Table 2.
Parameter details of ICNN
| Layer number | Layer type | Input | Kernel size | Activation function | Output |
|---|---|---|---|---|---|
| 1 | Convolution | 33 × 33 × 4 | 3 × 3 | - | 31 × 31 × 32 |
| 2 | Activation | 31 × 31 × 32 | - | ReLU | 31 × 31 × 32 |
| 3 | Convolution | 31 × 31 × 32 | 3 × 3 | 29 × 29 × 32 | |
| 4 | Activation | 29 × 29 × 32 | - | ReLU | 29 × 29 × 32 |
| 5 | Max-pooling | 29 × 29 × 32 | 3 × 3 | 14 × 14 × 32 | |
| 6 | Convolution | 14 × 14 × 32 | 3 × 3 | 12 × 12 × 64 | |
| 7 | Activation | 12 × 12 × 64 | - | ReLU | 12 × 12 × 128 |
| 8 | Convolution | 12 × 12 × 128 | 3 × 3 | 10 × 10 × 64 | |
| 9 | Activation | 10 × 10 × 64 | - | ReLU | 10 × 10 × 64 |
| 10 | Max-pooling | 10 × 10 × 64 | 2 × 2 | 5 × 5 × 64 | |
| 11 | convolution | 5 × 5(64 + 22) | 3 × 3 | 3 × 3 × 512 | |
| 12 | activation | 3 × 3 × 512 | - | ReLU | 3 × 3 × 512 |
| 13 | Convolution | 3 × 3 × 512 | 3 × 3 | 1 × 1 × 12 | |
| 14 | Activation | 1 × 1 × 12 | - | ReLU | 1 × 1 × 12 |
| 15 | Fully connected | 1 × 1 × 12 | - | Softma × | - |
| 16 | Output | - | - | - | 2 |