in multiple follow-up PET scans) or acquire high-quality 
PET images in fast or short-time PET imaging (for instance 
in dynamic PET scans). To achieve clinically valid low-
dose and/or fast PET imaging, the signal degradation due 
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to low-count statistics should be retrievable to identify 
underlying signals and suppress statistical noise. In this 
regard, injected dose reduction in low-dose PET imaging 
or acquisition time reduction in fast PET imaging should 
not be too extreme that hinder/impair proper signal dis-
crimination from the noise. Depending on the injected 
dose and the PET scanner sensitivity, low-dose or fast PET 
imaging could be conducted down to 1/30th of normal/
standard PET imaging. In this light, noise suppression in 
6% and 4% low-dose PET imaging was considered in this 
work that would greatly reduce the patient dose (equiva-
lent to 20 × faster PET imaging), while the increased noise 
levels would not hinder the identification of the underly-
ing signals. Beyond these levels, the quality of the PET 
images would be severely degraded (non-retrievable) with 
impaired clinical value.

Deep Neural Network Architecture

We adopted NiftyNet, an open-source convolutional neu-
ral networks (CNNs) platform for deep learning solutions 
in Python environment, to estimate S-PET images from 
L-PET images. The S-PET prediction was carried out 
using a high-resolution ResNet (HighResNet) model. This 
network consists of nineteen 3 × 3 × 3 convolution layers 
and one final 1 × 1 × 1 convolution layer. In the first seven 
layers with 16 kernels, the low-level features of the images 
such as corners and edges are extracted. The twelve sub-
sequent convolution layers with 32 and 64 kernels and 
the final layer with 160 kernels are designed to capture 
medium and high-level features. Four different models 
were separately developed to compare/investigate the ben-
efits of employing the multiple low-dose images as the 
additional information to the denoising network. The deep 
learning models were assessed to predict the standard-dose 
PET images from 6 to 4% low-dose data separately. For 
the 6% low-dose level, first, a model with a single input of 
6% was first developed. Then, this model was compared 
with the model with 3-input channels getting 6%, 4%, and 
2% low-dose data as input. In fact, the reference or out-
put of these two models was identical (standard-dose PET 
images); only the model was once developed with a single-
input channel (6% low dose) and once with three-input 
channels for 6%, 4%, and 2% low-dose data. Similarly, for 
4% low-dose data, first, a model with only a single input 
for 4% low-dose data was developed. Then, the model was 
compared with a model with 3-input channels getting 4%, 
3%, and 2% as input. The results for 4% and 6% low-dose 
PET images (each including single- and three-input mod-
els) were separately reported in two distinct tables. The 
same standard-dose PET images were considered as refer-
ence for the training of these four models.

The Details of Implementation

The training of the four models was performed using a 
L2-norm loss function (the best performance was observed 
with this loss function) with Adam optimizer and leaky 
ReLU as activation function. The models were developed 
in a 2-dimensional mode with batch size of 20, weight decay 
of  10−4, and max iteration of  104. The training was continued 
to reach the plateau of the training loss. Five percent of the 
dataset was considered as the evaluation set within the train-
ing process. No significant overfitting was observed during 
the training of the denoising models. The starting learning 
rate was set at 0.1 which was multiplied by 0.05 every 100 
iterations following the recommendation by [26].

Evaluation Strategy

To evaluate the prediction performance of the different 
denoising models and the benefits of applying the prior 
knowledge in the form of multiple L-PET images, we uti-
lized five quantitative metrics including structural similar-
ity index (SSI), peak signal-to-noise ratio (PSNR), and root 
mean square error (RMSE) based on the standard uptake 
value (SUV) within the entire head region and the malig-
nant lesions. Manual segmentation of the lesions, drawn by 
specialist, in the test dataset is available; thus, quantitative 
metrics were calculated separately for the malignant lesions. 
The lesions were segmented by nuclear medicine specialists 
as a part of the clinical routine for diagnosis, lesion assess-
ment, and treatment. The lesion contouring was performed 
on PET images; however, the structures in the CT images 
were considered within lesion identification. In addition to 
the abovementioned metrics, we calculated the bias of mean 
SUV  (SUVmean bias) and max SUV  (SUVmax bias) on the 
predicated S-PET images versus the reference S-PET images 
for the malignant lesions.

Results

In order to visually compare the quality of the predicted PET 
images, sagittal views of the S-PET images predicted by the 
single-input and the multi-input networks together with the 
ground truth S-PET image, the corresponding CT image, 
and the L-PET images of a representative patient are shown 
in Figs. 1 and 2. The increased levels of signal-to-noise ratio 
(SNR) were observed when using multi-input models com-
pared to the single-input models.

To quantitatively assess the quality of predicted PET 
images, SSI, PSNR, and RMSE metrics were calculated 
within the entire head region as well as the malignant 
lesions. Furthermore, the SUV bias for the lesions were 
measured on the S-PET images predicted from single-input 
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and multi-input models versus the ground-truth S-PET 
images. Among the 140 patient datasets, 40 cases were not 
used within the training/development of the models, and 
they were regarded as the external dataset for the evaluation 
of different models. Table 1 summarizes the average and 
the standard deviation of the abovementioned metrics cal-
culated across 40 patients in the external test dataset for 4% 
low-dose PET imaging, wherein 3% and 2% low-dose PET 
data were used as prior knowledge. Besides, Table 2 reports 
the same metrics calculated for low-dose PET imaging with 
6% of S-PET data. The differences between the predicted 
S-PET images by the single-input and multi-input models 
were assessed with the paired t-test analysis (considering 
P-values of smaller than 0.05 statistically significant). The 
paired t-test analysis demonstrated statistically significant 

differences between single-input and multi-input models and 
the benefits of employing the prior knowledge in the form 
of lower-dose PET images.

Moreover, to meticulously investigate the performance of 
the models, the boxplots of RMSE and  SUVmean bias within 
the malignant lesions are presented in Figs. 3 and 4.

Discussion

In this study, we set out to examine the benefits of employ-
ing the prior knowledge in the form of lower-dose PET 
images for the task of normal PET prediction from low-dose 
PET data. In this regard, the quality of the predicted S-PET 
images from the L-PET images at different 4% and 6% dose 

Fig. 1  Sagittal views of a 
4% L-PET image, b ground-
truth S-PET image, c S-PET 
predicted by the single-input 
network (4% L-PET image), d 
S-PET predicted by the multi-
input network (3% and 2% 
L-PET images as prior knowl-
edge, in addition to 4% L-PET 
image), and e CT image
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levels of the standard dose was assessed using two models 
with single-input and multi-input architectures. As shown in 
Figs. 1 and 2, the quality of predicted PET image improved 
for both 6% and 4% low-dose imaging when multi-input 

models were employed getting lower-dose PET images as 
complementary knowledge. Regarding Figs. 1 and 2, the 
multi-input networks resulted in better image quality com-
pared to single-input networks.

Fig. 2  Sagittal views of a 
6% L-PET image, b ground-
truth S-PET image, c S-PET 
predicted by the single-input 
network (6% L-PET image), d 
S-PET predicted by the multi-
input network (4% and 2% 
L-PET images as prior knowl-
edge, in addition to 6% L-PET 
image), and e CT image

Table 1  Quantitative metrics calculated for the S-PET images predicted by the single-input (4% L-PET image) and multi-input (4%, 3%, and 2% 
L-PET images) deep learning models. P-values are calculated between the single-input and multi-input denoising models

L-PET (4%) Single-input (4%) Multi-input (4%, 3%, 2%) P-value

PSNR ± SD 29.59 ± 1.26 39.73 ± 2.75 41.87 ± 2.81 0.01
SSI ± SD 0.86 ± 0.033 0.97 ± 0.005 0.98 ± 0.003 0.04
RMSE ± SD (head) 0.30 ± 0.04 0.09 ± 0.03 0.07 ± 0.02 0.01
RMSE ± SD (lesion) 1.19 ± 0.23 0.59 ± 0.24 0.44 ± 0.18  < 0.01
SUVmean bias ± SD(%) (lesion)  − 0.01 ± 0.93  − 1.92 ± 1.53 −0.68 ± 0.77  < 0.01
SUVmax bias ± SD(%) (lesion) 20.20 ± 5.29  − 2.29 ± 6.02 1.44 ± 3.95  < 0.01
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The analysis of the results in Table  1 indicates the 
superiority of the network trained with multi-input L-PET 
images over the single input. The results in Table 1 dem-
onstrated that the 4% multi-input network (using 2% and 
3% L-PET as the input in addition to 4% L-PET) would 
lead to a significant decrease in RMSE by 22.22% (from 
0.09 to 0.07) and by 25.42% (from 0.59 to 0.44) within 
the entire head region and lesions, respectively, compared 
to the single-input model (using only 4% L-PET images 

as input). Furthermore, the network trained with multi-
ple L-PET images produces higher values for the SSI and 
PSNR metrics. It should be emphasized that utilizing prior 
knowledge in the form of multi-input network remarkably 
decreases the  SUVmean bias and  SUVmax bias within the 
lesions by 64.58% (from 1.92 to 0.68%) and by 37.12% 
(from 2.29 to 1.44%), respectively.

Regarding Table 2, a similar trend was observed in the anal-
ysis of the predicted image by the network trained with 6% 

Table 2  Quantitative metrics 
calculated for the S-PET images 
predicted by the single-input 
(6% L-PET image) and multi-
input (6%, 4%, and 2% L-PET 
images) deep learning models. 
P-values are calculated between 
the single-input and multi-input 
denoising models

L-PET (6%) Single-input (6%) Multi-input 
(6%, 4%, 2%)

P-value

PSNR ± SD 35.33 ± 1.27 41.44 ± 2.90 44.89 ± 2.89 0.01
SSI ± SD 0.93 ± 0.016 0.98 ± 0.002 0.99 ± 0.001 0.04
RMSE ± SD (head) 0.15 ± 0.02 0.08 ± 0.02 0.05 ± 0.02  < 0.01
RMSE ± SD (lesion) 0.61 ± 0.11 0.48 ± 0.20 0.29 ± 0.13  < 0.01
SUVmean bias ± SD(%) (lesion) 0.09 ± 0.45  − 5.46 ± 0.65 −0.71 ± 0.49  < 0.01
SUVmax bias ± SD(%) (lesion) 9.08 ± 1.34  − 4.43 ± 2.05 2.41 ± 1.55  < 0.01

Fig. 3  Boxplots of  SUVmean 
bias and RMSE within the 
lesions for the different models 
and 4% L-PET
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L-PET images. SSI and RMSE metrics significantly improved 
with multi-input network (taking 4% and 2% L-PETs in addi-
tion to 6% L-PET). In addition, utilizing multi-input network 
reduced RMSE within the head region, RMSE within the 
malignant lesions, and  SUVmean bias in the lesions by 37.5%, 
39.58%, and 86.99%, respectively. Furthermore, using multi-
input model led to a noticeable decrease in the bias of  SUVmax 
by 45.60% (from 4.43 to 2.41%).

Figures  3 and 4 compared the distributions of the 
 SUVmean bias and RMSE within the lesions for both single-
input and multi-input models. Quantitative results in these 
figures demonstrate the superior performance of the multi-
input network over the single-input network. Regarding 
Fig. 3, the median of RMSE and  SUVmean bias for single-
input and multi-input networks within the lesion are 0.55 and 
0.42 (SUV) (for RMSE) and − 2.04 and − 0.56 (for  SUVmean 
bias), respectively. Regarding Fig. 4, the multi-input network 
(with three-input channels for 6%, 4%, and 2% low-dose PET 
images) yielded a median RMSE of 0.25 (SUV)  SUVmean 

bias of − 0.68, compared to 0.46 and − 5.39 achieved by the 
single-input network. In addition, both Figs. 3 and 4 indi-
cated higher variation of errors in the single-input models 
in comparison with the multi-input models.

To determine the statistical significance of the differences 
between these metrics, P-values calculated for  SUVmean bias, 
 SUVmax bias, and RMSE (within the lesion) demonstrated 
significant improvement achieved through employing low-
dose prior knowledge in the denoising models.

The primary aim of this work was to investigate the benefits 
of employing lower-dose PET data in the denoising models for 
prediction of the standard PET images. Owing to the stochastic 
nature of PET acquisition and signal formation, reconstruction 
of the PET data at different low-dose (or low-count) levels 
would provide different distributions of noise and presenta-
tions of signal-to-noise ratio. Since the underlying signals/
uptake patterns in these images are the same, and they are 
contaminated with different noise levels and/or distribu-
tions, they would provide valuable knowledge to the model to 

Fig. 4  Boxplots of  SUVmean 
bias and RMSE within the 
lesion regions for the different 
models and 6% L-PET
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distinguish between the noise and underlying signals. The ben-
efits of lower-dose prior knowledge were demonstrated for two 
low-dose levels of 6% and 4%, wherein significant improve-
ment was observed in both models. The proposed framework 
could be used in any denoising models where the raw PET 
(or SPECT) data are available, and the image reconstruction 
could be performed with different count/dose levels. Moreover, 
this framework is applicable to the models implemented in the 
sinogram or projection domain [7, 27–29].

Regarding the limitation of this work, it should be noticed 
that the data utilized in this work were obtained from a Bio-
graph 6 PET/CT scanner which does not have time-of-flight 
(TOF) imaging capability. TOF imaging would result in an 
enhanced signal-to-noise ratio. In this light, in modern PET 
scanners, lower levels of low-dose imaging could be con-
ducted with similar image quality. Thus, the results presented 
in this work could be valid for this PET scanner, and further 
investigation is required for TOF PET imaging. Moreover, 
previous studies have shown that the incorporation of struc-
tural information (for instance, in the form of MR images) 
would improve the quality and quantitative accuracy of low-
dose imaging [25]. In this work, no structural information 
was considered within the model development which could 
further improve the outcome of these models. Moreover, only 
a ResNet model was employed to train the different models; 
however, novel deep learning architectures such as GAN mod-
els may lead to improved outcomes.

Conclusion

In this paper, we applied prior knowledge/additional infor-
mation to the deep learning-based denoising models via 
utilizing multiple dose levels of L-PET data as the extra 
input channels to network to estimate the S-PET images. 
The quantitative evaluation of the proposed framework dem-
onstrated the benefits of employing lower-dose PET data 
in the denoising models for prediction of the standard PET 
images. The proposed framework was examined for 6% and 
4% low-dose imaging levels. This study recommends using 
of multiple levels of low-dose PET imaging as prior knowl-
edge to predict the standard-dose PET images.
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