Table 6.
The four best predictive models, all chosen by NCA feature selection. Accuracy, AUC, sensitivity, specificity, precision, and F-score are shown separately for each class. The best classifiers were the cosine KNN, fine KNN, subspace KNN, and random forest. The best performances for each class are shown in bold
Classifiers | Classes | Accuracy (mean ± SD) | AUC (mean ± SD) | Sensitivity (mean ± SD) | Specificity (mean ± SD) | Precision (mean ± SD) | F-score (mean ± SD) | |
---|---|---|---|---|---|---|---|---|
NCA | Cosine KNN | Class 1 | 0.74 ± 0.033 | 0.83 ± 0.083 | 0.76 ± 0.047 | 0.72 ± 0.041 | 0.71 ± 0.035 | 0.73 ± 0.036 |
Class 2 | 0.87 ± 0.023 | 0.92 ± 0.092 | 0.70 ± 0.067 | 0.92 ± 0.018 | 0.72 ± 0.052 | 0.71 ± 0.053 | ||
Class 3 | 0.84 ± 0.024 | 0.85 ± 0.085 | 0.69 ± 0.045 | 0.91 ± 0.028 | 0.78 ± 0.055 | 0.73 ± 0.039 | ||
Fine KNN | Class 1 | 0.79 ± 0.029 | 0.81 ± 0.080 | 0.82 ± 0.045 | 0.76 ± 0.039 | 0.75 ± 0.032 | 0.78 ± 0.031 | |
Class 2 | 0.86 ± 0.022 | 0.84 ± 0.084 | 0.77 ± 0.051 | 0.89 ± 0.027 | 0.68 ± 0.052 | 0.72 ± 0.038 | ||
Class 3 | 0.87 ± 0.021 | 0.83 ± 0.083 | 0.67 ± 0.052 | 0.97 ± 0.020 | 0.90 ± 0.054 | 0.77 ± 0.044 | ||
Subspace KNN | Class 1 | 0.72 ± 0.034 | 0.82 ± 0.081 | 0.79 ± 0.043 | 0.66 ± 0.053 | 0.67 ± 0.036 | 0.72 ± 0.032 | |
Class 2 | 0.84 ± 0.022 | 0.88 ± 0.088 | 0.70 ± 0.064 | 0.88 ± 0.020 | 0.63 ± 0.046 | 0.66 ± 0.047 | ||
Class 3 | 0.85 ± 0.026 | 0.83 ± 0.083 | 0.57 ± 0.073 | 0.97 ± 0.025 | 0.91 ± 0.078 | 0.69 ± 0.060 | ||
Random forest | Class 1 | 0.76 ± 0.037 | 0.89 ± 0.089 | 0.81 ± 0.051 | 0.71 ± 0.059 | 0.71 ± 0.043 | 0.75 ± 0.035 | |
Class 2 | 0.82 ± 0.037 | 0.90 ± 0.090 | 0.51 ± 0.012 | 0.91 ± 0.032 | 0.63 ± 0.010 | 0.56 ± 0.010 | ||
Class 3 | 0.78 ± 0.039 | 0.84 ± 0.084 | 0.60 ± 0.080 | 0.86 ± 0.046 | 0.66 ± 0.084 | 0.63 ± 0.066 |