Skip to main content
. 2023 Aug 7;13:12775. doi: 10.1038/s41598-023-39724-z

Table 4.

Evaluation of trained models.

Model Train Test
RMSE MAE MAPE RMSE MAE MAPE
LightGBM 0.1914 ± 0.0014 0.1461 ± 0.0013 0.9237 ± 0.0285 0.1900 ± 0.0124 0.1471 ± 0.0044 0.8027 ± 0.064
XGBoost 0.1752 ± 0.0011 0.1322 ± 0.0012 1.3979 ± 0.052 0.1977 ± 0.0065 0.1485 ± 0.0042 1.5565 ± 0.1633
CatBoost 0.1787 ± 0.0013 0.1346 ± 0.0011 1.3992 ± 0.0525 0.1991 ± 0.0095 0.1473 ± 0.0043 1.5212 ± 0.1643
AdaBoost 0.1945 ± 0.0017 0.1461 ± 0.0013 1.5437 ± 0.0476 0.1957 ± 0.0073 0.1504 ± 0.0030 1.5510 ± 0.1684
SVR 0.1828 ± 0.0091 0.1386 ± 0.0045 1.2952 ± 0.0590 0.1954 ± 0.0073 0.1475 ± 0.0048 1.6571 ± 0.1212
MLP 0.1961 ± 0.0017 0.1433 ± 0.0016 0.7828 ± 0.0245 0.1975 ± 0.0075 0.1499 ± 0.0075 0.9246 ± 0.1048
MLR 0.1806 ± 0.0076 0.1409 ± 0.0057 1.4872 ± 0.1653 0.1955 ± 0.0075 0.1479 ± 0.0058 1.6607 ± 0.3333

The mean ± standard deviation was reported.