Table 4.
Evaluation of trained models.
| Model | Train | Test | ||||
|---|---|---|---|---|---|---|
| RMSE | MAE | MAPE | RMSE | MAE | MAPE | |
| LightGBM | 0.1914 ± 0.0014 | 0.1461 ± 0.0013 | 0.9237 ± 0.0285 | 0.1900 ± 0.0124 | 0.1471 ± 0.0044 | 0.8027 ± 0.064 |
| XGBoost | 0.1752 ± 0.0011 | 0.1322 ± 0.0012 | 1.3979 ± 0.052 | 0.1977 ± 0.0065 | 0.1485 ± 0.0042 | 1.5565 ± 0.1633 |
| CatBoost | 0.1787 ± 0.0013 | 0.1346 ± 0.0011 | 1.3992 ± 0.0525 | 0.1991 ± 0.0095 | 0.1473 ± 0.0043 | 1.5212 ± 0.1643 |
| AdaBoost | 0.1945 ± 0.0017 | 0.1461 ± 0.0013 | 1.5437 ± 0.0476 | 0.1957 ± 0.0073 | 0.1504 ± 0.0030 | 1.5510 ± 0.1684 |
| SVR | 0.1828 ± 0.0091 | 0.1386 ± 0.0045 | 1.2952 ± 0.0590 | 0.1954 ± 0.0073 | 0.1475 ± 0.0048 | 1.6571 ± 0.1212 |
| MLP | 0.1961 ± 0.0017 | 0.1433 ± 0.0016 | 0.7828 ± 0.0245 | 0.1975 ± 0.0075 | 0.1499 ± 0.0075 | 0.9246 ± 0.1048 |
| MLR | 0.1806 ± 0.0076 | 0.1409 ± 0.0057 | 1.4872 ± 0.1653 | 0.1955 ± 0.0075 | 0.1479 ± 0.0058 | 1.6607 ± 0.3333 |
The mean ± standard deviation was reported.