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Abstract
We propose a deep learning approach to segment the skin lesion in dermoscopic images. The proposed network architec-
ture uses a pretrained EfficientNet model in the encoder and squeeze-and-excitation residual structures in the decoder. We 
applied this approach on the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion 
segmentation dataset. This benchmark dataset has been widely used in previous studies. We observed many inaccurate or 
noisy ground truth labels. To reduce noisy data, we manually sorted all ground truth labels into three categories — good, 
mildly noisy, and noisy labels. Furthermore, we investigated the effect of such noisy labels in training and test sets. Our test 
results show that the proposed method achieved Jaccard scores of 0.807 on the official ISIC 2017 test set and 0.832 on the 
curated ISIC 2017 test set, exhibiting better performance than previously reported methods. Furthermore, the experimental 
results showed that the noisy labels in the training set did not lower the segmentation performance. However, the noisy labels 
in the test set adversely affected the evaluation scores. We recommend that the noisy labels should be avoided in the test set 
in future studies for accurate evaluation of the segmentation algorithms.
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Introduction

An estimated 99,780 new cases of invasive melanoma and 
97,920 in situ melanoma will be diagnosed in 2022 in the 
USA [1]. Dermoscopy is an imaging modality to aid der-
matologists for the early detection of skin cancer and can 
improve diagnostic accuracy over clinical visual inspection 
by the experienced domain expert [2–4].

Computer vision techniques have improved appreciably 
in recent years [5–9] and have been successfully applied to 
many medical imaging problems [10–13]. In the skin cancer 
domain, deep learning techniques combined with dermoscopy 
have higher diagnostic accuracy than experienced derma-
tologists [10, 14–17]. Pathan et al. published a recent review 
detailing both handcrafted and deep learning (DL) techniques 
for computer-aided diagnosis of skin lesions [18]. Although 
deep learning eliminates a tedious feature engineering pro-
cess, recent studies show that the fusion of deep learning and 

handcrafted features can improve accuracy in skin cancer diag-
nosis [17, 19–22]. Handcrafted features are not as straightfor-
ward as the deep learning method, and they require a lesion 
border to define the region of interest. Accurate calculation of 
handcrafted lesion features depends upon correct detection of 
the lesion border [22]. Thus, lesion segmentation is an impor-
tant step in computer-aided diagnosis of skin cancer.

Traditional image processing methods were applied to seg-
ment the skin lesion in dermoscopic images [23–25]. These 
methods performed well on small sets but generated unsatisfac-
tory results when applied to challenging conditions such as low 
contrast between lesion and background, lesions with different 
colors, and images with artifacts like hair, ruler marks, gel bub-
bles, and ink markers. Deep learning techniques have overcome 
these challenges to some extent and improved border detection 
in skin lesion images [26–30].

Al-Masni et al. [26] proposed a deep full-resolution con-
volutional network for skin lesion segmentation. Unlike 
U-Net [31], this method does not employ upsampling or 
downsampling operations so that the feature maps always 
have the same resolution from the input to the output. The 
deep learning methods require little preprocessing and the 
RGB color images are directly fed to the network. However, 
recent studies showed that adding more input color channels 
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improves skin lesion segmentation. Yuan and Lo [28] com-
bined three RGB channels, three HSV channels, and one L 
channel of CIELAB color space and input 7-channel images 
to their deep neural network model and showed improved 
results. Ozturk and Ozkaya [30] also used 7 channels in their 
deep learning method; however, their approach was slightly 
different. The first input layer took three RGB channels and 
four additional channels (S of HSV color space, I of YIQ 
color space, B of CBR color space, and Z of XYZ color 
space) were fed to deeper intermediate layers.

Xie et al. [29] created a high-resolution feature block 
(HRFB) having three branches — a normal convolutional 
branch, a spatial attention branch, and a channel attention 
branch. Tong et al. [32] used an extended U-Net architecture 
and proposed ASCU-Net by employing a triple attention 
mechanism of attention gate [33], spatial attention module, 
and channel attention module.

A transfer learning approach has also been applied to 
skin lesion segmentation problems. Kadry et al. [34] and 
Rajinikanth et al. [35] employed a pretrained VGG [7] 
network to encode the important features from the skin 
lesion image and then upsampled the feature maps repeat-
edly to generate the segmentation mask. Zafar et al. [36] 
employed a ResNet-50 [9] architecture pretrained on Ima-
geNet [37] as the encoder network in their U-Net architec-
ture. A similar method by Tschandl et al. [27] also used a 
ResNet-34 architecture as the encoding layers and inves-
tigated the effect of random weight initialization versus 
domain-specific or ImageNet pretraining. Nawaz et al. 
[38] presented a U-Net architecture using DenseNet [39] 
encoder to segment melanoma lesion of varying colors and 
sizes. Nguyen et al. [40] integrated a pretrained Efficient-
Net-B4 [41] and the residual blocks in their U-Net archi-
tecture. Despite the early success of deep learning methods 
on skin lesion segmentation, many current architectures 
still fail to produce satisfactory results on challenging con-
ditions like low skin-versus-lesion contrast and presence 

of image artifacts like hair or ruler marks, ink markers, 
and gel bubbles. Another concern we found was the pres-
ence of inaccurate or noisy ground truth (GT) masks in 
the benchmark ISIC 2017 [42] skin lesion segmentation 
datasets used in previous studies. These noisy GTs in the 
benchmark dataset warrant investigation to determine their 
effect on skin lesion segmentation.

In this study, we propose a deep learning method to 
improve skin lesion segmentation in dermoscopic images. 
The proposed method uses a modified ChimeraNet [43] 
architecture that was used to detect hair and ruler marks 
in dermoscopic images. The main contributions of this 
paper are as follows:

 (i) The proposed method achieves state-of-the-art seg-
mentation performance on the ISIC 2017 skin lesion 
segmentation dataset. This segmentation improve-
ment can benefit conventional analysis of the lesion, 
which depends on accurate segmentation.

 (ii) We identify noisy or inaccurate ground truth labels 
in the benchmark public dataset.

 (iii) We investigate the effect of pruning the noisy or inac-
curate ground truth labels from the dataset.

Materials and Methods

This section discusses the materials and methods used in 
this study. Our proposed method has three stages — anno-
tation curation, training, and evaluation or inference. First, 
a dermatologist or specialist assesses the quality of ground 
truth annotations in a benchmark public dataset. Second, 
a UNet segmentation model is trained using the curated 
training set. Finally, the trained model is evaluated on the 
curated test set. The overall flow diagram of the proposed 
method is shown in Fig. 1.

Fig. 1  The overall flow diagram of a proposed skin lesion segmentation method
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Image Datasets

The dataset used in this study is the publicly available 
ISIC 2017 [42] skin lesion segmentation dataset. It is a 
large skin lesion segmentation dataset released as a part of 
the 2017 International Skin Imaging Collaboration (ISIC) 
Challenge. It provides 2750 dermoscopic skin lesion 
images with lesion boundary masks — 2000 training, 150 
validation, and 600 test images. The ground truth (GT) 
lesion boundary masks were determined under the supervi-
sion of expert clinicians using both manual annotation and 
semi-automated process, as shown in Fig. 2. The images 
are 8-bit RGB images with varying height and width rang-
ing from a few hundred pixels to a few thousand pixels. 
As the dataset provides a single train-validation split, we 
combined the official training and validation sets to create 
a single training set of 2150 images to run fivefold cross-
validation experiments. The official 600 test images were 
used as a holdout test set to evaluate the performance of 
our proposed method against the state-of-the-art methods.

As the GT masks were created using both manual and 
semi-automated processes, we found some of the ground 
truth masks, especially those determined automatically, were 
inaccurate (Fig. 3). The noisy labels or inaccurate examples 
in the training set might affect the model adversely, reducing 
accuracy. Conversely, noisy labels might aid performance by 
increasing the number of training examples or regularizing 
the overparameterized deep learning model. Also, the noisy 
labels in the test set might not demonstrate a true evalua-
tion of the model. Thus, all 2750 GT masks, including both 
train and test sets, were re-evaluated by a dermatologist and 
categorized into three categories — good, mildly noisy, 
and noisy. The number of GT masks in each category after 
reevaluation is shown in Table 1.

Data Augmentation

Data augmentation can be applied during the training of 
deep neural networks to increase the number of training 
images without adding new images. Augmentation will 

Fig. 2  Skin lesion dermoscopy 
images with ground truth lesion 
boundary (red) from publicly 
available ISIC skin lesion data-
sets. The masks are manually 
drawn (first row) or generated 
using a semi-automated process 
(second row)

Fig. 3  Examples of inaccurate 
or noisy ground truths on  
ISIC lesion segmentation  
dataset. Overlays show GT 
lesion boundaries on lesion 
images (top row) and ground 
truth lesion segmentation 
mask (bottom row). The lesion 
boundary (red) fails to cover the 
whole lesion in all examples
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result in better generalization of deep network models and 
reduce the overfitting problem. Data augmentation performs 
different image transform methods on the original train-
ing images to generate more examples for training. In this 
study, we selected the following image transforms for data 
augmentation:

• Height or width shift with a range of (− 0.15, + 0.15)
• Horizontal or vertical flip
• Rotation with a range between + 90° to − 90°
• Zoom with a range (− 0.15, + 15)
• Brightness with a range of (0.85, 1.15)
• Contrast with a range of (0.85, 1.15)

Furthermore, all images were resized to 448 × 448, and 
the image pixel values were rescaled between 0 and 1. 
Finally, the images were normalized before feeding them to 
the deep network.

Network Architecture

In this study, we used a modified U-Net [31] convolutional 
neural network (CNN) architecture for skin lesion segmen-
tation by Lama et al. [43]. The proposed encoder-decoder 
based image segmentation model, named ChimeraNet, uses 

a pretrained EfficientNet [41] model in the encoder and 
squeeze-and-excitation [44] structures in the decoder. Fur-
thermore, we applied a dilated convolution [45] operation 
in place of a regular convolution operation in these squeeze-
and-excitation residual blocks. As artifacts like hair, ruler 
marks, and purple marks hinder the detection of important 
features from skin lesion images [23, 46], we adopted the 
CNN architecture that was already successful in segment-
ing fine structures like hair and ruler marks from the skin 
lesion images. However, a few minor modifications were 
performed on the original ChimeraNet [43] model to accom-
modate skin lesion segmentation task. The overall pipeline 
of the proposed UNet architecture is shown in Fig. 4.

Encoder

In the encoder part, we used the EfficientNet [41] model pre-
trained on the ImageNet [37] image classification challenge 
dataset. EfficientNets are composed of mobile inverted bottle-
neck convolution (MBConv) structures and have 8 network var-
iants from EfficientNet-B0 to EfficientNet-B7. These networks 
use multiple MBConv blocks grouped together to form seven 
larger blocks named Block1 to Block7, as given in Table 2. 
EfficientNetB0 is the baseline architecture, and other variants 
are scaled up by employing a compound scaling method that 
uniformly scales network depth, width, and resolution with a 
fixed set of scaling factors. In the proposed model, we used the 
pretrained EfficientNet-B4 variant of EfficientNet models as 
the encoder network. Like many CNN architectures, the Effi-
cientNet model downsamples the feature map repeatedly while 
extracting the most useful features from the image. The spatial 
dimension of the final feature map gets much smaller than the 
original dimension of an input image. The dimensions of fea-
ture maps at different levels are given in Table 2.

Table 1  Number of images with good, mildly noisy, and noisy lesion 
boundary labels in ISIC 2017 train and test sets

Image set Good Mildly noisy Noisy

Train + validation 
(2150)

1982 149 19

Test (600) 493 87 20
Total (2750) 2475 236 39

Fig. 4  Proposed architecture for skin lesion segmentation. An encoder-decoder architecture with pretrained EfficientNet model as the encoder 
network, and the decoder network comprised four squeeze-and-excitation residual blocks
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Conversely, the decoder network needs to expand these 
low-resolution feature maps to generate the segmentation 
map with spatial dimensions equal to those of the input 
image. The U-Net architecture uses the skip-connections 
to recover the spatial information lost in the encoder due 
to downsampling process. For precise localization of fea-
tures, the skip-connection feeds the high-resolution output 
feature maps at various levels in the encoder to the decoder 
by skipping some blocks, as shown in Fig. 4. In the proposed 
method, we used the outputs of Conv3 × 3, Block2, Block3, 
and Block5 as sources of the skip-connections. These blocks 
are selected for skip connections because the size of output 
feature maps is downsampled by a factor of 2 in the subse-
quent block. The output dimensions of each block corre-
sponding to the skip connections and the final output of the 
encoder are given in Table 2.

Decoder

The decoder network is constructed using a squeeze-and-
excitation residual (SERes) structure [44], as shown in 
Fig. 5. The SERes block has a better feature representation 
capability than the plain convolution block, as it emphasizes 
the informative features and suppresses the weaker ones by 
modeling the interdependencies between channels of convo-
lutional features. The decoder network has 4 blocks named 
Dec Block1 to Dec Block4, as shown in Fig. 4. Each decoder 
block is composed of a SERes block and gets two feature 
maps as inputs — an output feature map from the previous 
stage and a low-level feature map via a skip-connection from 
the encoder. For example, the first block (Dec Block1) of the 
decoder gets 14 × 14 × 448 feature input from the previous 
stage, the final output of the encoder, and 28 × 28 × 160 low-
level feature input from Block5 via a skip-connection. Here, 
three dimensions of the feature map represent width (W), 
height (H), and number of feature map or channel (C). Both 
feature inputs are concatenated before feeding to the SERes 

block. However, the dimensions of both inputs are not the 
same. To combine both inputs, first, the 14 × 14 × 448 feature 
map from the previous stage is upsampled using a trans-
posed convolution, also called deconvolution. The trans-
posed convolution performs 2 × 2 upsampling followed by a 
3 × 3 convolution operation. We selected the number of fil-
ters for transposed convolution as half of the number of input 
channels, i.e., 224 (= 448/2), thus generating a 28 × 28 × 224 
feature map. Then, the two inputs are concatenated along 
the channel axis to form 28 × 28 × 384 feature map before 
feeding to the SERes block. The SERes block combines an 
SE block with a residual structure [44], as shown in Fig. 5. 
The residual unit in the SERes block is a double convolu-
tion block, which applies two sets of 3 × 3 dilated convolu-
tions (dilation rate = 2), batch normalization [47], and recti-
fied linear unit (ReLU) operations. Again, we selected the 
number of filters for two convolution layers in the residual 
unit as half of the input channels, i.e., 192 (= 384/2). The 
residual unit outputs a 28 × 28 × 192 feature map, and then 
the squeeze-and-excitation operation is performed to scale 
the features along the channel axis. To find the weights for 
each channel of the feature map, SE first applies global aver-
age pooling to reduce the feature map to 1 × 1 × 192 and 
then applies non-linear operations like FC, ReLU, FC, and 
sigmoid. The number of neurons in two FC layers are C/r 
and C, respectively, where r is a feature reduction factor and 
empirically selected as r = 8. The SE generates a 1 × 1 × 192 
weight vector with each value in the range of 0 to 1. Then the 
residual feature is multiplied with a weight vector to scale 
the features and generate a 28 × 28 × 192 scaled feature map.

Furthermore, the SERes block combines this scaled 
residual feature map with the original input feature map. 

Table 2  Different blocks of EfficientNet-B4 model and their output 
feature map sizes and the number of channels

Block name Feature map size (W × H) #Feature 
map (C)

Input layer 448 × 448 3
Conv3 × 3 224 × 224 48
Block 1 224 × 224 24
Block 2 112 × 112 32
Block 3 56 × 56 56
Block 4 28 × 28 112
Block 5 28 × 28 160
Block 6 14 × 14 272
Block 7 14 × 14 448

Fig. 5  Structures of convolution blocks in the decoder network. Dou-
ble convolution block (left) and squeeze-and-excitation residual block 
(right)
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However, the channels in the original input feature map 
(28 × 28 × 224) and residual feature output (28 × 28 × 192) 
are not the same, so a 1 × 1 convolution operation with 192 
filters followed by a batch normalization operation are per-
formed on the original input feature map. Then, the SERes 
block adds two feature maps together and applies the ReLU 
operation to generate the final 28 × 28 × 192 feature output.

Similarly, the remaining decoder blocks (Dec Block2 to 
Dec Block4) apply the same set of operations as Dec Block1. 
Only the size and the number of feature maps are differ-
ent, as shown in Table 3. The number of feature maps (C) 
corresponds to the number of convolutional filters applied 
in each SERes block. Also, the dropout operation with 0.4 
probability was applied after each decoder block to regular-
ize the network from the overfitting during the training. The 
output resolution of the final decoder block, Dec Block4, is 
still smaller than the original input resolution so it is upsam-
pled by a factor of 2. Finally, 1 × 1 convolution and a sig-
moid function are applied to generate the final segmentation 
map of size 448 × 448 × 1. The 1 × 1 convolution reduces the 
number of channels to the desired number of classes, and 
the sigmoid operation converts all pixel values to the range 
between 0 and 1. Each pixel value in the segmentation map 
represents the probability score of that pixel belonging to 
the skin lesion.

During inference, we give five different augmented ver-
sions of an input image to the trained deep network: an  
original image, a horizontally flipped image, a vertically 
flipped image, a 90° clockwise rotated image, and a 90° 
counterclockwise rotated image. The deep network gener-
ates the segmentation output for each image, and the final 
segmentation mask is generated by aggregating these five 
outputs using the unweighted average of the five predicted 
masks. The mask is binarized using the threshold of 0.5 to 
generate the final segmentation mask.

Training Details

All models were built using Keras with a Tensorflow back-
end in Python 3 and trained using a single 32 GB Nvidia 
V100 graphics card. We used a fivefold cross-validation 
method to tune the hyperparameters, which are shown 

in Table 4. The networks were trained using a Dice [48] 
loss function and Kingma and Adam [49] optimization 
algorithm. To reduce overfitting of a deep neural network 
model, we used data augmentation (see details in section 
“Data Augmentation”), a dropout layer, and an early stop-
ping technique. The dropout probability of 0.4 was selected 
for the dropout layers in each decoder block. All images 
were resized to 448 × 448 using bilinear interpolation.

Experimental Results

We evaluated the performance of the proposed method by 
comparing the predicted lesion segmentation masks with the 
provided ground truth masks on the official ISIC 2017 [42] skin 
lesion segmentation dataset having 600 test images. In addition, 
the proposed method was also evaluated on curated ISIC 2017 
test sets. The evaluation metrics used are Jaccard index (Jac), 
Dice similarity coefficient (Dsc), and accuracy (Acc).

Table 3  SERes blocks in the decoder and their output sizes

Block name Size (W × H) Feature 
map 
(C)

Dec Block1 28 × 28 192
Dec Block2 56 × 56 76
Dec Block3 112 × 112 35
Dec Block4 224 × 224 32

Table 4  Training hyperparameters

Parameter Value

image size 448 × 448
learning rate 0.0001
batch size 10
epoch 200
dropout probability 0.4
optimizer Adam
loss method dice
early stopping patience 30

Table 5  Performance comparison with other lesion segmentation 
methods on the original ISIC 2017 test dataset

The bold values emphasize the highest values

Methods Year Jac Dsc Acc

Al-Masni et al. [26] 2018 0.771 0.871 0.940
Tschandl et al. [27] 2019 0.768 0.851
Yuan and Lo [28] 2019 0.765 0.849 0.934
Navarro et al. [50] 2019 0.769 0.854 0.955
Xieet al. [29] 2020 0.783 0.862 0.938
Ozturk and Ozkaya [30] 2020 0.783 0.886 0.953
Shan et al. [51] 2020 0.763 0.846 0.937
Kaymak et al. [52] 2020 0.725 0.841 0.939
Nguyen et al. [40] 2020 0.781 0.861
Zafar et al. [36] 2020 0.772 0.858
Goyal et al. [53] 2020 0.793 0.871
Tong et al. [32] 2021 0.742 0.926
Chen et al. [54] 2022 0.8036 0.8704 0.9471
Ashraf et al. [55] 2022 0.8005
Our method 0.807 0.880 0.948
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Segmentation Performance of the Proposed 
and State‑of‑the‑Art Methods on ISIC 2017 Test 
Images

In this section, we compared the lesion segmentation perfor-
mance of the proposed method on 600 ISIC 2017 test images 
with the previously reported methods, as shown in Table 5. 
The proposed method achieved the highest Jaccard score 
of 0.807, compared to the state-of-the-art methods [53]. In 
Fig. 6, we show the segmentation results of the proposed 
method on ISIC 2017 test images. The segmentation results 
showed that the proposed method successfully finds the lesion 
border despite the presence of hair, ruler marks, ink marker, 
and sticker artifacts. Also, the proposed method accurately 
segments the skin lesion from the background in challenging 
images having low contrast between the skin and the lesion 
(see row 3). The predicted masks have smooth lesion borders 
(blue) compared to the jagged ground truth lesion borders (red) 
generated by semi-automated processes (see third column).

Effect of Pruning the Noisy GT Labels from ISIC 2017 
Dataset

In this section, we investigated the effect of pruning the 
noisy ground truth (GT) labels from both training and test 
sets of the ISIC 2017 lesion segmentation dataset. Table 6 
shows the segmentation performance of the proposed 
method on 600 test images before and after pruning the 
noisy labels from the dataset.

First, we removed the noisy GT labels from the training 
set. When 19 noisy labels were removed from the training 
set of 2150 images, there was no significant change in the 
performance per Jaccard scores (0.807 vs. 0.806) on 600 
test images. However, when both mildly noisy and noisy 
labels (168 images) were removed, the performance slightly 
decreased from a Jaccard score of 0.807 to 0.802 on 600 
test images. Larger training sets provide more examples, 
advantageous for training the deep learning model even if 
the labels are noisy or mildly noisy.

Fig. 6  Segmentation results 
of the proposed method on 
ISIC 2017 test set. Overlays 
of ground truth lesion bound-
ary (red) and predicted lesion 
boundary (blue) on skin lesion 
images. Lesion border predic-
tions are accurate even in the 
presence of artifacts like hair, 
ruler marks, and ink markers

Table 6  Segmentation 
performance comparison of the 
proposed method before and 
after pruning noisy and mildly 
noisy GT labels from ISIC 2017 
train and test sets

The values in bold are the highest scores

Train pruned (Ntrain) Test pruned (Ntest) Jac Dsc Acc

None (2150) None (600) 0.807 0.880 94.779
Noisy (580) 0.817 0.889 95.536
Noisy + Mildly noisy (493) 0.832 0.900 96.393

Noisy (2131) None (600) 0.806 0.878 94.723
Noisy (580) 0.815 0.887 95.518
Noisy + Mildly noisy (493) 0.827 0.895 96.210

Noisy + Mildly noisy (1982) None (600) 0.802 0.875 94.658
Noisy (580) 0.812 0.885 95.398
Noisy + Mildly noisy (493) 0.824 0.893 96.073



1719Journal of Digital Imaging (2023) 36:1712–1722 

1 3

Second, we removed the noisy GT labels from 600 ISIC 
2017 test images. The model trained on the full training set 
(2150 images) improved the Jaccard score by 0.01 from 
0.807 to 0.817 (a 1% improvement) when 20 noisy labels 
were removed. Furthermore, when both noisy (= 20) and 
mildly noisy (= 87) GT labels were removed, we achieved 
the highest Jaccard score of 0.832, which is 2.5% improve-
ment from 0.807.

In Fig. 7, we showed the segmentation results of the pro-
posed method on the ISIC2017 test images having noisy or 
inaccurate ground truth masks. The overlays of the predicted 
lesion boundary (indicated by blue line) and the ground truth 
lesion boundary (indicated by red line) on the third-row 
show that the predicted segmentation covers the lesion area 
more accurately than the ground truth lesion mask.

Discussion

In this study, we demonstrated that our proposed deep learn-
ing method successfully detects the skin lesion boundary  
on most dermoscopic skin lesion images. We scored seg-
mentation performance using the Jaccard index, dice simi-
larity coefficient, and accuracy. As the accuracy metric 
counts true-negative pixels and true-positive pixels equally, 
accuracy overstates the actual performance when positive 

(lesion) and negative (background) pixels are highly imbal-
anced. Accordingly, accuracy is less useful than the other 
methods in assessing segmentation performance for lesions 
which occupy a small area of the image.

The proposed network architecture in this study was the 
same model, ChimeraNet, used in detecting hair and ruler 
marks in dermoscopic images [43]. The encoder-decoder 
architecture uses a pre-trained EfficientNet [41] model as 
the encoder network and a squeeze-and-excitation residual 
[44] structure as the convolutional block to construct the 
decoder network. The proposed method performed better 
than the state-of-the-art methods on the skin lesion seg-
mentation task, with the highest Jaccard scores of 0.807 
on the official ISIC2017 test set and 0.832 on the curated 
ISIC2017 test set. A very similar method was employed 
by Nguyen et  al. [40], with a pretrained EfficientNet 
[41] model as an encoder network. Our proposed model 
improved the Jaccard score of Nguyen by 0.026, from 
0.781 to 0.807, (a 3.2% improvement) on the ISIC 2017 
test set. The main difference was the use of a different 
decoder network which employs a squeeze-and-excitation 
residual structure and dilated convolution operations. The 
squeeze-and-excitation convolutional structure improved 
the segmentation performance by focusing on more criti-
cal channels of the feature maps [44], resulting in a better 
feature representation and generalization than the basic 

Fig. 7  Segmentation results 
of the proposed method on 
examples having noisy (or inac-
curate) ground truth (GT) on an 
official ISIC 2017 test set. The 
predicted lesion borders (blue) 
cover the lesion area more 
accurately than the GT lesion 
border (red)
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convolutional blocks. The dilated convolution operations 
give the larger receptive field without increasing the num-
ber of filter parameters. Lama et al. [43] compared loss 
functions and various U-Net architectures and found that 
the U-Net architecture presented here was best in the der-
moscopy domain. Thus, ablation studies comparing vari-
ous architectures are not repeated here.

Although the ISIC 2017 skin lesion segmentation dataset 
is the largest publicly available and most-used dataset in 
skin lesion segmentation studies in the deep learning era, 
we found many inaccurate ground truth masks in the dataset. 
These inaccurate GT masks might affect the segmentation 
performance of the deep learning model. Thus, our derma-
tologist manually reevaluated all ground truth masks and 
graded them into three categories — good, mildly noisy, 
and noisy. Then we conducted multiple experiments to ana-
lyze the effect of removing the noisy or inaccurate ground 
truth masks from both training and test sets. The results in 
Table 6 show that the model trained on the complete training 
set performed slightly better than the model trained on the 
curated training set (after removing noisy and mildly noisy 
examples). The full training set model had 0.807 Jaccard 
and 0.880 Dice scores on 600 ISIC2017 test images, while 
the curated training set model only achieved 0.802 Jaccard 
and 0.875 Dice scores. These experimental results show that 
the presence of noisy or inaccurate labels in the training 
set does not reduce the model’s performance. Instead, some 
noisy or inaccurate labels in the training set might provide a 
regularization effect for the overparameterized deep learning 
model and thus generalize better, aside from the beneficial 
effect of a more extensive training set. Conversely, the noisy 
or inaccurate GTs in the test set adversely affected the evalu-
ation scores. The Jaccard and Dice similarity scores were 
improved from 0.807 to 0.832 and 0.88 to 0.90, respectively 
when the noisy and mildly noisy GT labels were removed 
from the official ISIC 2017 lesion segmentation test set.  
This result shows that the segmentation performance is 
significantly underestimated when evaluated on the test set 
having noisy or inaccurate GT labels. As many previous 
studies have used the official test set to evaluate their method 
against the state-of-the-art methods, comparisons might not  
be fair and accurate.

Image segmentations created by ChimeraNet deep learn-
ing are subjectively improved, compared to both automatic 
and manual borders. The excessive jaggedness of the auto-
matic borders is remedied with the new technique. The manual 
borders, characterized by straight lines joined at points, are 
smoothed. Both types of distortion in the ground truth segmen-
tations, excessive jaggedness, and straight-line junctions, are 
non-physiologic and may lead to error in handcrafted feature 
analysis which depends upon an accurate border.

There are limitations to this study. Only one dermatolo-
gist scored the accuracy of the segmentations. No new noisy 

segmentations were added to the benchmark ISIC 2017 dataset 
to see the effect of noisy data at different proportions in the 
training set. The experiments were conducted using only the 
available noisy data in the original dataset. Furthermore, we 
did not create new ground truths for the noisy or inaccurate 
ground truths.

Conclusion

In this study, we employed a novel deep learning technique to 
segment skin lesions in dermoscopic images. The proposed 
method performed better than the previous state-of-the-art meth-
ods. We observed the presence of noisy or inaccurate ground 
truth labels in a large benchmark dataset. With help of a der-
matologist, we manually re-evaluated the ground truth masks. 
Furthermore, we investigated the effect of noisy ground truth 
labels in the benchmark dataset. Our experimental results show 
that more training data, including noisy data, yields better perfor-
mance than the condensed curated data. However, the noisy data 
adversely affects the evaluation scores when present in the test 
data. The test scores were improved when the noisy or inaccurate 
labels were removed from the official test set. We recommend 
that future researchers avoid the noisy data in the test set for a fair 
and accurate evaluation of their lesion segmentation algorithms.
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