Table 5.
The average values of 100 times classifying for testing data are shown. Results include the mean value of accuracy, AUC, sensitivity, specificity, precision, and F-score for three classes. Feature selection methods are shown in the first column, including NCA, MRMR, and LASSO. The best values of each evaluation parameter are bolded
Classifiers | Accuracy | AUC | Sensitivity | Specificity | Precision | F-score | |
---|---|---|---|---|---|---|---|
NCA | Cosine KNN | 0.82 | 0.87 | 0.72 | 0.85 | 0.74 | 0.72 |
Fine KNN | 0.84 | 0.83 | 0.75 | 0.87 | 0.78 | 0.76 | |
Subspace KNN | 0.80 | 0.84 | 0.69 | 0.84 | 0.74 | 0.69 | |
Cross-entropy decision tree | 0.76 | 0.75 | 0.61 | 0.82 | 0.61 | 0.60 | |
RUSBoosted trees | 0.78 | 0.76 | 0.66 | 0.84 | 0.66 | 0.65 | |
Cubic SVM | 0.75 | 0.80 | 0.62 | 0.81 | 0.65 | 0.60 | |
Random forest | 0.79 | 0.88 | 0.64 | 0.83 | 0.67 | 0.65 | |
MRMR | Cosine KNN | 0.60 | 0.59 | 0.38 | 0.69 | 0.35 | 0.37 |
Fine KNN | 0.61 | 0.57 | 0.40 | 0.70 | 0.39 | 0.39 | |
Subspace KNN | 0.61 | 0.56 | 0.39 | 0.68 | 0.37 | 0.37 | |
Cross-entropy decision tree | 0.64 | 0.68 | 0.44 | 0.72 | 0.45 | 0.44 | |
RUSBoosted trees | 0.65 | 0.62 | 0.48 | 0.74 | 0.47 | 0.46 | |
Cubic SVM | 0.63 | 0.57 | 0.45 | 0.72 | 0.42 | 0.42 | |
Random forest | 0.68 | 0.71 | 0.47 | 0.74 | 0.48 | 0.47 | |
LASSO | Cosine KNN | 0.72 | 0.81 | 0.54 | 0.78 | 0.55 | 0.53 |
Fine KNN | 0.75 | 0.69 | 0.58 | 0.80 | 0.60 | 0.59 | |
Subspace KNN | 0.75 | 0.74 | 0.57 | 0.79 | 0.61 | 0.58 | |
Cross-entropy decision tree | 0.75 | 0.76 | 0.63 | 0.81 | 0.63 | 0.62 | |
RUSBoosted trees | 0.77 | 0.80 | 0.65 | 0.83 | 0.65 | 0.64 | |
Cubic SVM | 0.73 | 0.74 | 0.56 | 0.79 | 0.57 | 0.55 | |
Random forest | 0.76 | 0.81 | 0.59 | 0.81 | 0.60 | 0.58 |