Skip to main content
. 2023 Apr 14;36(4):1348–1363. doi: 10.1007/s10278-023-00820-1

Table 5.

The average values of 100 times classifying for testing data are shown. Results include the mean value of accuracy, AUC, sensitivity, specificity, precision, and F-score for three classes. Feature selection methods are shown in the first column, including NCA, MRMR, and LASSO. The best values of each evaluation parameter are bolded

Classifiers Accuracy AUC Sensitivity Specificity Precision F-score
NCA Cosine KNN 0.82 0.87 0.72 0.85 0.74 0.72
Fine KNN 0.84 0.83 0.75 0.87 0.78 0.76
Subspace KNN 0.80 0.84 0.69 0.84 0.74 0.69
Cross-entropy decision tree 0.76 0.75 0.61 0.82 0.61 0.60
RUSBoosted trees 0.78 0.76 0.66 0.84 0.66 0.65
Cubic SVM 0.75 0.80 0.62 0.81 0.65 0.60
Random forest 0.79 0.88 0.64 0.83 0.67 0.65
MRMR Cosine KNN 0.60 0.59 0.38 0.69 0.35 0.37
Fine KNN 0.61 0.57 0.40 0.70 0.39 0.39
Subspace KNN 0.61 0.56 0.39 0.68 0.37 0.37
Cross-entropy decision tree 0.64 0.68 0.44 0.72 0.45 0.44
RUSBoosted trees 0.65 0.62 0.48 0.74 0.47 0.46
Cubic SVM 0.63 0.57 0.45 0.72 0.42 0.42
Random forest 0.68 0.71 0.47 0.74 0.48 0.47
LASSO Cosine KNN 0.72 0.81 0.54 0.78 0.55 0.53
Fine KNN 0.75 0.69 0.58 0.80 0.60 0.59
Subspace KNN 0.75 0.74 0.57 0.79 0.61 0.58
Cross-entropy decision tree 0.75 0.76 0.63 0.81 0.63 0.62
RUSBoosted trees 0.77 0.80 0.65 0.83 0.65 0.64
Cubic SVM 0.73 0.74 0.56 0.79 0.57 0.55
Random forest 0.76 0.81 0.59 0.81 0.60 0.58