Skip to main content
. 2023 Apr 14;36(4):1348–1363. doi: 10.1007/s10278-023-00820-1

Table 6.

The four best predictive models, all chosen by NCA feature selection. Accuracy, AUC, sensitivity, specificity, precision, and F-score are shown separately for each class. The best classifiers were the cosine KNN, fine KNN, subspace KNN, and random forest. The best performances for each class are shown in bold

Classifiers Classes Accuracy (mean ± SD) AUC (mean ± SD) Sensitivity (mean ± SD) Specificity (mean ± SD) Precision (mean ± SD) F-score (mean ± SD)
NCA Cosine KNN Class 1 0.74 ± 0.033 0.83 ± 0.083 0.76 ± 0.047 0.72 ± 0.041 0.71 ± 0.035 0.73 ± 0.036
Class 2 0.87 ± 0.023 0.92 ± 0.092 0.70 ± 0.067 0.92 ± 0.018 0.72 ± 0.052 0.71 ± 0.053
Class 3 0.84 ± 0.024 0.85 ± 0.085 0.69 ± 0.045 0.91 ± 0.028 0.78 ± 0.055 0.73 ± 0.039
Fine KNN Class 1 0.79 ± 0.029 0.81 ± 0.080 0.82 ± 0.045 0.76 ± 0.039 0.75 ± 0.032 0.78 ± 0.031
Class 2 0.86 ± 0.022 0.84 ± 0.084 0.77 ± 0.051 0.89 ± 0.027 0.68 ± 0.052 0.72 ± 0.038
Class 3 0.87 ± 0.021 0.83 ± 0.083 0.67 ± 0.052 0.97 ± 0.020 0.90 ± 0.054 0.77 ± 0.044
Subspace KNN Class 1 0.72 ± 0.034 0.82 ± 0.081 0.79 ± 0.043 0.66 ± 0.053 0.67 ± 0.036 0.72 ± 0.032
Class 2 0.84 ± 0.022 0.88 ± 0.088 0.70 ± 0.064 0.88 ± 0.020 0.63 ± 0.046 0.66 ± 0.047
Class 3 0.85 ± 0.026 0.83 ± 0.083 0.57 ± 0.073 0.97 ± 0.025 0.91 ± 0.078 0.69 ± 0.060
Random forest Class 1 0.76 ± 0.037 0.89 ± 0.089 0.81 ± 0.051 0.71 ± 0.059 0.71 ± 0.043 0.75 ± 0.035
Class 2 0.82 ± 0.037 0.90 ± 0.090 0.51 ± 0.012 0.91 ± 0.032 0.63 ± 0.010 0.56 ± 0.010
Class 3 0.78 ± 0.039 0.84 ± 0.084 0.60 ± 0.080 0.86 ± 0.046 0.66 ± 0.084 0.63 ± 0.066